recovery.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. /*
  17. * Roll forward recovery scenarios.
  18. *
  19. * [Term] F: fsync_mark, D: dentry_mark
  20. *
  21. * 1. inode(x) | CP | inode(x) | dnode(F)
  22. * -> Update the latest inode(x).
  23. *
  24. * 2. inode(x) | CP | inode(F) | dnode(F)
  25. * -> No problem.
  26. *
  27. * 3. inode(x) | CP | dnode(F) | inode(x)
  28. * -> Recover to the latest dnode(F), and drop the last inode(x)
  29. *
  30. * 4. inode(x) | CP | dnode(F) | inode(F)
  31. * -> No problem.
  32. *
  33. * 5. CP | inode(x) | dnode(F)
  34. * -> The inode(DF) was missing. Should drop this dnode(F).
  35. *
  36. * 6. CP | inode(DF) | dnode(F)
  37. * -> No problem.
  38. *
  39. * 7. CP | dnode(F) | inode(DF)
  40. * -> If f2fs_iget fails, then goto next to find inode(DF).
  41. *
  42. * 8. CP | dnode(F) | inode(x)
  43. * -> If f2fs_iget fails, then goto next to find inode(DF).
  44. * But it will fail due to no inode(DF).
  45. */
  46. static struct kmem_cache *fsync_entry_slab;
  47. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  48. {
  49. if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
  50. > sbi->user_block_count)
  51. return false;
  52. return true;
  53. }
  54. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  55. nid_t ino)
  56. {
  57. struct fsync_inode_entry *entry;
  58. list_for_each_entry(entry, head, list)
  59. if (entry->inode->i_ino == ino)
  60. return entry;
  61. return NULL;
  62. }
  63. static struct fsync_inode_entry *add_fsync_inode(struct list_head *head,
  64. struct inode *inode)
  65. {
  66. struct fsync_inode_entry *entry;
  67. entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
  68. if (!entry)
  69. return NULL;
  70. entry->inode = inode;
  71. list_add_tail(&entry->list, head);
  72. return entry;
  73. }
  74. static void del_fsync_inode(struct fsync_inode_entry *entry)
  75. {
  76. iput(entry->inode);
  77. list_del(&entry->list);
  78. kmem_cache_free(fsync_entry_slab, entry);
  79. }
  80. static int recover_dentry(struct inode *inode, struct page *ipage,
  81. struct list_head *dir_list)
  82. {
  83. struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
  84. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  85. struct f2fs_dir_entry *de;
  86. struct qstr name;
  87. struct page *page;
  88. struct inode *dir, *einode;
  89. struct fsync_inode_entry *entry;
  90. int err = 0;
  91. entry = get_fsync_inode(dir_list, pino);
  92. if (!entry) {
  93. dir = f2fs_iget(inode->i_sb, pino);
  94. if (IS_ERR(dir)) {
  95. err = PTR_ERR(dir);
  96. goto out;
  97. }
  98. entry = add_fsync_inode(dir_list, dir);
  99. if (!entry) {
  100. err = -ENOMEM;
  101. iput(dir);
  102. goto out;
  103. }
  104. }
  105. dir = entry->inode;
  106. if (file_enc_name(inode))
  107. return 0;
  108. name.len = le32_to_cpu(raw_inode->i_namelen);
  109. name.name = raw_inode->i_name;
  110. if (unlikely(name.len > F2FS_NAME_LEN)) {
  111. WARN_ON(1);
  112. err = -ENAMETOOLONG;
  113. goto out;
  114. }
  115. retry:
  116. de = f2fs_find_entry(dir, &name, &page);
  117. if (de && inode->i_ino == le32_to_cpu(de->ino))
  118. goto out_unmap_put;
  119. if (de) {
  120. einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
  121. if (IS_ERR(einode)) {
  122. WARN_ON(1);
  123. err = PTR_ERR(einode);
  124. if (err == -ENOENT)
  125. err = -EEXIST;
  126. goto out_unmap_put;
  127. }
  128. err = acquire_orphan_inode(F2FS_I_SB(inode));
  129. if (err) {
  130. iput(einode);
  131. goto out_unmap_put;
  132. }
  133. f2fs_delete_entry(de, page, dir, einode);
  134. iput(einode);
  135. goto retry;
  136. }
  137. err = __f2fs_add_link(dir, &name, inode, inode->i_ino, inode->i_mode);
  138. goto out;
  139. out_unmap_put:
  140. f2fs_dentry_kunmap(dir, page);
  141. f2fs_put_page(page, 0);
  142. out:
  143. f2fs_msg(inode->i_sb, KERN_NOTICE,
  144. "%s: ino = %x, name = %s, dir = %lx, err = %d",
  145. __func__, ino_of_node(ipage), raw_inode->i_name,
  146. IS_ERR(dir) ? 0 : dir->i_ino, err);
  147. return err;
  148. }
  149. static void recover_inode(struct inode *inode, struct page *page)
  150. {
  151. struct f2fs_inode *raw = F2FS_INODE(page);
  152. char *name;
  153. inode->i_mode = le16_to_cpu(raw->i_mode);
  154. i_size_write(inode, le64_to_cpu(raw->i_size));
  155. inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
  156. inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
  157. inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
  158. inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
  159. inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
  160. inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
  161. if (file_enc_name(inode))
  162. name = "<encrypted>";
  163. else
  164. name = F2FS_INODE(page)->i_name;
  165. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
  166. ino_of_node(page), name);
  167. }
  168. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  169. {
  170. struct curseg_info *curseg;
  171. struct inode *inode;
  172. struct page *page = NULL;
  173. block_t blkaddr;
  174. int err = 0;
  175. /* get node pages in the current segment */
  176. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  177. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  178. ra_meta_pages(sbi, blkaddr, 1, META_POR, true);
  179. while (1) {
  180. struct fsync_inode_entry *entry;
  181. if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
  182. return 0;
  183. page = get_tmp_page(sbi, blkaddr);
  184. if (!is_recoverable_dnode(page))
  185. break;
  186. if (!is_fsync_dnode(page))
  187. goto next;
  188. entry = get_fsync_inode(head, ino_of_node(page));
  189. if (!entry) {
  190. if (IS_INODE(page) && is_dent_dnode(page)) {
  191. err = recover_inode_page(sbi, page);
  192. if (err)
  193. break;
  194. }
  195. /*
  196. * CP | dnode(F) | inode(DF)
  197. * For this case, we should not give up now.
  198. */
  199. inode = f2fs_iget(sbi->sb, ino_of_node(page));
  200. if (IS_ERR(inode)) {
  201. err = PTR_ERR(inode);
  202. if (err == -ENOENT) {
  203. err = 0;
  204. goto next;
  205. }
  206. break;
  207. }
  208. /* add this fsync inode to the list */
  209. entry = add_fsync_inode(head, inode);
  210. if (!entry) {
  211. err = -ENOMEM;
  212. iput(inode);
  213. break;
  214. }
  215. }
  216. entry->blkaddr = blkaddr;
  217. if (IS_INODE(page)) {
  218. entry->last_inode = blkaddr;
  219. if (is_dent_dnode(page))
  220. entry->last_dentry = blkaddr;
  221. }
  222. next:
  223. /* check next segment */
  224. blkaddr = next_blkaddr_of_node(page);
  225. f2fs_put_page(page, 1);
  226. ra_meta_pages_cond(sbi, blkaddr);
  227. }
  228. f2fs_put_page(page, 1);
  229. return err;
  230. }
  231. static void destroy_fsync_dnodes(struct list_head *head)
  232. {
  233. struct fsync_inode_entry *entry, *tmp;
  234. list_for_each_entry_safe(entry, tmp, head, list)
  235. del_fsync_inode(entry);
  236. }
  237. static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  238. block_t blkaddr, struct dnode_of_data *dn)
  239. {
  240. struct seg_entry *sentry;
  241. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  242. unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  243. struct f2fs_summary_block *sum_node;
  244. struct f2fs_summary sum;
  245. struct page *sum_page, *node_page;
  246. struct dnode_of_data tdn = *dn;
  247. nid_t ino, nid;
  248. struct inode *inode;
  249. unsigned int offset;
  250. block_t bidx;
  251. int i;
  252. sentry = get_seg_entry(sbi, segno);
  253. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  254. return 0;
  255. /* Get the previous summary */
  256. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  257. struct curseg_info *curseg = CURSEG_I(sbi, i);
  258. if (curseg->segno == segno) {
  259. sum = curseg->sum_blk->entries[blkoff];
  260. goto got_it;
  261. }
  262. }
  263. sum_page = get_sum_page(sbi, segno);
  264. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  265. sum = sum_node->entries[blkoff];
  266. f2fs_put_page(sum_page, 1);
  267. got_it:
  268. /* Use the locked dnode page and inode */
  269. nid = le32_to_cpu(sum.nid);
  270. if (dn->inode->i_ino == nid) {
  271. tdn.nid = nid;
  272. if (!dn->inode_page_locked)
  273. lock_page(dn->inode_page);
  274. tdn.node_page = dn->inode_page;
  275. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  276. goto truncate_out;
  277. } else if (dn->nid == nid) {
  278. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  279. goto truncate_out;
  280. }
  281. /* Get the node page */
  282. node_page = get_node_page(sbi, nid);
  283. if (IS_ERR(node_page))
  284. return PTR_ERR(node_page);
  285. offset = ofs_of_node(node_page);
  286. ino = ino_of_node(node_page);
  287. f2fs_put_page(node_page, 1);
  288. if (ino != dn->inode->i_ino) {
  289. /* Deallocate previous index in the node page */
  290. inode = f2fs_iget(sbi->sb, ino);
  291. if (IS_ERR(inode))
  292. return PTR_ERR(inode);
  293. } else {
  294. inode = dn->inode;
  295. }
  296. bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
  297. le16_to_cpu(sum.ofs_in_node);
  298. /*
  299. * if inode page is locked, unlock temporarily, but its reference
  300. * count keeps alive.
  301. */
  302. if (ino == dn->inode->i_ino && dn->inode_page_locked)
  303. unlock_page(dn->inode_page);
  304. set_new_dnode(&tdn, inode, NULL, NULL, 0);
  305. if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
  306. goto out;
  307. if (tdn.data_blkaddr == blkaddr)
  308. truncate_data_blocks_range(&tdn, 1);
  309. f2fs_put_dnode(&tdn);
  310. out:
  311. if (ino != dn->inode->i_ino)
  312. iput(inode);
  313. else if (dn->inode_page_locked)
  314. lock_page(dn->inode_page);
  315. return 0;
  316. truncate_out:
  317. if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
  318. truncate_data_blocks_range(&tdn, 1);
  319. if (dn->inode->i_ino == nid && !dn->inode_page_locked)
  320. unlock_page(dn->inode_page);
  321. return 0;
  322. }
  323. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  324. struct page *page, block_t blkaddr)
  325. {
  326. struct f2fs_inode_info *fi = F2FS_I(inode);
  327. unsigned int start, end;
  328. struct dnode_of_data dn;
  329. struct node_info ni;
  330. int err = 0, recovered = 0;
  331. /* step 1: recover xattr */
  332. if (IS_INODE(page)) {
  333. recover_inline_xattr(inode, page);
  334. } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
  335. /*
  336. * Deprecated; xattr blocks should be found from cold log.
  337. * But, we should remain this for backward compatibility.
  338. */
  339. recover_xattr_data(inode, page, blkaddr);
  340. goto out;
  341. }
  342. /* step 2: recover inline data */
  343. if (recover_inline_data(inode, page))
  344. goto out;
  345. /* step 3: recover data indices */
  346. start = start_bidx_of_node(ofs_of_node(page), fi);
  347. end = start + ADDRS_PER_PAGE(page, fi);
  348. set_new_dnode(&dn, inode, NULL, NULL, 0);
  349. err = get_dnode_of_data(&dn, start, ALLOC_NODE);
  350. if (err)
  351. goto out;
  352. f2fs_wait_on_page_writeback(dn.node_page, NODE);
  353. get_node_info(sbi, dn.nid, &ni);
  354. f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
  355. f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
  356. for (; start < end; start++, dn.ofs_in_node++) {
  357. block_t src, dest;
  358. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  359. dest = datablock_addr(page, dn.ofs_in_node);
  360. /* skip recovering if dest is the same as src */
  361. if (src == dest)
  362. continue;
  363. /* dest is invalid, just invalidate src block */
  364. if (dest == NULL_ADDR) {
  365. truncate_data_blocks_range(&dn, 1);
  366. continue;
  367. }
  368. /*
  369. * dest is reserved block, invalidate src block
  370. * and then reserve one new block in dnode page.
  371. */
  372. if (dest == NEW_ADDR) {
  373. truncate_data_blocks_range(&dn, 1);
  374. err = reserve_new_block(&dn);
  375. f2fs_bug_on(sbi, err);
  376. continue;
  377. }
  378. /* dest is valid block, try to recover from src to dest */
  379. if (f2fs_is_valid_blkaddr(sbi, dest, META_POR)) {
  380. if (src == NULL_ADDR) {
  381. err = reserve_new_block(&dn);
  382. /* We should not get -ENOSPC */
  383. f2fs_bug_on(sbi, err);
  384. }
  385. /* Check the previous node page having this index */
  386. err = check_index_in_prev_nodes(sbi, dest, &dn);
  387. if (err)
  388. goto err;
  389. /* write dummy data page */
  390. f2fs_replace_block(sbi, &dn, src, dest,
  391. ni.version, false);
  392. recovered++;
  393. }
  394. }
  395. if (IS_INODE(dn.node_page))
  396. sync_inode_page(&dn);
  397. copy_node_footer(dn.node_page, page);
  398. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  399. ofs_of_node(page), false);
  400. set_page_dirty(dn.node_page);
  401. err:
  402. f2fs_put_dnode(&dn);
  403. out:
  404. f2fs_msg(sbi->sb, KERN_NOTICE,
  405. "recover_data: ino = %lx, recovered = %d blocks, err = %d",
  406. inode->i_ino, recovered, err);
  407. return err;
  408. }
  409. static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list,
  410. struct list_head *dir_list)
  411. {
  412. struct curseg_info *curseg;
  413. struct page *page = NULL;
  414. int err = 0;
  415. block_t blkaddr;
  416. /* get node pages in the current segment */
  417. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  418. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  419. while (1) {
  420. struct fsync_inode_entry *entry;
  421. if (!f2fs_is_valid_blkaddr(sbi, blkaddr, META_POR))
  422. break;
  423. ra_meta_pages_cond(sbi, blkaddr);
  424. page = get_tmp_page(sbi, blkaddr);
  425. if (!is_recoverable_dnode(page)) {
  426. f2fs_put_page(page, 1);
  427. break;
  428. }
  429. entry = get_fsync_inode(inode_list, ino_of_node(page));
  430. if (!entry)
  431. goto next;
  432. /*
  433. * inode(x) | CP | inode(x) | dnode(F)
  434. * In this case, we can lose the latest inode(x).
  435. * So, call recover_inode for the inode update.
  436. */
  437. if (entry->last_inode == blkaddr)
  438. recover_inode(entry->inode, page);
  439. if (entry->last_dentry == blkaddr) {
  440. err = recover_dentry(entry->inode, page, dir_list);
  441. if (err) {
  442. f2fs_put_page(page, 1);
  443. break;
  444. }
  445. }
  446. err = do_recover_data(sbi, entry->inode, page, blkaddr);
  447. if (err) {
  448. f2fs_put_page(page, 1);
  449. break;
  450. }
  451. if (entry->blkaddr == blkaddr)
  452. del_fsync_inode(entry);
  453. next:
  454. /* check next segment */
  455. blkaddr = next_blkaddr_of_node(page);
  456. f2fs_put_page(page, 1);
  457. }
  458. if (!err)
  459. allocate_new_segments(sbi);
  460. return err;
  461. }
  462. int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only)
  463. {
  464. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  465. struct list_head inode_list;
  466. struct list_head dir_list;
  467. block_t blkaddr;
  468. int err;
  469. int ret = 0;
  470. bool need_writecp = false;
  471. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  472. sizeof(struct fsync_inode_entry));
  473. if (!fsync_entry_slab)
  474. return -ENOMEM;
  475. INIT_LIST_HEAD(&inode_list);
  476. INIT_LIST_HEAD(&dir_list);
  477. /* prevent checkpoint */
  478. mutex_lock(&sbi->cp_mutex);
  479. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  480. /* step #1: find fsynced inode numbers */
  481. err = find_fsync_dnodes(sbi, &inode_list);
  482. if (err || list_empty(&inode_list))
  483. goto out;
  484. if (check_only) {
  485. ret = 1;
  486. goto out;
  487. }
  488. need_writecp = true;
  489. /* step #2: recover data */
  490. err = recover_data(sbi, &inode_list, &dir_list);
  491. if (!err)
  492. f2fs_bug_on(sbi, !list_empty(&inode_list));
  493. out:
  494. destroy_fsync_dnodes(&inode_list);
  495. /* truncate meta pages to be used by the recovery */
  496. truncate_inode_pages_range(META_MAPPING(sbi),
  497. (loff_t)MAIN_BLKADDR(sbi) << PAGE_CACHE_SHIFT, -1);
  498. if (err) {
  499. truncate_inode_pages_final(NODE_MAPPING(sbi));
  500. truncate_inode_pages_final(META_MAPPING(sbi));
  501. }
  502. clear_sbi_flag(sbi, SBI_POR_DOING);
  503. if (err)
  504. set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
  505. mutex_unlock(&sbi->cp_mutex);
  506. /* let's drop all the directory inodes for clean checkpoint */
  507. destroy_fsync_dnodes(&dir_list);
  508. if (!err && need_writecp) {
  509. struct cp_control cpc = {
  510. .reason = CP_RECOVERY,
  511. };
  512. write_checkpoint(sbi, &cpc);
  513. }
  514. kmem_cache_destroy(fsync_entry_slab);
  515. return ret ? ret: err;
  516. }