namei.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052
  1. /*
  2. * fs/f2fs/namei.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/sched.h>
  15. #include <linux/ctype.h>
  16. #include <linux/dcache.h>
  17. #include <linux/namei.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "xattr.h"
  21. #include "acl.h"
  22. #include <trace/events/f2fs.h>
  23. static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode)
  24. {
  25. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  26. nid_t ino;
  27. struct inode *inode;
  28. bool nid_free = false;
  29. int err;
  30. inode = new_inode(dir->i_sb);
  31. if (!inode)
  32. return ERR_PTR(-ENOMEM);
  33. f2fs_lock_op(sbi);
  34. if (!alloc_nid(sbi, &ino)) {
  35. f2fs_unlock_op(sbi);
  36. err = -ENOSPC;
  37. goto fail;
  38. }
  39. f2fs_unlock_op(sbi);
  40. inode_init_owner(inode, dir, mode);
  41. inode->i_ino = ino;
  42. inode->i_blocks = 0;
  43. inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
  44. inode->i_generation = sbi->s_next_generation++;
  45. err = insert_inode_locked(inode);
  46. if (err) {
  47. err = -EINVAL;
  48. nid_free = true;
  49. goto fail;
  50. }
  51. /* If the directory encrypted, then we should encrypt the inode. */
  52. if (f2fs_encrypted_inode(dir) && f2fs_may_encrypt(inode))
  53. f2fs_set_encrypted_inode(inode);
  54. if (f2fs_may_inline_data(inode))
  55. set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
  56. if (f2fs_may_inline_dentry(inode))
  57. set_inode_flag(F2FS_I(inode), FI_INLINE_DENTRY);
  58. f2fs_init_extent_tree(inode, NULL);
  59. stat_inc_inline_xattr(inode);
  60. stat_inc_inline_inode(inode);
  61. stat_inc_inline_dir(inode);
  62. trace_f2fs_new_inode(inode, 0);
  63. mark_inode_dirty(inode);
  64. return inode;
  65. fail:
  66. trace_f2fs_new_inode(inode, err);
  67. make_bad_inode(inode);
  68. if (nid_free)
  69. set_inode_flag(F2FS_I(inode), FI_FREE_NID);
  70. iput(inode);
  71. return ERR_PTR(err);
  72. }
  73. static int is_multimedia_file(const unsigned char *s, const char *sub)
  74. {
  75. size_t slen = strlen(s);
  76. size_t sublen = strlen(sub);
  77. /*
  78. * filename format of multimedia file should be defined as:
  79. * "filename + '.' + extension".
  80. */
  81. if (slen < sublen + 2)
  82. return 0;
  83. if (s[slen - sublen - 1] != '.')
  84. return 0;
  85. return !strncasecmp(s + slen - sublen, sub, sublen);
  86. }
  87. /*
  88. * Set multimedia files as cold files for hot/cold data separation
  89. */
  90. static inline void set_cold_files(struct f2fs_sb_info *sbi, struct inode *inode,
  91. const unsigned char *name)
  92. {
  93. int i;
  94. __u8 (*extlist)[8] = sbi->raw_super->extension_list;
  95. int count = le32_to_cpu(sbi->raw_super->extension_count);
  96. for (i = 0; i < count; i++) {
  97. if (is_multimedia_file(name, extlist[i])) {
  98. file_set_cold(inode);
  99. break;
  100. }
  101. }
  102. }
  103. static int f2fs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
  104. bool excl)
  105. {
  106. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  107. struct inode *inode;
  108. nid_t ino = 0;
  109. int err;
  110. f2fs_balance_fs(sbi);
  111. inode = f2fs_new_inode(dir, mode);
  112. if (IS_ERR(inode))
  113. return PTR_ERR(inode);
  114. if (!test_opt(sbi, DISABLE_EXT_IDENTIFY))
  115. set_cold_files(sbi, inode, dentry->d_name.name);
  116. inode->i_op = &f2fs_file_inode_operations;
  117. inode->i_fop = &f2fs_file_operations;
  118. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  119. ino = inode->i_ino;
  120. f2fs_lock_op(sbi);
  121. err = f2fs_add_link(dentry, inode);
  122. if (err)
  123. goto out;
  124. f2fs_unlock_op(sbi);
  125. alloc_nid_done(sbi, ino);
  126. d_instantiate_new(dentry, inode);
  127. if (IS_DIRSYNC(dir))
  128. f2fs_sync_fs(sbi->sb, 1);
  129. return 0;
  130. out:
  131. handle_failed_inode(inode);
  132. return err;
  133. }
  134. static int f2fs_link(struct dentry *old_dentry, struct inode *dir,
  135. struct dentry *dentry)
  136. {
  137. struct inode *inode = d_inode(old_dentry);
  138. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  139. int err;
  140. if (f2fs_encrypted_inode(dir) &&
  141. !f2fs_is_child_context_consistent_with_parent(dir, inode))
  142. return -EPERM;
  143. f2fs_balance_fs(sbi);
  144. inode->i_ctime = CURRENT_TIME;
  145. ihold(inode);
  146. set_inode_flag(F2FS_I(inode), FI_INC_LINK);
  147. f2fs_lock_op(sbi);
  148. err = f2fs_add_link(dentry, inode);
  149. if (err)
  150. goto out;
  151. f2fs_unlock_op(sbi);
  152. d_instantiate(dentry, inode);
  153. if (IS_DIRSYNC(dir))
  154. f2fs_sync_fs(sbi->sb, 1);
  155. return 0;
  156. out:
  157. clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
  158. iput(inode);
  159. f2fs_unlock_op(sbi);
  160. return err;
  161. }
  162. struct dentry *f2fs_get_parent(struct dentry *child)
  163. {
  164. struct qstr dotdot = QSTR_INIT("..", 2);
  165. unsigned long ino = f2fs_inode_by_name(d_inode(child), &dotdot);
  166. if (!ino)
  167. return ERR_PTR(-ENOENT);
  168. return d_obtain_alias(f2fs_iget(d_inode(child)->i_sb, ino));
  169. }
  170. static int __recover_dot_dentries(struct inode *dir, nid_t pino)
  171. {
  172. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  173. struct qstr dot = QSTR_INIT(".", 1);
  174. struct qstr dotdot = QSTR_INIT("..", 2);
  175. struct f2fs_dir_entry *de;
  176. struct page *page;
  177. int err = 0;
  178. f2fs_lock_op(sbi);
  179. de = f2fs_find_entry(dir, &dot, &page);
  180. if (de) {
  181. f2fs_dentry_kunmap(dir, page);
  182. f2fs_put_page(page, 0);
  183. } else {
  184. err = __f2fs_add_link(dir, &dot, NULL, dir->i_ino, S_IFDIR);
  185. if (err)
  186. goto out;
  187. }
  188. de = f2fs_find_entry(dir, &dotdot, &page);
  189. if (de) {
  190. f2fs_dentry_kunmap(dir, page);
  191. f2fs_put_page(page, 0);
  192. } else {
  193. err = __f2fs_add_link(dir, &dotdot, NULL, pino, S_IFDIR);
  194. }
  195. out:
  196. if (!err) {
  197. clear_inode_flag(F2FS_I(dir), FI_INLINE_DOTS);
  198. mark_inode_dirty(dir);
  199. }
  200. f2fs_unlock_op(sbi);
  201. return err;
  202. }
  203. static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry,
  204. unsigned int flags)
  205. {
  206. struct inode *inode = NULL;
  207. struct f2fs_dir_entry *de;
  208. struct page *page;
  209. nid_t ino;
  210. int err = 0;
  211. if (dentry->d_name.len > F2FS_NAME_LEN)
  212. return ERR_PTR(-ENAMETOOLONG);
  213. de = f2fs_find_entry(dir, &dentry->d_name, &page);
  214. if (!de)
  215. return d_splice_alias(inode, dentry);
  216. ino = le32_to_cpu(de->ino);
  217. f2fs_dentry_kunmap(dir, page);
  218. f2fs_put_page(page, 0);
  219. inode = f2fs_iget(dir->i_sb, ino);
  220. if (IS_ERR(inode))
  221. return ERR_CAST(inode);
  222. if (f2fs_has_inline_dots(inode)) {
  223. err = __recover_dot_dentries(inode, dir->i_ino);
  224. if (err)
  225. goto err_out;
  226. }
  227. return d_splice_alias(inode, dentry);
  228. err_out:
  229. iget_failed(inode);
  230. return ERR_PTR(err);
  231. }
  232. static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
  233. {
  234. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  235. struct inode *inode = d_inode(dentry);
  236. struct f2fs_dir_entry *de;
  237. struct page *page;
  238. int err = -ENOENT;
  239. trace_f2fs_unlink_enter(dir, dentry);
  240. f2fs_balance_fs(sbi);
  241. de = f2fs_find_entry(dir, &dentry->d_name, &page);
  242. if (!de)
  243. goto fail;
  244. f2fs_lock_op(sbi);
  245. err = acquire_orphan_inode(sbi);
  246. if (err) {
  247. f2fs_unlock_op(sbi);
  248. f2fs_dentry_kunmap(dir, page);
  249. f2fs_put_page(page, 0);
  250. goto fail;
  251. }
  252. f2fs_delete_entry(de, page, dir, inode);
  253. f2fs_unlock_op(sbi);
  254. /* In order to evict this inode, we set it dirty */
  255. mark_inode_dirty(inode);
  256. if (IS_DIRSYNC(dir))
  257. f2fs_sync_fs(sbi->sb, 1);
  258. fail:
  259. trace_f2fs_unlink_exit(inode, err);
  260. return err;
  261. }
  262. static const char *f2fs_follow_link(struct dentry *dentry, void **cookie)
  263. {
  264. const char *link = page_follow_link_light(dentry, cookie);
  265. if (!IS_ERR(link) && !*link) {
  266. /* this is broken symlink case */
  267. page_put_link(NULL, *cookie);
  268. link = ERR_PTR(-ENOENT);
  269. }
  270. return link;
  271. }
  272. static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
  273. const char *symname)
  274. {
  275. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  276. struct inode *inode;
  277. size_t len = strlen(symname);
  278. size_t p_len;
  279. char *p_str;
  280. struct f2fs_str disk_link = FSTR_INIT(NULL, 0);
  281. struct f2fs_encrypted_symlink_data *sd = NULL;
  282. int err;
  283. if (len > dir->i_sb->s_blocksize)
  284. return -ENAMETOOLONG;
  285. f2fs_balance_fs(sbi);
  286. inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
  287. if (IS_ERR(inode))
  288. return PTR_ERR(inode);
  289. if (f2fs_encrypted_inode(inode))
  290. inode->i_op = &f2fs_encrypted_symlink_inode_operations;
  291. else
  292. inode->i_op = &f2fs_symlink_inode_operations;
  293. inode_nohighmem(inode);
  294. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  295. f2fs_lock_op(sbi);
  296. err = f2fs_add_link(dentry, inode);
  297. if (err)
  298. goto out;
  299. f2fs_unlock_op(sbi);
  300. alloc_nid_done(sbi, inode->i_ino);
  301. if (f2fs_encrypted_inode(dir)) {
  302. struct qstr istr = QSTR_INIT(symname, len);
  303. err = f2fs_get_encryption_info(inode);
  304. if (err)
  305. goto err_out;
  306. err = f2fs_fname_crypto_alloc_buffer(inode, len, &disk_link);
  307. if (err)
  308. goto err_out;
  309. err = f2fs_fname_usr_to_disk(inode, &istr, &disk_link);
  310. if (err < 0)
  311. goto err_out;
  312. p_len = encrypted_symlink_data_len(disk_link.len) + 1;
  313. if (p_len > dir->i_sb->s_blocksize) {
  314. err = -ENAMETOOLONG;
  315. goto err_out;
  316. }
  317. sd = kzalloc(p_len, GFP_NOFS);
  318. if (!sd) {
  319. err = -ENOMEM;
  320. goto err_out;
  321. }
  322. memcpy(sd->encrypted_path, disk_link.name, disk_link.len);
  323. sd->len = cpu_to_le16(disk_link.len);
  324. p_str = (char *)sd;
  325. } else {
  326. p_len = len + 1;
  327. p_str = (char *)symname;
  328. }
  329. err = page_symlink(inode, p_str, p_len);
  330. err_out:
  331. d_instantiate_new(dentry, inode);
  332. /*
  333. * Let's flush symlink data in order to avoid broken symlink as much as
  334. * possible. Nevertheless, fsyncing is the best way, but there is no
  335. * way to get a file descriptor in order to flush that.
  336. *
  337. * Note that, it needs to do dir->fsync to make this recoverable.
  338. * If the symlink path is stored into inline_data, there is no
  339. * performance regression.
  340. */
  341. if (!err) {
  342. filemap_write_and_wait_range(inode->i_mapping, 0, p_len - 1);
  343. if (IS_DIRSYNC(dir))
  344. f2fs_sync_fs(sbi->sb, 1);
  345. } else {
  346. f2fs_unlink(dir, dentry);
  347. }
  348. kfree(sd);
  349. f2fs_fname_crypto_free_buffer(&disk_link);
  350. return err;
  351. out:
  352. handle_failed_inode(inode);
  353. return err;
  354. }
  355. static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  356. {
  357. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  358. struct inode *inode;
  359. int err;
  360. f2fs_balance_fs(sbi);
  361. inode = f2fs_new_inode(dir, S_IFDIR | mode);
  362. if (IS_ERR(inode))
  363. return PTR_ERR(inode);
  364. inode->i_op = &f2fs_dir_inode_operations;
  365. inode->i_fop = &f2fs_dir_operations;
  366. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  367. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
  368. set_inode_flag(F2FS_I(inode), FI_INC_LINK);
  369. f2fs_lock_op(sbi);
  370. err = f2fs_add_link(dentry, inode);
  371. if (err)
  372. goto out_fail;
  373. f2fs_unlock_op(sbi);
  374. alloc_nid_done(sbi, inode->i_ino);
  375. d_instantiate_new(dentry, inode);
  376. if (IS_DIRSYNC(dir))
  377. f2fs_sync_fs(sbi->sb, 1);
  378. return 0;
  379. out_fail:
  380. clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
  381. handle_failed_inode(inode);
  382. return err;
  383. }
  384. static int f2fs_rmdir(struct inode *dir, struct dentry *dentry)
  385. {
  386. struct inode *inode = d_inode(dentry);
  387. if (f2fs_empty_dir(inode))
  388. return f2fs_unlink(dir, dentry);
  389. return -ENOTEMPTY;
  390. }
  391. static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
  392. umode_t mode, dev_t rdev)
  393. {
  394. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  395. struct inode *inode;
  396. int err = 0;
  397. f2fs_balance_fs(sbi);
  398. inode = f2fs_new_inode(dir, mode);
  399. if (IS_ERR(inode))
  400. return PTR_ERR(inode);
  401. init_special_inode(inode, inode->i_mode, rdev);
  402. inode->i_op = &f2fs_special_inode_operations;
  403. f2fs_lock_op(sbi);
  404. err = f2fs_add_link(dentry, inode);
  405. if (err)
  406. goto out;
  407. f2fs_unlock_op(sbi);
  408. alloc_nid_done(sbi, inode->i_ino);
  409. d_instantiate_new(dentry, inode);
  410. if (IS_DIRSYNC(dir))
  411. f2fs_sync_fs(sbi->sb, 1);
  412. return 0;
  413. out:
  414. handle_failed_inode(inode);
  415. return err;
  416. }
  417. static int __f2fs_tmpfile(struct inode *dir, struct dentry *dentry,
  418. umode_t mode, struct inode **whiteout)
  419. {
  420. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  421. struct inode *inode;
  422. int err;
  423. if (!whiteout)
  424. f2fs_balance_fs(sbi);
  425. inode = f2fs_new_inode(dir, mode);
  426. if (IS_ERR(inode))
  427. return PTR_ERR(inode);
  428. if (whiteout) {
  429. init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
  430. inode->i_op = &f2fs_special_inode_operations;
  431. } else {
  432. inode->i_op = &f2fs_file_inode_operations;
  433. inode->i_fop = &f2fs_file_operations;
  434. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  435. }
  436. f2fs_lock_op(sbi);
  437. err = acquire_orphan_inode(sbi);
  438. if (err)
  439. goto out;
  440. err = f2fs_do_tmpfile(inode, dir);
  441. if (err)
  442. goto release_out;
  443. /*
  444. * add this non-linked tmpfile to orphan list, in this way we could
  445. * remove all unused data of tmpfile after abnormal power-off.
  446. */
  447. add_orphan_inode(sbi, inode->i_ino);
  448. f2fs_unlock_op(sbi);
  449. alloc_nid_done(sbi, inode->i_ino);
  450. if (whiteout) {
  451. inode_dec_link_count(inode);
  452. *whiteout = inode;
  453. } else {
  454. d_tmpfile(dentry, inode);
  455. }
  456. unlock_new_inode(inode);
  457. return 0;
  458. release_out:
  459. release_orphan_inode(sbi);
  460. out:
  461. handle_failed_inode(inode);
  462. return err;
  463. }
  464. static int f2fs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
  465. {
  466. if (f2fs_encrypted_inode(dir)) {
  467. int err = f2fs_get_encryption_info(dir);
  468. if (err)
  469. return err;
  470. }
  471. return __f2fs_tmpfile(dir, dentry, mode, NULL);
  472. }
  473. static int f2fs_create_whiteout(struct inode *dir, struct inode **whiteout)
  474. {
  475. return __f2fs_tmpfile(dir, NULL, S_IFCHR | WHITEOUT_MODE, whiteout);
  476. }
  477. static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
  478. struct inode *new_dir, struct dentry *new_dentry,
  479. unsigned int flags)
  480. {
  481. struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
  482. struct inode *old_inode = d_inode(old_dentry);
  483. struct inode *new_inode = d_inode(new_dentry);
  484. struct inode *whiteout = NULL;
  485. struct page *old_dir_page;
  486. struct page *old_page, *new_page = NULL;
  487. struct f2fs_dir_entry *old_dir_entry = NULL;
  488. struct f2fs_dir_entry *old_entry;
  489. struct f2fs_dir_entry *new_entry;
  490. int err = -ENOENT;
  491. if ((old_dir != new_dir) && f2fs_encrypted_inode(new_dir) &&
  492. !f2fs_is_child_context_consistent_with_parent(new_dir,
  493. old_inode)) {
  494. err = -EPERM;
  495. goto out;
  496. }
  497. f2fs_balance_fs(sbi);
  498. old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
  499. if (!old_entry)
  500. goto out;
  501. if (S_ISDIR(old_inode->i_mode)) {
  502. err = -EIO;
  503. old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
  504. if (!old_dir_entry)
  505. goto out_old;
  506. }
  507. if (flags & RENAME_WHITEOUT) {
  508. err = f2fs_create_whiteout(old_dir, &whiteout);
  509. if (err)
  510. goto out_dir;
  511. }
  512. if (new_inode) {
  513. err = -ENOTEMPTY;
  514. if (old_dir_entry && !f2fs_empty_dir(new_inode))
  515. goto out_whiteout;
  516. err = -ENOENT;
  517. new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
  518. &new_page);
  519. if (!new_entry)
  520. goto out_whiteout;
  521. f2fs_lock_op(sbi);
  522. err = acquire_orphan_inode(sbi);
  523. if (err)
  524. goto put_out_dir;
  525. if (update_dent_inode(old_inode, new_inode,
  526. &new_dentry->d_name)) {
  527. release_orphan_inode(sbi);
  528. goto put_out_dir;
  529. }
  530. f2fs_set_link(new_dir, new_entry, new_page, old_inode);
  531. new_inode->i_ctime = CURRENT_TIME;
  532. down_write(&F2FS_I(new_inode)->i_sem);
  533. if (old_dir_entry)
  534. drop_nlink(new_inode);
  535. drop_nlink(new_inode);
  536. up_write(&F2FS_I(new_inode)->i_sem);
  537. mark_inode_dirty(new_inode);
  538. if (!new_inode->i_nlink)
  539. add_orphan_inode(sbi, new_inode->i_ino);
  540. else
  541. release_orphan_inode(sbi);
  542. update_inode_page(old_inode);
  543. update_inode_page(new_inode);
  544. } else {
  545. f2fs_lock_op(sbi);
  546. err = f2fs_add_link(new_dentry, old_inode);
  547. if (err) {
  548. f2fs_unlock_op(sbi);
  549. goto out_whiteout;
  550. }
  551. if (old_dir_entry) {
  552. inc_nlink(new_dir);
  553. update_inode_page(new_dir);
  554. }
  555. }
  556. down_write(&F2FS_I(old_inode)->i_sem);
  557. file_lost_pino(old_inode);
  558. if (new_inode && file_enc_name(new_inode))
  559. file_set_enc_name(old_inode);
  560. up_write(&F2FS_I(old_inode)->i_sem);
  561. old_inode->i_ctime = CURRENT_TIME;
  562. mark_inode_dirty(old_inode);
  563. f2fs_delete_entry(old_entry, old_page, old_dir, NULL);
  564. if (whiteout) {
  565. whiteout->i_state |= I_LINKABLE;
  566. set_inode_flag(F2FS_I(whiteout), FI_INC_LINK);
  567. err = f2fs_add_link(old_dentry, whiteout);
  568. if (err)
  569. goto put_out_dir;
  570. whiteout->i_state &= ~I_LINKABLE;
  571. iput(whiteout);
  572. }
  573. if (old_dir_entry) {
  574. if (old_dir != new_dir && !whiteout) {
  575. f2fs_set_link(old_inode, old_dir_entry,
  576. old_dir_page, new_dir);
  577. update_inode_page(old_inode);
  578. } else {
  579. f2fs_dentry_kunmap(old_inode, old_dir_page);
  580. f2fs_put_page(old_dir_page, 0);
  581. }
  582. drop_nlink(old_dir);
  583. mark_inode_dirty(old_dir);
  584. update_inode_page(old_dir);
  585. }
  586. f2fs_unlock_op(sbi);
  587. if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
  588. f2fs_sync_fs(sbi->sb, 1);
  589. return 0;
  590. put_out_dir:
  591. f2fs_unlock_op(sbi);
  592. if (new_page) {
  593. f2fs_dentry_kunmap(new_dir, new_page);
  594. f2fs_put_page(new_page, 0);
  595. }
  596. out_whiteout:
  597. if (whiteout)
  598. iput(whiteout);
  599. out_dir:
  600. if (old_dir_entry) {
  601. f2fs_dentry_kunmap(old_inode, old_dir_page);
  602. f2fs_put_page(old_dir_page, 0);
  603. }
  604. out_old:
  605. f2fs_dentry_kunmap(old_dir, old_page);
  606. f2fs_put_page(old_page, 0);
  607. out:
  608. return err;
  609. }
  610. static int f2fs_cross_rename(struct inode *old_dir, struct dentry *old_dentry,
  611. struct inode *new_dir, struct dentry *new_dentry)
  612. {
  613. struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
  614. struct inode *old_inode = d_inode(old_dentry);
  615. struct inode *new_inode = d_inode(new_dentry);
  616. struct page *old_dir_page, *new_dir_page;
  617. struct page *old_page, *new_page;
  618. struct f2fs_dir_entry *old_dir_entry = NULL, *new_dir_entry = NULL;
  619. struct f2fs_dir_entry *old_entry, *new_entry;
  620. int old_nlink = 0, new_nlink = 0;
  621. int err = -ENOENT;
  622. if ((f2fs_encrypted_inode(old_dir) || f2fs_encrypted_inode(new_dir)) &&
  623. (old_dir != new_dir) &&
  624. (!f2fs_is_child_context_consistent_with_parent(new_dir,
  625. old_inode) ||
  626. !f2fs_is_child_context_consistent_with_parent(old_dir,
  627. new_inode)))
  628. return -EPERM;
  629. f2fs_balance_fs(sbi);
  630. old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
  631. if (!old_entry)
  632. goto out;
  633. new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page);
  634. if (!new_entry)
  635. goto out_old;
  636. /* prepare for updating ".." directory entry info later */
  637. if (old_dir != new_dir) {
  638. if (S_ISDIR(old_inode->i_mode)) {
  639. err = -EIO;
  640. old_dir_entry = f2fs_parent_dir(old_inode,
  641. &old_dir_page);
  642. if (!old_dir_entry)
  643. goto out_new;
  644. }
  645. if (S_ISDIR(new_inode->i_mode)) {
  646. err = -EIO;
  647. new_dir_entry = f2fs_parent_dir(new_inode,
  648. &new_dir_page);
  649. if (!new_dir_entry)
  650. goto out_old_dir;
  651. }
  652. }
  653. /*
  654. * If cross rename between file and directory those are not
  655. * in the same directory, we will inc nlink of file's parent
  656. * later, so we should check upper boundary of its nlink.
  657. */
  658. if ((!old_dir_entry || !new_dir_entry) &&
  659. old_dir_entry != new_dir_entry) {
  660. old_nlink = old_dir_entry ? -1 : 1;
  661. new_nlink = -old_nlink;
  662. err = -EMLINK;
  663. if ((old_nlink > 0 && old_inode->i_nlink >= F2FS_LINK_MAX) ||
  664. (new_nlink > 0 && new_inode->i_nlink >= F2FS_LINK_MAX))
  665. goto out_new_dir;
  666. }
  667. f2fs_lock_op(sbi);
  668. err = update_dent_inode(old_inode, new_inode, &new_dentry->d_name);
  669. if (err)
  670. goto out_unlock;
  671. if (file_enc_name(new_inode))
  672. file_set_enc_name(old_inode);
  673. err = update_dent_inode(new_inode, old_inode, &old_dentry->d_name);
  674. if (err)
  675. goto out_undo;
  676. if (file_enc_name(old_inode))
  677. file_set_enc_name(new_inode);
  678. /* update ".." directory entry info of old dentry */
  679. if (old_dir_entry)
  680. f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir);
  681. /* update ".." directory entry info of new dentry */
  682. if (new_dir_entry)
  683. f2fs_set_link(new_inode, new_dir_entry, new_dir_page, old_dir);
  684. /* update directory entry info of old dir inode */
  685. f2fs_set_link(old_dir, old_entry, old_page, new_inode);
  686. down_write(&F2FS_I(old_inode)->i_sem);
  687. file_lost_pino(old_inode);
  688. up_write(&F2FS_I(old_inode)->i_sem);
  689. update_inode_page(old_inode);
  690. old_dir->i_ctime = CURRENT_TIME;
  691. if (old_nlink) {
  692. down_write(&F2FS_I(old_dir)->i_sem);
  693. if (old_nlink < 0)
  694. drop_nlink(old_dir);
  695. else
  696. inc_nlink(old_dir);
  697. up_write(&F2FS_I(old_dir)->i_sem);
  698. }
  699. mark_inode_dirty(old_dir);
  700. update_inode_page(old_dir);
  701. /* update directory entry info of new dir inode */
  702. f2fs_set_link(new_dir, new_entry, new_page, old_inode);
  703. down_write(&F2FS_I(new_inode)->i_sem);
  704. file_lost_pino(new_inode);
  705. up_write(&F2FS_I(new_inode)->i_sem);
  706. update_inode_page(new_inode);
  707. new_dir->i_ctime = CURRENT_TIME;
  708. if (new_nlink) {
  709. down_write(&F2FS_I(new_dir)->i_sem);
  710. if (new_nlink < 0)
  711. drop_nlink(new_dir);
  712. else
  713. inc_nlink(new_dir);
  714. up_write(&F2FS_I(new_dir)->i_sem);
  715. }
  716. mark_inode_dirty(new_dir);
  717. update_inode_page(new_dir);
  718. f2fs_unlock_op(sbi);
  719. if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
  720. f2fs_sync_fs(sbi->sb, 1);
  721. return 0;
  722. out_undo:
  723. /*
  724. * Still we may fail to recover name info of f2fs_inode here
  725. * Drop it, once its name is set as encrypted
  726. */
  727. update_dent_inode(old_inode, old_inode, &old_dentry->d_name);
  728. out_unlock:
  729. f2fs_unlock_op(sbi);
  730. out_new_dir:
  731. if (new_dir_entry) {
  732. f2fs_dentry_kunmap(new_inode, new_dir_page);
  733. f2fs_put_page(new_dir_page, 0);
  734. }
  735. out_old_dir:
  736. if (old_dir_entry) {
  737. f2fs_dentry_kunmap(old_inode, old_dir_page);
  738. f2fs_put_page(old_dir_page, 0);
  739. }
  740. out_new:
  741. f2fs_dentry_kunmap(new_dir, new_page);
  742. f2fs_put_page(new_page, 0);
  743. out_old:
  744. f2fs_dentry_kunmap(old_dir, old_page);
  745. f2fs_put_page(old_page, 0);
  746. out:
  747. return err;
  748. }
  749. static int f2fs_rename2(struct inode *old_dir, struct dentry *old_dentry,
  750. struct inode *new_dir, struct dentry *new_dentry,
  751. unsigned int flags)
  752. {
  753. if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
  754. return -EINVAL;
  755. if (flags & RENAME_EXCHANGE) {
  756. return f2fs_cross_rename(old_dir, old_dentry,
  757. new_dir, new_dentry);
  758. }
  759. /*
  760. * VFS has already handled the new dentry existence case,
  761. * here, we just deal with "RENAME_NOREPLACE" as regular rename.
  762. */
  763. return f2fs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
  764. }
  765. #ifdef CONFIG_F2FS_FS_ENCRYPTION
  766. static const char *f2fs_encrypted_follow_link(struct dentry *dentry, void **cookie)
  767. {
  768. struct page *cpage = NULL;
  769. char *caddr, *paddr = NULL;
  770. struct f2fs_str cstr;
  771. struct f2fs_str pstr = FSTR_INIT(NULL, 0);
  772. struct inode *inode = d_inode(dentry);
  773. struct f2fs_encrypted_symlink_data *sd;
  774. loff_t size = min_t(loff_t, i_size_read(inode), PAGE_SIZE - 1);
  775. u32 max_size = inode->i_sb->s_blocksize;
  776. int res;
  777. res = f2fs_get_encryption_info(inode);
  778. if (res)
  779. return ERR_PTR(res);
  780. cpage = read_mapping_page(inode->i_mapping, 0, NULL);
  781. if (IS_ERR(cpage))
  782. return ERR_CAST(cpage);
  783. caddr = page_address(cpage);
  784. caddr[size] = 0;
  785. /* Symlink is encrypted */
  786. sd = (struct f2fs_encrypted_symlink_data *)caddr;
  787. cstr.len = le16_to_cpu(sd->len);
  788. cstr.name = kmalloc(cstr.len, GFP_NOFS);
  789. if (!cstr.name) {
  790. res = -ENOMEM;
  791. goto errout;
  792. }
  793. memcpy(cstr.name, sd->encrypted_path, cstr.len);
  794. /* this is broken symlink case */
  795. if (cstr.name[0] == 0 && cstr.len == 0) {
  796. res = -ENOENT;
  797. goto errout;
  798. }
  799. if ((cstr.len + sizeof(struct f2fs_encrypted_symlink_data) - 1) >
  800. max_size) {
  801. /* Symlink data on the disk is corrupted */
  802. res = -EIO;
  803. goto errout;
  804. }
  805. res = f2fs_fname_crypto_alloc_buffer(inode, cstr.len, &pstr);
  806. if (res)
  807. goto errout;
  808. res = f2fs_fname_disk_to_usr(inode, NULL, &cstr, &pstr);
  809. if (res < 0)
  810. goto errout;
  811. kfree(cstr.name);
  812. paddr = pstr.name;
  813. /* Null-terminate the name */
  814. paddr[res] = '\0';
  815. page_cache_release(cpage);
  816. return *cookie = paddr;
  817. errout:
  818. kfree(cstr.name);
  819. f2fs_fname_crypto_free_buffer(&pstr);
  820. page_cache_release(cpage);
  821. return ERR_PTR(res);
  822. }
  823. const struct inode_operations f2fs_encrypted_symlink_inode_operations = {
  824. .readlink = generic_readlink,
  825. .follow_link = f2fs_encrypted_follow_link,
  826. .put_link = kfree_put_link,
  827. .getattr = f2fs_getattr,
  828. .setattr = f2fs_setattr,
  829. .setxattr = generic_setxattr,
  830. .getxattr = generic_getxattr,
  831. .listxattr = f2fs_listxattr,
  832. .removexattr = generic_removexattr,
  833. };
  834. #endif
  835. const struct inode_operations f2fs_dir_inode_operations = {
  836. .create = f2fs_create,
  837. .lookup = f2fs_lookup,
  838. .link = f2fs_link,
  839. .unlink = f2fs_unlink,
  840. .symlink = f2fs_symlink,
  841. .mkdir = f2fs_mkdir,
  842. .rmdir = f2fs_rmdir,
  843. .mknod = f2fs_mknod,
  844. .rename2 = f2fs_rename2,
  845. .tmpfile = f2fs_tmpfile,
  846. .getattr = f2fs_getattr,
  847. .setattr = f2fs_setattr,
  848. .get_acl = f2fs_get_acl,
  849. .set_acl = f2fs_set_acl,
  850. #ifdef CONFIG_F2FS_FS_XATTR
  851. .setxattr = generic_setxattr,
  852. .getxattr = generic_getxattr,
  853. .listxattr = f2fs_listxattr,
  854. .removexattr = generic_removexattr,
  855. #endif
  856. };
  857. const struct inode_operations f2fs_symlink_inode_operations = {
  858. .readlink = generic_readlink,
  859. .follow_link = f2fs_follow_link,
  860. .put_link = page_put_link,
  861. .getattr = f2fs_getattr,
  862. .setattr = f2fs_setattr,
  863. #ifdef CONFIG_F2FS_FS_XATTR
  864. .setxattr = generic_setxattr,
  865. .getxattr = generic_getxattr,
  866. .listxattr = f2fs_listxattr,
  867. .removexattr = generic_removexattr,
  868. #endif
  869. };
  870. const struct inode_operations f2fs_special_inode_operations = {
  871. .getattr = f2fs_getattr,
  872. .setattr = f2fs_setattr,
  873. .get_acl = f2fs_get_acl,
  874. .set_acl = f2fs_set_acl,
  875. #ifdef CONFIG_F2FS_FS_XATTR
  876. .setxattr = generic_setxattr,
  877. .getxattr = generic_getxattr,
  878. .listxattr = f2fs_listxattr,
  879. .removexattr = generic_removexattr,
  880. #endif
  881. };