namespace.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/task_work.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. /* Maximum number of mounts in a mount namespace */
  29. unsigned int sysctl_mount_max __read_mostly = 100000;
  30. static unsigned int m_hash_mask __read_mostly;
  31. static unsigned int m_hash_shift __read_mostly;
  32. static unsigned int mp_hash_mask __read_mostly;
  33. static unsigned int mp_hash_shift __read_mostly;
  34. static __initdata unsigned long mhash_entries;
  35. static int __init set_mhash_entries(char *str)
  36. {
  37. if (!str)
  38. return 0;
  39. mhash_entries = simple_strtoul(str, &str, 0);
  40. return 1;
  41. }
  42. __setup("mhash_entries=", set_mhash_entries);
  43. static __initdata unsigned long mphash_entries;
  44. static int __init set_mphash_entries(char *str)
  45. {
  46. if (!str)
  47. return 0;
  48. mphash_entries = simple_strtoul(str, &str, 0);
  49. return 1;
  50. }
  51. __setup("mphash_entries=", set_mphash_entries);
  52. static u64 event;
  53. static DEFINE_IDA(mnt_id_ida);
  54. static DEFINE_IDA(mnt_group_ida);
  55. static DEFINE_SPINLOCK(mnt_id_lock);
  56. static int mnt_id_start = 0;
  57. static int mnt_group_start = 1;
  58. static struct hlist_head *mount_hashtable __read_mostly;
  59. static struct hlist_head *mountpoint_hashtable __read_mostly;
  60. static struct kmem_cache *mnt_cache __read_mostly;
  61. static DECLARE_RWSEM(namespace_sem);
  62. /* /sys/fs */
  63. struct kobject *fs_kobj;
  64. EXPORT_SYMBOL_GPL(fs_kobj);
  65. /*
  66. * vfsmount lock may be taken for read to prevent changes to the
  67. * vfsmount hash, ie. during mountpoint lookups or walking back
  68. * up the tree.
  69. *
  70. * It should be taken for write in all cases where the vfsmount
  71. * tree or hash is modified or when a vfsmount structure is modified.
  72. */
  73. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  74. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  75. {
  76. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  77. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  78. tmp = tmp + (tmp >> m_hash_shift);
  79. return &mount_hashtable[tmp & m_hash_mask];
  80. }
  81. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  82. {
  83. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  84. tmp = tmp + (tmp >> mp_hash_shift);
  85. return &mountpoint_hashtable[tmp & mp_hash_mask];
  86. }
  87. /*
  88. * allocation is serialized by namespace_sem, but we need the spinlock to
  89. * serialize with freeing.
  90. */
  91. static int mnt_alloc_id(struct mount *mnt)
  92. {
  93. int res;
  94. retry:
  95. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  96. spin_lock(&mnt_id_lock);
  97. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  98. if (!res)
  99. mnt_id_start = mnt->mnt_id + 1;
  100. spin_unlock(&mnt_id_lock);
  101. if (res == -EAGAIN)
  102. goto retry;
  103. return res;
  104. }
  105. static void mnt_free_id(struct mount *mnt)
  106. {
  107. int id = mnt->mnt_id;
  108. spin_lock(&mnt_id_lock);
  109. ida_remove(&mnt_id_ida, id);
  110. if (mnt_id_start > id)
  111. mnt_id_start = id;
  112. spin_unlock(&mnt_id_lock);
  113. }
  114. /*
  115. * Allocate a new peer group ID
  116. *
  117. * mnt_group_ida is protected by namespace_sem
  118. */
  119. static int mnt_alloc_group_id(struct mount *mnt)
  120. {
  121. int res;
  122. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  123. return -ENOMEM;
  124. res = ida_get_new_above(&mnt_group_ida,
  125. mnt_group_start,
  126. &mnt->mnt_group_id);
  127. if (!res)
  128. mnt_group_start = mnt->mnt_group_id + 1;
  129. return res;
  130. }
  131. /*
  132. * Release a peer group ID
  133. */
  134. void mnt_release_group_id(struct mount *mnt)
  135. {
  136. int id = mnt->mnt_group_id;
  137. ida_remove(&mnt_group_ida, id);
  138. if (mnt_group_start > id)
  139. mnt_group_start = id;
  140. mnt->mnt_group_id = 0;
  141. }
  142. /*
  143. * vfsmount lock must be held for read
  144. */
  145. static inline void mnt_add_count(struct mount *mnt, int n)
  146. {
  147. #ifdef CONFIG_SMP
  148. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  149. #else
  150. preempt_disable();
  151. mnt->mnt_count += n;
  152. preempt_enable();
  153. #endif
  154. }
  155. /*
  156. * vfsmount lock must be held for write
  157. */
  158. unsigned int mnt_get_count(struct mount *mnt)
  159. {
  160. #ifdef CONFIG_SMP
  161. unsigned int count = 0;
  162. int cpu;
  163. for_each_possible_cpu(cpu) {
  164. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  165. }
  166. return count;
  167. #else
  168. return mnt->mnt_count;
  169. #endif
  170. }
  171. static void drop_mountpoint(struct fs_pin *p)
  172. {
  173. struct mount *m = container_of(p, struct mount, mnt_umount);
  174. dput(m->mnt_ex_mountpoint);
  175. pin_remove(p);
  176. mntput(&m->mnt);
  177. }
  178. static struct mount *alloc_vfsmnt(const char *name)
  179. {
  180. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  181. if (mnt) {
  182. int err;
  183. err = mnt_alloc_id(mnt);
  184. if (err)
  185. goto out_free_cache;
  186. if (name) {
  187. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  188. if (!mnt->mnt_devname)
  189. goto out_free_id;
  190. }
  191. #ifdef CONFIG_SMP
  192. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  193. if (!mnt->mnt_pcp)
  194. goto out_free_devname;
  195. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  196. #else
  197. mnt->mnt_count = 1;
  198. mnt->mnt_writers = 0;
  199. #endif
  200. INIT_HLIST_NODE(&mnt->mnt_hash);
  201. INIT_LIST_HEAD(&mnt->mnt_child);
  202. INIT_LIST_HEAD(&mnt->mnt_mounts);
  203. INIT_LIST_HEAD(&mnt->mnt_list);
  204. INIT_LIST_HEAD(&mnt->mnt_expire);
  205. INIT_LIST_HEAD(&mnt->mnt_share);
  206. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  207. INIT_LIST_HEAD(&mnt->mnt_slave);
  208. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  209. INIT_LIST_HEAD(&mnt->mnt_umounting);
  210. #ifdef CONFIG_FSNOTIFY
  211. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  212. #endif
  213. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  214. }
  215. return mnt;
  216. #ifdef CONFIG_SMP
  217. out_free_devname:
  218. kfree_const(mnt->mnt_devname);
  219. #endif
  220. out_free_id:
  221. mnt_free_id(mnt);
  222. out_free_cache:
  223. kmem_cache_free(mnt_cache, mnt);
  224. return NULL;
  225. }
  226. /*
  227. * Most r/o checks on a fs are for operations that take
  228. * discrete amounts of time, like a write() or unlink().
  229. * We must keep track of when those operations start
  230. * (for permission checks) and when they end, so that
  231. * we can determine when writes are able to occur to
  232. * a filesystem.
  233. */
  234. /*
  235. * __mnt_is_readonly: check whether a mount is read-only
  236. * @mnt: the mount to check for its write status
  237. *
  238. * This shouldn't be used directly ouside of the VFS.
  239. * It does not guarantee that the filesystem will stay
  240. * r/w, just that it is right *now*. This can not and
  241. * should not be used in place of IS_RDONLY(inode).
  242. * mnt_want/drop_write() will _keep_ the filesystem
  243. * r/w.
  244. */
  245. int __mnt_is_readonly(struct vfsmount *mnt)
  246. {
  247. if (mnt->mnt_flags & MNT_READONLY)
  248. return 1;
  249. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  250. return 1;
  251. return 0;
  252. }
  253. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  254. static inline void mnt_inc_writers(struct mount *mnt)
  255. {
  256. #ifdef CONFIG_SMP
  257. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  258. #else
  259. mnt->mnt_writers++;
  260. #endif
  261. }
  262. static inline void mnt_dec_writers(struct mount *mnt)
  263. {
  264. #ifdef CONFIG_SMP
  265. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  266. #else
  267. mnt->mnt_writers--;
  268. #endif
  269. }
  270. static unsigned int mnt_get_writers(struct mount *mnt)
  271. {
  272. #ifdef CONFIG_SMP
  273. unsigned int count = 0;
  274. int cpu;
  275. for_each_possible_cpu(cpu) {
  276. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  277. }
  278. return count;
  279. #else
  280. return mnt->mnt_writers;
  281. #endif
  282. }
  283. static int mnt_is_readonly(struct vfsmount *mnt)
  284. {
  285. if (mnt->mnt_sb->s_readonly_remount)
  286. return 1;
  287. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  288. smp_rmb();
  289. return __mnt_is_readonly(mnt);
  290. }
  291. /*
  292. * Most r/o & frozen checks on a fs are for operations that take discrete
  293. * amounts of time, like a write() or unlink(). We must keep track of when
  294. * those operations start (for permission checks) and when they end, so that we
  295. * can determine when writes are able to occur to a filesystem.
  296. */
  297. /**
  298. * __mnt_want_write - get write access to a mount without freeze protection
  299. * @m: the mount on which to take a write
  300. *
  301. * This tells the low-level filesystem that a write is about to be performed to
  302. * it, and makes sure that writes are allowed (mnt it read-write) before
  303. * returning success. This operation does not protect against filesystem being
  304. * frozen. When the write operation is finished, __mnt_drop_write() must be
  305. * called. This is effectively a refcount.
  306. */
  307. int __mnt_want_write(struct vfsmount *m)
  308. {
  309. struct mount *mnt = real_mount(m);
  310. int ret = 0;
  311. preempt_disable();
  312. mnt_inc_writers(mnt);
  313. /*
  314. * The store to mnt_inc_writers must be visible before we pass
  315. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  316. * incremented count after it has set MNT_WRITE_HOLD.
  317. */
  318. smp_mb();
  319. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  320. cpu_relax();
  321. /*
  322. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  323. * be set to match its requirements. So we must not load that until
  324. * MNT_WRITE_HOLD is cleared.
  325. */
  326. smp_rmb();
  327. if (mnt_is_readonly(m)) {
  328. mnt_dec_writers(mnt);
  329. ret = -EROFS;
  330. }
  331. preempt_enable();
  332. return ret;
  333. }
  334. /**
  335. * mnt_want_write - get write access to a mount
  336. * @m: the mount on which to take a write
  337. *
  338. * This tells the low-level filesystem that a write is about to be performed to
  339. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  340. * is not frozen) before returning success. When the write operation is
  341. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  342. */
  343. int mnt_want_write(struct vfsmount *m)
  344. {
  345. int ret;
  346. sb_start_write(m->mnt_sb);
  347. ret = __mnt_want_write(m);
  348. if (ret)
  349. sb_end_write(m->mnt_sb);
  350. return ret;
  351. }
  352. EXPORT_SYMBOL_GPL(mnt_want_write);
  353. /**
  354. * mnt_clone_write - get write access to a mount
  355. * @mnt: the mount on which to take a write
  356. *
  357. * This is effectively like mnt_want_write, except
  358. * it must only be used to take an extra write reference
  359. * on a mountpoint that we already know has a write reference
  360. * on it. This allows some optimisation.
  361. *
  362. * After finished, mnt_drop_write must be called as usual to
  363. * drop the reference.
  364. */
  365. int mnt_clone_write(struct vfsmount *mnt)
  366. {
  367. /* superblock may be r/o */
  368. if (__mnt_is_readonly(mnt))
  369. return -EROFS;
  370. preempt_disable();
  371. mnt_inc_writers(real_mount(mnt));
  372. preempt_enable();
  373. return 0;
  374. }
  375. EXPORT_SYMBOL_GPL(mnt_clone_write);
  376. /**
  377. * __mnt_want_write_file - get write access to a file's mount
  378. * @file: the file who's mount on which to take a write
  379. *
  380. * This is like __mnt_want_write, but it takes a file and can
  381. * do some optimisations if the file is open for write already
  382. */
  383. int __mnt_want_write_file(struct file *file)
  384. {
  385. if (!(file->f_mode & FMODE_WRITER))
  386. return __mnt_want_write(file->f_path.mnt);
  387. else
  388. return mnt_clone_write(file->f_path.mnt);
  389. }
  390. /**
  391. * mnt_want_write_file - get write access to a file's mount
  392. * @file: the file who's mount on which to take a write
  393. *
  394. * This is like mnt_want_write, but it takes a file and can
  395. * do some optimisations if the file is open for write already
  396. */
  397. int mnt_want_write_file(struct file *file)
  398. {
  399. int ret;
  400. sb_start_write(file->f_path.mnt->mnt_sb);
  401. ret = __mnt_want_write_file(file);
  402. if (ret)
  403. sb_end_write(file->f_path.mnt->mnt_sb);
  404. return ret;
  405. }
  406. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  407. /**
  408. * __mnt_drop_write - give up write access to a mount
  409. * @mnt: the mount on which to give up write access
  410. *
  411. * Tells the low-level filesystem that we are done
  412. * performing writes to it. Must be matched with
  413. * __mnt_want_write() call above.
  414. */
  415. void __mnt_drop_write(struct vfsmount *mnt)
  416. {
  417. preempt_disable();
  418. mnt_dec_writers(real_mount(mnt));
  419. preempt_enable();
  420. }
  421. /**
  422. * mnt_drop_write - give up write access to a mount
  423. * @mnt: the mount on which to give up write access
  424. *
  425. * Tells the low-level filesystem that we are done performing writes to it and
  426. * also allows filesystem to be frozen again. Must be matched with
  427. * mnt_want_write() call above.
  428. */
  429. void mnt_drop_write(struct vfsmount *mnt)
  430. {
  431. __mnt_drop_write(mnt);
  432. sb_end_write(mnt->mnt_sb);
  433. }
  434. EXPORT_SYMBOL_GPL(mnt_drop_write);
  435. void __mnt_drop_write_file(struct file *file)
  436. {
  437. __mnt_drop_write(file->f_path.mnt);
  438. }
  439. void mnt_drop_write_file(struct file *file)
  440. {
  441. mnt_drop_write(file->f_path.mnt);
  442. }
  443. EXPORT_SYMBOL(mnt_drop_write_file);
  444. static int mnt_make_readonly(struct mount *mnt)
  445. {
  446. int ret = 0;
  447. lock_mount_hash();
  448. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  449. /*
  450. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  451. * should be visible before we do.
  452. */
  453. smp_mb();
  454. /*
  455. * With writers on hold, if this value is zero, then there are
  456. * definitely no active writers (although held writers may subsequently
  457. * increment the count, they'll have to wait, and decrement it after
  458. * seeing MNT_READONLY).
  459. *
  460. * It is OK to have counter incremented on one CPU and decremented on
  461. * another: the sum will add up correctly. The danger would be when we
  462. * sum up each counter, if we read a counter before it is incremented,
  463. * but then read another CPU's count which it has been subsequently
  464. * decremented from -- we would see more decrements than we should.
  465. * MNT_WRITE_HOLD protects against this scenario, because
  466. * mnt_want_write first increments count, then smp_mb, then spins on
  467. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  468. * we're counting up here.
  469. */
  470. if (mnt_get_writers(mnt) > 0)
  471. ret = -EBUSY;
  472. else
  473. mnt->mnt.mnt_flags |= MNT_READONLY;
  474. /*
  475. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  476. * that become unheld will see MNT_READONLY.
  477. */
  478. smp_wmb();
  479. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  480. unlock_mount_hash();
  481. return ret;
  482. }
  483. static void __mnt_unmake_readonly(struct mount *mnt)
  484. {
  485. lock_mount_hash();
  486. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  487. unlock_mount_hash();
  488. }
  489. int sb_prepare_remount_readonly(struct super_block *sb)
  490. {
  491. struct mount *mnt;
  492. int err = 0;
  493. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  494. if (atomic_long_read(&sb->s_remove_count))
  495. return -EBUSY;
  496. lock_mount_hash();
  497. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  498. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  499. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  500. smp_mb();
  501. if (mnt_get_writers(mnt) > 0) {
  502. err = -EBUSY;
  503. break;
  504. }
  505. }
  506. }
  507. if (!err && atomic_long_read(&sb->s_remove_count))
  508. err = -EBUSY;
  509. if (!err) {
  510. sb->s_readonly_remount = 1;
  511. smp_wmb();
  512. }
  513. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  514. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  515. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  516. }
  517. unlock_mount_hash();
  518. return err;
  519. }
  520. static void free_vfsmnt(struct mount *mnt)
  521. {
  522. kfree_const(mnt->mnt_devname);
  523. #ifdef CONFIG_SMP
  524. free_percpu(mnt->mnt_pcp);
  525. #endif
  526. kmem_cache_free(mnt_cache, mnt);
  527. }
  528. static void delayed_free_vfsmnt(struct rcu_head *head)
  529. {
  530. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  531. }
  532. /* call under rcu_read_lock */
  533. int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  534. {
  535. struct mount *mnt;
  536. if (read_seqretry(&mount_lock, seq))
  537. return 1;
  538. if (bastard == NULL)
  539. return 0;
  540. mnt = real_mount(bastard);
  541. mnt_add_count(mnt, 1);
  542. smp_mb(); // see mntput_no_expire()
  543. if (likely(!read_seqretry(&mount_lock, seq)))
  544. return 0;
  545. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  546. mnt_add_count(mnt, -1);
  547. return 1;
  548. }
  549. lock_mount_hash();
  550. if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
  551. mnt_add_count(mnt, -1);
  552. unlock_mount_hash();
  553. return 1;
  554. }
  555. unlock_mount_hash();
  556. /* caller will mntput() */
  557. return -1;
  558. }
  559. /* call under rcu_read_lock */
  560. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  561. {
  562. int res = __legitimize_mnt(bastard, seq);
  563. if (likely(!res))
  564. return true;
  565. if (unlikely(res < 0)) {
  566. rcu_read_unlock();
  567. mntput(bastard);
  568. rcu_read_lock();
  569. }
  570. return false;
  571. }
  572. /*
  573. * find the first mount at @dentry on vfsmount @mnt.
  574. * call under rcu_read_lock()
  575. */
  576. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  577. {
  578. struct hlist_head *head = m_hash(mnt, dentry);
  579. struct mount *p;
  580. hlist_for_each_entry_rcu(p, head, mnt_hash)
  581. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  582. return p;
  583. return NULL;
  584. }
  585. /*
  586. * lookup_mnt - Return the first child mount mounted at path
  587. *
  588. * "First" means first mounted chronologically. If you create the
  589. * following mounts:
  590. *
  591. * mount /dev/sda1 /mnt
  592. * mount /dev/sda2 /mnt
  593. * mount /dev/sda3 /mnt
  594. *
  595. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  596. * return successively the root dentry and vfsmount of /dev/sda1, then
  597. * /dev/sda2, then /dev/sda3, then NULL.
  598. *
  599. * lookup_mnt takes a reference to the found vfsmount.
  600. */
  601. struct vfsmount *lookup_mnt(struct path *path)
  602. {
  603. struct mount *child_mnt;
  604. struct vfsmount *m;
  605. unsigned seq;
  606. rcu_read_lock();
  607. do {
  608. seq = read_seqbegin(&mount_lock);
  609. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  610. m = child_mnt ? &child_mnt->mnt : NULL;
  611. } while (!legitimize_mnt(m, seq));
  612. rcu_read_unlock();
  613. return m;
  614. }
  615. /*
  616. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  617. * current mount namespace.
  618. *
  619. * The common case is dentries are not mountpoints at all and that
  620. * test is handled inline. For the slow case when we are actually
  621. * dealing with a mountpoint of some kind, walk through all of the
  622. * mounts in the current mount namespace and test to see if the dentry
  623. * is a mountpoint.
  624. *
  625. * The mount_hashtable is not usable in the context because we
  626. * need to identify all mounts that may be in the current mount
  627. * namespace not just a mount that happens to have some specified
  628. * parent mount.
  629. */
  630. bool __is_local_mountpoint(struct dentry *dentry)
  631. {
  632. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  633. struct mount *mnt;
  634. bool is_covered = false;
  635. if (!d_mountpoint(dentry))
  636. goto out;
  637. down_read(&namespace_sem);
  638. list_for_each_entry(mnt, &ns->list, mnt_list) {
  639. is_covered = (mnt->mnt_mountpoint == dentry);
  640. if (is_covered)
  641. break;
  642. }
  643. up_read(&namespace_sem);
  644. out:
  645. return is_covered;
  646. }
  647. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  648. {
  649. struct hlist_head *chain = mp_hash(dentry);
  650. struct mountpoint *mp;
  651. hlist_for_each_entry(mp, chain, m_hash) {
  652. if (mp->m_dentry == dentry) {
  653. /* might be worth a WARN_ON() */
  654. if (d_unlinked(dentry))
  655. return ERR_PTR(-ENOENT);
  656. mp->m_count++;
  657. return mp;
  658. }
  659. }
  660. return NULL;
  661. }
  662. static struct mountpoint *get_mountpoint(struct dentry *dentry)
  663. {
  664. struct mountpoint *mp, *new = NULL;
  665. int ret;
  666. if (d_mountpoint(dentry)) {
  667. mountpoint:
  668. read_seqlock_excl(&mount_lock);
  669. mp = lookup_mountpoint(dentry);
  670. read_sequnlock_excl(&mount_lock);
  671. if (mp)
  672. goto done;
  673. }
  674. if (!new)
  675. new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  676. if (!new)
  677. return ERR_PTR(-ENOMEM);
  678. /* Exactly one processes may set d_mounted */
  679. ret = d_set_mounted(dentry);
  680. /* Someone else set d_mounted? */
  681. if (ret == -EBUSY)
  682. goto mountpoint;
  683. /* The dentry is not available as a mountpoint? */
  684. mp = ERR_PTR(ret);
  685. if (ret)
  686. goto done;
  687. /* Add the new mountpoint to the hash table */
  688. read_seqlock_excl(&mount_lock);
  689. new->m_dentry = dentry;
  690. new->m_count = 1;
  691. hlist_add_head(&new->m_hash, mp_hash(dentry));
  692. INIT_HLIST_HEAD(&new->m_list);
  693. read_sequnlock_excl(&mount_lock);
  694. mp = new;
  695. new = NULL;
  696. done:
  697. kfree(new);
  698. return mp;
  699. }
  700. static void put_mountpoint(struct mountpoint *mp)
  701. {
  702. if (!--mp->m_count) {
  703. struct dentry *dentry = mp->m_dentry;
  704. BUG_ON(!hlist_empty(&mp->m_list));
  705. spin_lock(&dentry->d_lock);
  706. dentry->d_flags &= ~DCACHE_MOUNTED;
  707. spin_unlock(&dentry->d_lock);
  708. hlist_del(&mp->m_hash);
  709. kfree(mp);
  710. }
  711. }
  712. static inline int check_mnt(struct mount *mnt)
  713. {
  714. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  715. }
  716. /*
  717. * vfsmount lock must be held for write
  718. */
  719. static void touch_mnt_namespace(struct mnt_namespace *ns)
  720. {
  721. if (ns) {
  722. ns->event = ++event;
  723. wake_up_interruptible(&ns->poll);
  724. }
  725. }
  726. /*
  727. * vfsmount lock must be held for write
  728. */
  729. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  730. {
  731. if (ns && ns->event != event) {
  732. ns->event = event;
  733. wake_up_interruptible(&ns->poll);
  734. }
  735. }
  736. /*
  737. * vfsmount lock must be held for write
  738. */
  739. static void unhash_mnt(struct mount *mnt)
  740. {
  741. mnt->mnt_parent = mnt;
  742. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  743. list_del_init(&mnt->mnt_child);
  744. hlist_del_init_rcu(&mnt->mnt_hash);
  745. hlist_del_init(&mnt->mnt_mp_list);
  746. put_mountpoint(mnt->mnt_mp);
  747. mnt->mnt_mp = NULL;
  748. }
  749. /*
  750. * vfsmount lock must be held for write
  751. */
  752. static void detach_mnt(struct mount *mnt, struct path *old_path)
  753. {
  754. old_path->dentry = mnt->mnt_mountpoint;
  755. old_path->mnt = &mnt->mnt_parent->mnt;
  756. unhash_mnt(mnt);
  757. }
  758. /*
  759. * vfsmount lock must be held for write
  760. */
  761. static void umount_mnt(struct mount *mnt)
  762. {
  763. /* old mountpoint will be dropped when we can do that */
  764. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  765. unhash_mnt(mnt);
  766. }
  767. /*
  768. * vfsmount lock must be held for write
  769. */
  770. void mnt_set_mountpoint(struct mount *mnt,
  771. struct mountpoint *mp,
  772. struct mount *child_mnt)
  773. {
  774. mp->m_count++;
  775. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  776. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  777. child_mnt->mnt_parent = mnt;
  778. child_mnt->mnt_mp = mp;
  779. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  780. }
  781. static void __attach_mnt(struct mount *mnt, struct mount *parent)
  782. {
  783. hlist_add_head_rcu(&mnt->mnt_hash,
  784. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  785. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  786. }
  787. /*
  788. * vfsmount lock must be held for write
  789. */
  790. static void attach_mnt(struct mount *mnt,
  791. struct mount *parent,
  792. struct mountpoint *mp)
  793. {
  794. mnt_set_mountpoint(parent, mp, mnt);
  795. __attach_mnt(mnt, parent);
  796. }
  797. void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
  798. {
  799. struct mountpoint *old_mp = mnt->mnt_mp;
  800. struct dentry *old_mountpoint = mnt->mnt_mountpoint;
  801. struct mount *old_parent = mnt->mnt_parent;
  802. list_del_init(&mnt->mnt_child);
  803. hlist_del_init(&mnt->mnt_mp_list);
  804. hlist_del_init_rcu(&mnt->mnt_hash);
  805. attach_mnt(mnt, parent, mp);
  806. put_mountpoint(old_mp);
  807. /*
  808. * Safely avoid even the suggestion this code might sleep or
  809. * lock the mount hash by taking advantage of the knowledge that
  810. * mnt_change_mountpoint will not release the final reference
  811. * to a mountpoint.
  812. *
  813. * During mounting, the mount passed in as the parent mount will
  814. * continue to use the old mountpoint and during unmounting, the
  815. * old mountpoint will continue to exist until namespace_unlock,
  816. * which happens well after mnt_change_mountpoint.
  817. */
  818. spin_lock(&old_mountpoint->d_lock);
  819. old_mountpoint->d_lockref.count--;
  820. spin_unlock(&old_mountpoint->d_lock);
  821. mnt_add_count(old_parent, -1);
  822. }
  823. /*
  824. * vfsmount lock must be held for write
  825. */
  826. static void commit_tree(struct mount *mnt)
  827. {
  828. struct mount *parent = mnt->mnt_parent;
  829. struct mount *m;
  830. LIST_HEAD(head);
  831. struct mnt_namespace *n = parent->mnt_ns;
  832. BUG_ON(parent == mnt);
  833. list_add_tail(&head, &mnt->mnt_list);
  834. list_for_each_entry(m, &head, mnt_list)
  835. m->mnt_ns = n;
  836. list_splice(&head, n->list.prev);
  837. n->mounts += n->pending_mounts;
  838. n->pending_mounts = 0;
  839. __attach_mnt(mnt, parent);
  840. touch_mnt_namespace(n);
  841. }
  842. static struct mount *next_mnt(struct mount *p, struct mount *root)
  843. {
  844. struct list_head *next = p->mnt_mounts.next;
  845. if (next == &p->mnt_mounts) {
  846. while (1) {
  847. if (p == root)
  848. return NULL;
  849. next = p->mnt_child.next;
  850. if (next != &p->mnt_parent->mnt_mounts)
  851. break;
  852. p = p->mnt_parent;
  853. }
  854. }
  855. return list_entry(next, struct mount, mnt_child);
  856. }
  857. static struct mount *skip_mnt_tree(struct mount *p)
  858. {
  859. struct list_head *prev = p->mnt_mounts.prev;
  860. while (prev != &p->mnt_mounts) {
  861. p = list_entry(prev, struct mount, mnt_child);
  862. prev = p->mnt_mounts.prev;
  863. }
  864. return p;
  865. }
  866. struct vfsmount *
  867. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  868. {
  869. struct mount *mnt;
  870. struct dentry *root;
  871. if (!type)
  872. return ERR_PTR(-ENODEV);
  873. mnt = alloc_vfsmnt(name);
  874. if (!mnt)
  875. return ERR_PTR(-ENOMEM);
  876. if (flags & MS_KERNMOUNT)
  877. mnt->mnt.mnt_flags = MNT_INTERNAL;
  878. root = mount_fs(type, flags, name, data);
  879. if (IS_ERR(root)) {
  880. mnt_free_id(mnt);
  881. free_vfsmnt(mnt);
  882. return ERR_CAST(root);
  883. }
  884. mnt->mnt.mnt_root = root;
  885. mnt->mnt.mnt_sb = root->d_sb;
  886. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  887. mnt->mnt_parent = mnt;
  888. lock_mount_hash();
  889. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  890. unlock_mount_hash();
  891. return &mnt->mnt;
  892. }
  893. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  894. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  895. int flag)
  896. {
  897. struct super_block *sb = old->mnt.mnt_sb;
  898. struct mount *mnt;
  899. int err;
  900. mnt = alloc_vfsmnt(old->mnt_devname);
  901. if (!mnt)
  902. return ERR_PTR(-ENOMEM);
  903. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  904. mnt->mnt_group_id = 0; /* not a peer of original */
  905. else
  906. mnt->mnt_group_id = old->mnt_group_id;
  907. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  908. err = mnt_alloc_group_id(mnt);
  909. if (err)
  910. goto out_free;
  911. }
  912. mnt->mnt.mnt_flags = old->mnt.mnt_flags;
  913. mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
  914. /* Don't allow unprivileged users to change mount flags */
  915. if (flag & CL_UNPRIVILEGED) {
  916. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  917. if (mnt->mnt.mnt_flags & MNT_READONLY)
  918. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  919. if (mnt->mnt.mnt_flags & MNT_NODEV)
  920. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  921. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  922. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  923. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  924. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  925. }
  926. /* Don't allow unprivileged users to reveal what is under a mount */
  927. if ((flag & CL_UNPRIVILEGED) &&
  928. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  929. mnt->mnt.mnt_flags |= MNT_LOCKED;
  930. atomic_inc(&sb->s_active);
  931. mnt->mnt.mnt_sb = sb;
  932. mnt->mnt.mnt_root = dget(root);
  933. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  934. mnt->mnt_parent = mnt;
  935. lock_mount_hash();
  936. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  937. unlock_mount_hash();
  938. if ((flag & CL_SLAVE) ||
  939. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  940. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  941. mnt->mnt_master = old;
  942. CLEAR_MNT_SHARED(mnt);
  943. } else if (!(flag & CL_PRIVATE)) {
  944. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  945. list_add(&mnt->mnt_share, &old->mnt_share);
  946. if (IS_MNT_SLAVE(old))
  947. list_add(&mnt->mnt_slave, &old->mnt_slave);
  948. mnt->mnt_master = old->mnt_master;
  949. }
  950. if (flag & CL_MAKE_SHARED)
  951. set_mnt_shared(mnt);
  952. /* stick the duplicate mount on the same expiry list
  953. * as the original if that was on one */
  954. if (flag & CL_EXPIRE) {
  955. if (!list_empty(&old->mnt_expire))
  956. list_add(&mnt->mnt_expire, &old->mnt_expire);
  957. }
  958. return mnt;
  959. out_free:
  960. mnt_free_id(mnt);
  961. free_vfsmnt(mnt);
  962. return ERR_PTR(err);
  963. }
  964. static void cleanup_mnt(struct mount *mnt)
  965. {
  966. /*
  967. * This probably indicates that somebody messed
  968. * up a mnt_want/drop_write() pair. If this
  969. * happens, the filesystem was probably unable
  970. * to make r/w->r/o transitions.
  971. */
  972. /*
  973. * The locking used to deal with mnt_count decrement provides barriers,
  974. * so mnt_get_writers() below is safe.
  975. */
  976. WARN_ON(mnt_get_writers(mnt));
  977. if (unlikely(mnt->mnt_pins.first))
  978. mnt_pin_kill(mnt);
  979. fsnotify_vfsmount_delete(&mnt->mnt);
  980. dput(mnt->mnt.mnt_root);
  981. deactivate_super(mnt->mnt.mnt_sb);
  982. mnt_free_id(mnt);
  983. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  984. }
  985. static void __cleanup_mnt(struct rcu_head *head)
  986. {
  987. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  988. }
  989. static LLIST_HEAD(delayed_mntput_list);
  990. static void delayed_mntput(struct work_struct *unused)
  991. {
  992. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  993. struct llist_node *next;
  994. for (; node; node = next) {
  995. next = llist_next(node);
  996. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  997. }
  998. }
  999. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  1000. static void mntput_no_expire(struct mount *mnt)
  1001. {
  1002. rcu_read_lock();
  1003. if (likely(READ_ONCE(mnt->mnt_ns))) {
  1004. /*
  1005. * Since we don't do lock_mount_hash() here,
  1006. * ->mnt_ns can change under us. However, if it's
  1007. * non-NULL, then there's a reference that won't
  1008. * be dropped until after an RCU delay done after
  1009. * turning ->mnt_ns NULL. So if we observe it
  1010. * non-NULL under rcu_read_lock(), the reference
  1011. * we are dropping is not the final one.
  1012. */
  1013. mnt_add_count(mnt, -1);
  1014. rcu_read_unlock();
  1015. return;
  1016. }
  1017. lock_mount_hash();
  1018. /*
  1019. * make sure that if __legitimize_mnt() has not seen us grab
  1020. * mount_lock, we'll see their refcount increment here.
  1021. */
  1022. smp_mb();
  1023. mnt_add_count(mnt, -1);
  1024. if (mnt_get_count(mnt)) {
  1025. rcu_read_unlock();
  1026. unlock_mount_hash();
  1027. return;
  1028. }
  1029. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  1030. rcu_read_unlock();
  1031. unlock_mount_hash();
  1032. return;
  1033. }
  1034. mnt->mnt.mnt_flags |= MNT_DOOMED;
  1035. rcu_read_unlock();
  1036. list_del(&mnt->mnt_instance);
  1037. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  1038. struct mount *p, *tmp;
  1039. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  1040. umount_mnt(p);
  1041. }
  1042. }
  1043. unlock_mount_hash();
  1044. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  1045. struct task_struct *task = current;
  1046. if (likely(!(task->flags & PF_KTHREAD))) {
  1047. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  1048. if (!task_work_add(task, &mnt->mnt_rcu, true))
  1049. return;
  1050. }
  1051. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  1052. schedule_delayed_work(&delayed_mntput_work, 1);
  1053. return;
  1054. }
  1055. cleanup_mnt(mnt);
  1056. }
  1057. void mntput(struct vfsmount *mnt)
  1058. {
  1059. if (mnt) {
  1060. struct mount *m = real_mount(mnt);
  1061. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1062. if (unlikely(m->mnt_expiry_mark))
  1063. m->mnt_expiry_mark = 0;
  1064. mntput_no_expire(m);
  1065. }
  1066. }
  1067. EXPORT_SYMBOL(mntput);
  1068. struct vfsmount *mntget(struct vfsmount *mnt)
  1069. {
  1070. if (mnt)
  1071. mnt_add_count(real_mount(mnt), 1);
  1072. return mnt;
  1073. }
  1074. EXPORT_SYMBOL(mntget);
  1075. struct vfsmount *mnt_clone_internal(struct path *path)
  1076. {
  1077. struct mount *p;
  1078. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1079. if (IS_ERR(p))
  1080. return ERR_CAST(p);
  1081. p->mnt.mnt_flags |= MNT_INTERNAL;
  1082. return &p->mnt;
  1083. }
  1084. static inline void mangle(struct seq_file *m, const char *s)
  1085. {
  1086. seq_escape(m, s, " \t\n\\");
  1087. }
  1088. /*
  1089. * Simple .show_options callback for filesystems which don't want to
  1090. * implement more complex mount option showing.
  1091. *
  1092. * See also save_mount_options().
  1093. */
  1094. int generic_show_options(struct seq_file *m, struct dentry *root)
  1095. {
  1096. const char *options;
  1097. rcu_read_lock();
  1098. options = rcu_dereference(root->d_sb->s_options);
  1099. if (options != NULL && options[0]) {
  1100. seq_putc(m, ',');
  1101. mangle(m, options);
  1102. }
  1103. rcu_read_unlock();
  1104. return 0;
  1105. }
  1106. EXPORT_SYMBOL(generic_show_options);
  1107. /*
  1108. * If filesystem uses generic_show_options(), this function should be
  1109. * called from the fill_super() callback.
  1110. *
  1111. * The .remount_fs callback usually needs to be handled in a special
  1112. * way, to make sure, that previous options are not overwritten if the
  1113. * remount fails.
  1114. *
  1115. * Also note, that if the filesystem's .remount_fs function doesn't
  1116. * reset all options to their default value, but changes only newly
  1117. * given options, then the displayed options will not reflect reality
  1118. * any more.
  1119. */
  1120. void save_mount_options(struct super_block *sb, char *options)
  1121. {
  1122. BUG_ON(sb->s_options);
  1123. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1124. }
  1125. EXPORT_SYMBOL(save_mount_options);
  1126. void replace_mount_options(struct super_block *sb, char *options)
  1127. {
  1128. char *old = sb->s_options;
  1129. rcu_assign_pointer(sb->s_options, options);
  1130. if (old) {
  1131. synchronize_rcu();
  1132. kfree(old);
  1133. }
  1134. }
  1135. EXPORT_SYMBOL(replace_mount_options);
  1136. #ifdef CONFIG_PROC_FS
  1137. /* iterator; we want it to have access to namespace_sem, thus here... */
  1138. static void *m_start(struct seq_file *m, loff_t *pos)
  1139. {
  1140. struct proc_mounts *p = m->private;
  1141. down_read(&namespace_sem);
  1142. if (p->cached_event == p->ns->event) {
  1143. void *v = p->cached_mount;
  1144. if (*pos == p->cached_index)
  1145. return v;
  1146. if (*pos == p->cached_index + 1) {
  1147. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1148. return p->cached_mount = v;
  1149. }
  1150. }
  1151. p->cached_event = p->ns->event;
  1152. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1153. p->cached_index = *pos;
  1154. return p->cached_mount;
  1155. }
  1156. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1157. {
  1158. struct proc_mounts *p = m->private;
  1159. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1160. p->cached_index = *pos;
  1161. return p->cached_mount;
  1162. }
  1163. static void m_stop(struct seq_file *m, void *v)
  1164. {
  1165. up_read(&namespace_sem);
  1166. }
  1167. static int m_show(struct seq_file *m, void *v)
  1168. {
  1169. struct proc_mounts *p = m->private;
  1170. struct mount *r = list_entry(v, struct mount, mnt_list);
  1171. return p->show(m, &r->mnt);
  1172. }
  1173. const struct seq_operations mounts_op = {
  1174. .start = m_start,
  1175. .next = m_next,
  1176. .stop = m_stop,
  1177. .show = m_show,
  1178. };
  1179. #endif /* CONFIG_PROC_FS */
  1180. /**
  1181. * may_umount_tree - check if a mount tree is busy
  1182. * @mnt: root of mount tree
  1183. *
  1184. * This is called to check if a tree of mounts has any
  1185. * open files, pwds, chroots or sub mounts that are
  1186. * busy.
  1187. */
  1188. int may_umount_tree(struct vfsmount *m)
  1189. {
  1190. struct mount *mnt = real_mount(m);
  1191. int actual_refs = 0;
  1192. int minimum_refs = 0;
  1193. struct mount *p;
  1194. BUG_ON(!m);
  1195. /* write lock needed for mnt_get_count */
  1196. lock_mount_hash();
  1197. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1198. actual_refs += mnt_get_count(p);
  1199. minimum_refs += 2;
  1200. }
  1201. unlock_mount_hash();
  1202. if (actual_refs > minimum_refs)
  1203. return 0;
  1204. return 1;
  1205. }
  1206. EXPORT_SYMBOL(may_umount_tree);
  1207. /**
  1208. * may_umount - check if a mount point is busy
  1209. * @mnt: root of mount
  1210. *
  1211. * This is called to check if a mount point has any
  1212. * open files, pwds, chroots or sub mounts. If the
  1213. * mount has sub mounts this will return busy
  1214. * regardless of whether the sub mounts are busy.
  1215. *
  1216. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1217. * give false negatives. The main reason why it's here is that we need
  1218. * a non-destructive way to look for easily umountable filesystems.
  1219. */
  1220. int may_umount(struct vfsmount *mnt)
  1221. {
  1222. int ret = 1;
  1223. down_read(&namespace_sem);
  1224. lock_mount_hash();
  1225. if (propagate_mount_busy(real_mount(mnt), 2))
  1226. ret = 0;
  1227. unlock_mount_hash();
  1228. up_read(&namespace_sem);
  1229. return ret;
  1230. }
  1231. EXPORT_SYMBOL(may_umount);
  1232. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1233. static void namespace_unlock(void)
  1234. {
  1235. struct hlist_head head;
  1236. hlist_move_list(&unmounted, &head);
  1237. up_write(&namespace_sem);
  1238. if (likely(hlist_empty(&head)))
  1239. return;
  1240. synchronize_rcu();
  1241. group_pin_kill(&head);
  1242. }
  1243. static inline void namespace_lock(void)
  1244. {
  1245. down_write(&namespace_sem);
  1246. }
  1247. enum umount_tree_flags {
  1248. UMOUNT_SYNC = 1,
  1249. UMOUNT_PROPAGATE = 2,
  1250. UMOUNT_CONNECTED = 4,
  1251. };
  1252. static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
  1253. {
  1254. /* Leaving mounts connected is only valid for lazy umounts */
  1255. if (how & UMOUNT_SYNC)
  1256. return true;
  1257. /* A mount without a parent has nothing to be connected to */
  1258. if (!mnt_has_parent(mnt))
  1259. return true;
  1260. /* Because the reference counting rules change when mounts are
  1261. * unmounted and connected, umounted mounts may not be
  1262. * connected to mounted mounts.
  1263. */
  1264. if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
  1265. return true;
  1266. /* Has it been requested that the mount remain connected? */
  1267. if (how & UMOUNT_CONNECTED)
  1268. return false;
  1269. /* Is the mount locked such that it needs to remain connected? */
  1270. if (IS_MNT_LOCKED(mnt))
  1271. return false;
  1272. /* By default disconnect the mount */
  1273. return true;
  1274. }
  1275. /*
  1276. * mount_lock must be held
  1277. * namespace_sem must be held for write
  1278. */
  1279. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1280. {
  1281. LIST_HEAD(tmp_list);
  1282. struct mount *p;
  1283. if (how & UMOUNT_PROPAGATE)
  1284. propagate_mount_unlock(mnt);
  1285. /* Gather the mounts to umount */
  1286. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1287. p->mnt.mnt_flags |= MNT_UMOUNT;
  1288. list_move(&p->mnt_list, &tmp_list);
  1289. }
  1290. /* Hide the mounts from mnt_mounts */
  1291. list_for_each_entry(p, &tmp_list, mnt_list) {
  1292. list_del_init(&p->mnt_child);
  1293. }
  1294. /* Add propogated mounts to the tmp_list */
  1295. if (how & UMOUNT_PROPAGATE)
  1296. propagate_umount(&tmp_list);
  1297. while (!list_empty(&tmp_list)) {
  1298. struct mnt_namespace *ns;
  1299. bool disconnect;
  1300. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1301. list_del_init(&p->mnt_expire);
  1302. list_del_init(&p->mnt_list);
  1303. ns = p->mnt_ns;
  1304. if (ns) {
  1305. ns->mounts--;
  1306. __touch_mnt_namespace(ns);
  1307. }
  1308. p->mnt_ns = NULL;
  1309. if (how & UMOUNT_SYNC)
  1310. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1311. disconnect = disconnect_mount(p, how);
  1312. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1313. disconnect ? &unmounted : NULL);
  1314. if (mnt_has_parent(p)) {
  1315. mnt_add_count(p->mnt_parent, -1);
  1316. if (!disconnect) {
  1317. /* Don't forget about p */
  1318. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1319. } else {
  1320. umount_mnt(p);
  1321. }
  1322. }
  1323. change_mnt_propagation(p, MS_PRIVATE);
  1324. }
  1325. }
  1326. static void shrink_submounts(struct mount *mnt);
  1327. static int do_umount(struct mount *mnt, int flags)
  1328. {
  1329. struct super_block *sb = mnt->mnt.mnt_sb;
  1330. int retval;
  1331. retval = security_sb_umount(&mnt->mnt, flags);
  1332. if (retval)
  1333. return retval;
  1334. /*
  1335. * Allow userspace to request a mountpoint be expired rather than
  1336. * unmounting unconditionally. Unmount only happens if:
  1337. * (1) the mark is already set (the mark is cleared by mntput())
  1338. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1339. */
  1340. if (flags & MNT_EXPIRE) {
  1341. if (&mnt->mnt == current->fs->root.mnt ||
  1342. flags & (MNT_FORCE | MNT_DETACH))
  1343. return -EINVAL;
  1344. /*
  1345. * probably don't strictly need the lock here if we examined
  1346. * all race cases, but it's a slowpath.
  1347. */
  1348. lock_mount_hash();
  1349. if (mnt_get_count(mnt) != 2) {
  1350. unlock_mount_hash();
  1351. return -EBUSY;
  1352. }
  1353. unlock_mount_hash();
  1354. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1355. return -EAGAIN;
  1356. }
  1357. /*
  1358. * If we may have to abort operations to get out of this
  1359. * mount, and they will themselves hold resources we must
  1360. * allow the fs to do things. In the Unix tradition of
  1361. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1362. * might fail to complete on the first run through as other tasks
  1363. * must return, and the like. Thats for the mount program to worry
  1364. * about for the moment.
  1365. */
  1366. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1367. sb->s_op->umount_begin(sb);
  1368. }
  1369. /*
  1370. * No sense to grab the lock for this test, but test itself looks
  1371. * somewhat bogus. Suggestions for better replacement?
  1372. * Ho-hum... In principle, we might treat that as umount + switch
  1373. * to rootfs. GC would eventually take care of the old vfsmount.
  1374. * Actually it makes sense, especially if rootfs would contain a
  1375. * /reboot - static binary that would close all descriptors and
  1376. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1377. */
  1378. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1379. /*
  1380. * Special case for "unmounting" root ...
  1381. * we just try to remount it readonly.
  1382. */
  1383. if (!capable(CAP_SYS_ADMIN))
  1384. return -EPERM;
  1385. down_write(&sb->s_umount);
  1386. if (!(sb->s_flags & MS_RDONLY))
  1387. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1388. up_write(&sb->s_umount);
  1389. return retval;
  1390. }
  1391. namespace_lock();
  1392. lock_mount_hash();
  1393. /* Recheck MNT_LOCKED with the locks held */
  1394. retval = -EINVAL;
  1395. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1396. goto out;
  1397. event++;
  1398. if (flags & MNT_DETACH) {
  1399. if (!list_empty(&mnt->mnt_list))
  1400. umount_tree(mnt, UMOUNT_PROPAGATE);
  1401. retval = 0;
  1402. } else {
  1403. shrink_submounts(mnt);
  1404. retval = -EBUSY;
  1405. if (!propagate_mount_busy(mnt, 2)) {
  1406. if (!list_empty(&mnt->mnt_list))
  1407. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1408. retval = 0;
  1409. }
  1410. }
  1411. out:
  1412. unlock_mount_hash();
  1413. namespace_unlock();
  1414. return retval;
  1415. }
  1416. /*
  1417. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1418. *
  1419. * During unlink, rmdir, and d_drop it is possible to loose the path
  1420. * to an existing mountpoint, and wind up leaking the mount.
  1421. * detach_mounts allows lazily unmounting those mounts instead of
  1422. * leaking them.
  1423. *
  1424. * The caller may hold dentry->d_inode->i_mutex.
  1425. */
  1426. void __detach_mounts(struct dentry *dentry)
  1427. {
  1428. struct mountpoint *mp;
  1429. struct mount *mnt;
  1430. namespace_lock();
  1431. lock_mount_hash();
  1432. mp = lookup_mountpoint(dentry);
  1433. if (IS_ERR_OR_NULL(mp))
  1434. goto out_unlock;
  1435. event++;
  1436. while (!hlist_empty(&mp->m_list)) {
  1437. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1438. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1439. hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
  1440. umount_mnt(mnt);
  1441. }
  1442. else umount_tree(mnt, UMOUNT_CONNECTED);
  1443. }
  1444. put_mountpoint(mp);
  1445. out_unlock:
  1446. unlock_mount_hash();
  1447. namespace_unlock();
  1448. }
  1449. /*
  1450. * Is the caller allowed to modify his namespace?
  1451. */
  1452. static inline bool may_mount(void)
  1453. {
  1454. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1455. }
  1456. /*
  1457. * Now umount can handle mount points as well as block devices.
  1458. * This is important for filesystems which use unnamed block devices.
  1459. *
  1460. * We now support a flag for forced unmount like the other 'big iron'
  1461. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1462. */
  1463. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1464. {
  1465. struct path path;
  1466. struct mount *mnt;
  1467. int retval;
  1468. int lookup_flags = 0;
  1469. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1470. return -EINVAL;
  1471. if (!may_mount())
  1472. return -EPERM;
  1473. if (!(flags & UMOUNT_NOFOLLOW))
  1474. lookup_flags |= LOOKUP_FOLLOW;
  1475. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1476. if (retval)
  1477. goto out;
  1478. mnt = real_mount(path.mnt);
  1479. retval = -EINVAL;
  1480. if (path.dentry != path.mnt->mnt_root)
  1481. goto dput_and_out;
  1482. if (!check_mnt(mnt))
  1483. goto dput_and_out;
  1484. if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
  1485. goto dput_and_out;
  1486. retval = -EPERM;
  1487. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1488. goto dput_and_out;
  1489. retval = do_umount(mnt, flags);
  1490. dput_and_out:
  1491. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1492. dput(path.dentry);
  1493. mntput_no_expire(mnt);
  1494. out:
  1495. return retval;
  1496. }
  1497. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1498. /*
  1499. * The 2.0 compatible umount. No flags.
  1500. */
  1501. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1502. {
  1503. return sys_umount(name, 0);
  1504. }
  1505. #endif
  1506. static bool is_mnt_ns_file(struct dentry *dentry)
  1507. {
  1508. /* Is this a proxy for a mount namespace? */
  1509. return dentry->d_op == &ns_dentry_operations &&
  1510. dentry->d_fsdata == &mntns_operations;
  1511. }
  1512. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1513. {
  1514. return container_of(ns, struct mnt_namespace, ns);
  1515. }
  1516. static bool mnt_ns_loop(struct dentry *dentry)
  1517. {
  1518. /* Could bind mounting the mount namespace inode cause a
  1519. * mount namespace loop?
  1520. */
  1521. struct mnt_namespace *mnt_ns;
  1522. if (!is_mnt_ns_file(dentry))
  1523. return false;
  1524. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1525. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1526. }
  1527. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1528. int flag)
  1529. {
  1530. struct mount *res, *p, *q, *r, *parent;
  1531. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1532. return ERR_PTR(-EINVAL);
  1533. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1534. return ERR_PTR(-EINVAL);
  1535. res = q = clone_mnt(mnt, dentry, flag);
  1536. if (IS_ERR(q))
  1537. return q;
  1538. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1539. p = mnt;
  1540. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1541. struct mount *s;
  1542. if (!is_subdir(r->mnt_mountpoint, dentry))
  1543. continue;
  1544. for (s = r; s; s = next_mnt(s, r)) {
  1545. if (!(flag & CL_COPY_UNBINDABLE) &&
  1546. IS_MNT_UNBINDABLE(s)) {
  1547. if (s->mnt.mnt_flags & MNT_LOCKED) {
  1548. /* Both unbindable and locked. */
  1549. q = ERR_PTR(-EPERM);
  1550. goto out;
  1551. } else {
  1552. s = skip_mnt_tree(s);
  1553. continue;
  1554. }
  1555. }
  1556. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1557. is_mnt_ns_file(s->mnt.mnt_root)) {
  1558. s = skip_mnt_tree(s);
  1559. continue;
  1560. }
  1561. while (p != s->mnt_parent) {
  1562. p = p->mnt_parent;
  1563. q = q->mnt_parent;
  1564. }
  1565. p = s;
  1566. parent = q;
  1567. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1568. if (IS_ERR(q))
  1569. goto out;
  1570. lock_mount_hash();
  1571. list_add_tail(&q->mnt_list, &res->mnt_list);
  1572. attach_mnt(q, parent, p->mnt_mp);
  1573. unlock_mount_hash();
  1574. }
  1575. }
  1576. return res;
  1577. out:
  1578. if (res) {
  1579. lock_mount_hash();
  1580. umount_tree(res, UMOUNT_SYNC);
  1581. unlock_mount_hash();
  1582. }
  1583. return q;
  1584. }
  1585. /* Caller should check returned pointer for errors */
  1586. struct vfsmount *collect_mounts(struct path *path)
  1587. {
  1588. struct mount *tree;
  1589. namespace_lock();
  1590. if (!check_mnt(real_mount(path->mnt)))
  1591. tree = ERR_PTR(-EINVAL);
  1592. else
  1593. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1594. CL_COPY_ALL | CL_PRIVATE);
  1595. namespace_unlock();
  1596. if (IS_ERR(tree))
  1597. return ERR_CAST(tree);
  1598. return &tree->mnt;
  1599. }
  1600. void drop_collected_mounts(struct vfsmount *mnt)
  1601. {
  1602. namespace_lock();
  1603. lock_mount_hash();
  1604. umount_tree(real_mount(mnt), 0);
  1605. unlock_mount_hash();
  1606. namespace_unlock();
  1607. }
  1608. /**
  1609. * clone_private_mount - create a private clone of a path
  1610. *
  1611. * This creates a new vfsmount, which will be the clone of @path. The new will
  1612. * not be attached anywhere in the namespace and will be private (i.e. changes
  1613. * to the originating mount won't be propagated into this).
  1614. *
  1615. * Release with mntput().
  1616. */
  1617. struct vfsmount *clone_private_mount(struct path *path)
  1618. {
  1619. struct mount *old_mnt = real_mount(path->mnt);
  1620. struct mount *new_mnt;
  1621. if (IS_MNT_UNBINDABLE(old_mnt))
  1622. return ERR_PTR(-EINVAL);
  1623. down_read(&namespace_sem);
  1624. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1625. up_read(&namespace_sem);
  1626. if (IS_ERR(new_mnt))
  1627. return ERR_CAST(new_mnt);
  1628. return &new_mnt->mnt;
  1629. }
  1630. EXPORT_SYMBOL_GPL(clone_private_mount);
  1631. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1632. struct vfsmount *root)
  1633. {
  1634. struct mount *mnt;
  1635. int res = f(root, arg);
  1636. if (res)
  1637. return res;
  1638. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1639. res = f(&mnt->mnt, arg);
  1640. if (res)
  1641. return res;
  1642. }
  1643. return 0;
  1644. }
  1645. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1646. {
  1647. struct mount *p;
  1648. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1649. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1650. mnt_release_group_id(p);
  1651. }
  1652. }
  1653. static int invent_group_ids(struct mount *mnt, bool recurse)
  1654. {
  1655. struct mount *p;
  1656. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1657. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1658. int err = mnt_alloc_group_id(p);
  1659. if (err) {
  1660. cleanup_group_ids(mnt, p);
  1661. return err;
  1662. }
  1663. }
  1664. }
  1665. return 0;
  1666. }
  1667. int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
  1668. {
  1669. unsigned int max = READ_ONCE(sysctl_mount_max);
  1670. unsigned int mounts = 0, old, pending, sum;
  1671. struct mount *p;
  1672. for (p = mnt; p; p = next_mnt(p, mnt))
  1673. mounts++;
  1674. old = ns->mounts;
  1675. pending = ns->pending_mounts;
  1676. sum = old + pending;
  1677. if ((old > sum) ||
  1678. (pending > sum) ||
  1679. (max < sum) ||
  1680. (mounts > (max - sum)))
  1681. return -ENOSPC;
  1682. ns->pending_mounts = pending + mounts;
  1683. return 0;
  1684. }
  1685. /*
  1686. * @source_mnt : mount tree to be attached
  1687. * @nd : place the mount tree @source_mnt is attached
  1688. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1689. * store the parent mount and mountpoint dentry.
  1690. * (done when source_mnt is moved)
  1691. *
  1692. * NOTE: in the table below explains the semantics when a source mount
  1693. * of a given type is attached to a destination mount of a given type.
  1694. * ---------------------------------------------------------------------------
  1695. * | BIND MOUNT OPERATION |
  1696. * |**************************************************************************
  1697. * | source-->| shared | private | slave | unbindable |
  1698. * | dest | | | | |
  1699. * | | | | | | |
  1700. * | v | | | | |
  1701. * |**************************************************************************
  1702. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1703. * | | | | | |
  1704. * |non-shared| shared (+) | private | slave (*) | invalid |
  1705. * ***************************************************************************
  1706. * A bind operation clones the source mount and mounts the clone on the
  1707. * destination mount.
  1708. *
  1709. * (++) the cloned mount is propagated to all the mounts in the propagation
  1710. * tree of the destination mount and the cloned mount is added to
  1711. * the peer group of the source mount.
  1712. * (+) the cloned mount is created under the destination mount and is marked
  1713. * as shared. The cloned mount is added to the peer group of the source
  1714. * mount.
  1715. * (+++) the mount is propagated to all the mounts in the propagation tree
  1716. * of the destination mount and the cloned mount is made slave
  1717. * of the same master as that of the source mount. The cloned mount
  1718. * is marked as 'shared and slave'.
  1719. * (*) the cloned mount is made a slave of the same master as that of the
  1720. * source mount.
  1721. *
  1722. * ---------------------------------------------------------------------------
  1723. * | MOVE MOUNT OPERATION |
  1724. * |**************************************************************************
  1725. * | source-->| shared | private | slave | unbindable |
  1726. * | dest | | | | |
  1727. * | | | | | | |
  1728. * | v | | | | |
  1729. * |**************************************************************************
  1730. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1731. * | | | | | |
  1732. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1733. * ***************************************************************************
  1734. *
  1735. * (+) the mount is moved to the destination. And is then propagated to
  1736. * all the mounts in the propagation tree of the destination mount.
  1737. * (+*) the mount is moved to the destination.
  1738. * (+++) the mount is moved to the destination and is then propagated to
  1739. * all the mounts belonging to the destination mount's propagation tree.
  1740. * the mount is marked as 'shared and slave'.
  1741. * (*) the mount continues to be a slave at the new location.
  1742. *
  1743. * if the source mount is a tree, the operations explained above is
  1744. * applied to each mount in the tree.
  1745. * Must be called without spinlocks held, since this function can sleep
  1746. * in allocations.
  1747. */
  1748. static int attach_recursive_mnt(struct mount *source_mnt,
  1749. struct mount *dest_mnt,
  1750. struct mountpoint *dest_mp,
  1751. struct path *parent_path)
  1752. {
  1753. HLIST_HEAD(tree_list);
  1754. struct mnt_namespace *ns = dest_mnt->mnt_ns;
  1755. struct mountpoint *smp;
  1756. struct mount *child, *p;
  1757. struct hlist_node *n;
  1758. int err;
  1759. /* Preallocate a mountpoint in case the new mounts need
  1760. * to be tucked under other mounts.
  1761. */
  1762. smp = get_mountpoint(source_mnt->mnt.mnt_root);
  1763. if (IS_ERR(smp))
  1764. return PTR_ERR(smp);
  1765. /* Is there space to add these mounts to the mount namespace? */
  1766. if (!parent_path) {
  1767. err = count_mounts(ns, source_mnt);
  1768. if (err)
  1769. goto out;
  1770. }
  1771. if (IS_MNT_SHARED(dest_mnt)) {
  1772. err = invent_group_ids(source_mnt, true);
  1773. if (err)
  1774. goto out;
  1775. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1776. lock_mount_hash();
  1777. if (err)
  1778. goto out_cleanup_ids;
  1779. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1780. set_mnt_shared(p);
  1781. } else {
  1782. lock_mount_hash();
  1783. }
  1784. if (parent_path) {
  1785. detach_mnt(source_mnt, parent_path);
  1786. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1787. touch_mnt_namespace(source_mnt->mnt_ns);
  1788. } else {
  1789. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1790. commit_tree(source_mnt);
  1791. }
  1792. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1793. struct mount *q;
  1794. hlist_del_init(&child->mnt_hash);
  1795. q = __lookup_mnt(&child->mnt_parent->mnt,
  1796. child->mnt_mountpoint);
  1797. if (q)
  1798. mnt_change_mountpoint(child, smp, q);
  1799. commit_tree(child);
  1800. }
  1801. put_mountpoint(smp);
  1802. unlock_mount_hash();
  1803. return 0;
  1804. out_cleanup_ids:
  1805. while (!hlist_empty(&tree_list)) {
  1806. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1807. child->mnt_parent->mnt_ns->pending_mounts = 0;
  1808. umount_tree(child, UMOUNT_SYNC);
  1809. }
  1810. unlock_mount_hash();
  1811. cleanup_group_ids(source_mnt, NULL);
  1812. out:
  1813. ns->pending_mounts = 0;
  1814. read_seqlock_excl(&mount_lock);
  1815. put_mountpoint(smp);
  1816. read_sequnlock_excl(&mount_lock);
  1817. return err;
  1818. }
  1819. static struct mountpoint *lock_mount(struct path *path)
  1820. {
  1821. struct vfsmount *mnt;
  1822. struct dentry *dentry = path->dentry;
  1823. retry:
  1824. mutex_lock(&dentry->d_inode->i_mutex);
  1825. if (unlikely(cant_mount(dentry))) {
  1826. mutex_unlock(&dentry->d_inode->i_mutex);
  1827. return ERR_PTR(-ENOENT);
  1828. }
  1829. namespace_lock();
  1830. mnt = lookup_mnt(path);
  1831. if (likely(!mnt)) {
  1832. struct mountpoint *mp = get_mountpoint(dentry);
  1833. if (IS_ERR(mp)) {
  1834. namespace_unlock();
  1835. mutex_unlock(&dentry->d_inode->i_mutex);
  1836. return mp;
  1837. }
  1838. return mp;
  1839. }
  1840. namespace_unlock();
  1841. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1842. path_put(path);
  1843. path->mnt = mnt;
  1844. dentry = path->dentry = dget(mnt->mnt_root);
  1845. goto retry;
  1846. }
  1847. static void unlock_mount(struct mountpoint *where)
  1848. {
  1849. struct dentry *dentry = where->m_dentry;
  1850. read_seqlock_excl(&mount_lock);
  1851. put_mountpoint(where);
  1852. read_sequnlock_excl(&mount_lock);
  1853. namespace_unlock();
  1854. mutex_unlock(&dentry->d_inode->i_mutex);
  1855. }
  1856. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1857. {
  1858. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1859. return -EINVAL;
  1860. if (d_is_dir(mp->m_dentry) !=
  1861. d_is_dir(mnt->mnt.mnt_root))
  1862. return -ENOTDIR;
  1863. return attach_recursive_mnt(mnt, p, mp, NULL);
  1864. }
  1865. /*
  1866. * Sanity check the flags to change_mnt_propagation.
  1867. */
  1868. static int flags_to_propagation_type(int flags)
  1869. {
  1870. int type = flags & ~(MS_REC | MS_SILENT);
  1871. /* Fail if any non-propagation flags are set */
  1872. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1873. return 0;
  1874. /* Only one propagation flag should be set */
  1875. if (!is_power_of_2(type))
  1876. return 0;
  1877. return type;
  1878. }
  1879. /*
  1880. * recursively change the type of the mountpoint.
  1881. */
  1882. static int do_change_type(struct path *path, int flag)
  1883. {
  1884. struct mount *m;
  1885. struct mount *mnt = real_mount(path->mnt);
  1886. int recurse = flag & MS_REC;
  1887. int type;
  1888. int err = 0;
  1889. if (path->dentry != path->mnt->mnt_root)
  1890. return -EINVAL;
  1891. type = flags_to_propagation_type(flag);
  1892. if (!type)
  1893. return -EINVAL;
  1894. namespace_lock();
  1895. if (type == MS_SHARED) {
  1896. err = invent_group_ids(mnt, recurse);
  1897. if (err)
  1898. goto out_unlock;
  1899. }
  1900. lock_mount_hash();
  1901. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1902. change_mnt_propagation(m, type);
  1903. unlock_mount_hash();
  1904. out_unlock:
  1905. namespace_unlock();
  1906. return err;
  1907. }
  1908. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1909. {
  1910. struct mount *child;
  1911. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1912. if (!is_subdir(child->mnt_mountpoint, dentry))
  1913. continue;
  1914. if (child->mnt.mnt_flags & MNT_LOCKED)
  1915. return true;
  1916. }
  1917. return false;
  1918. }
  1919. /*
  1920. * do loopback mount.
  1921. */
  1922. static int do_loopback(struct path *path, const char *old_name,
  1923. int recurse)
  1924. {
  1925. struct path old_path;
  1926. struct mount *mnt = NULL, *old, *parent;
  1927. struct mountpoint *mp;
  1928. int err;
  1929. if (!old_name || !*old_name)
  1930. return -EINVAL;
  1931. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1932. if (err)
  1933. return err;
  1934. err = -EINVAL;
  1935. if (mnt_ns_loop(old_path.dentry))
  1936. goto out;
  1937. mp = lock_mount(path);
  1938. err = PTR_ERR(mp);
  1939. if (IS_ERR(mp))
  1940. goto out;
  1941. old = real_mount(old_path.mnt);
  1942. parent = real_mount(path->mnt);
  1943. err = -EINVAL;
  1944. if (IS_MNT_UNBINDABLE(old))
  1945. goto out2;
  1946. if (!check_mnt(parent))
  1947. goto out2;
  1948. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1949. goto out2;
  1950. if (!recurse && has_locked_children(old, old_path.dentry))
  1951. goto out2;
  1952. if (recurse)
  1953. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1954. else
  1955. mnt = clone_mnt(old, old_path.dentry, 0);
  1956. if (IS_ERR(mnt)) {
  1957. err = PTR_ERR(mnt);
  1958. goto out2;
  1959. }
  1960. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1961. err = graft_tree(mnt, parent, mp);
  1962. if (err) {
  1963. lock_mount_hash();
  1964. umount_tree(mnt, UMOUNT_SYNC);
  1965. unlock_mount_hash();
  1966. }
  1967. out2:
  1968. unlock_mount(mp);
  1969. out:
  1970. path_put(&old_path);
  1971. return err;
  1972. }
  1973. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1974. {
  1975. int error = 0;
  1976. int readonly_request = 0;
  1977. if (ms_flags & MS_RDONLY)
  1978. readonly_request = 1;
  1979. if (readonly_request == __mnt_is_readonly(mnt))
  1980. return 0;
  1981. if (readonly_request)
  1982. error = mnt_make_readonly(real_mount(mnt));
  1983. else
  1984. __mnt_unmake_readonly(real_mount(mnt));
  1985. return error;
  1986. }
  1987. /*
  1988. * change filesystem flags. dir should be a physical root of filesystem.
  1989. * If you've mounted a non-root directory somewhere and want to do remount
  1990. * on it - tough luck.
  1991. */
  1992. static int do_remount(struct path *path, int flags, int mnt_flags,
  1993. void *data)
  1994. {
  1995. int err;
  1996. struct super_block *sb = path->mnt->mnt_sb;
  1997. struct mount *mnt = real_mount(path->mnt);
  1998. if (!check_mnt(mnt))
  1999. return -EINVAL;
  2000. if (path->dentry != path->mnt->mnt_root)
  2001. return -EINVAL;
  2002. /* Don't allow changing of locked mnt flags.
  2003. *
  2004. * No locks need to be held here while testing the various
  2005. * MNT_LOCK flags because those flags can never be cleared
  2006. * once they are set.
  2007. */
  2008. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  2009. !(mnt_flags & MNT_READONLY)) {
  2010. return -EPERM;
  2011. }
  2012. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  2013. !(mnt_flags & MNT_NODEV)) {
  2014. /* Was the nodev implicitly added in mount? */
  2015. if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
  2016. !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  2017. mnt_flags |= MNT_NODEV;
  2018. } else {
  2019. return -EPERM;
  2020. }
  2021. }
  2022. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  2023. !(mnt_flags & MNT_NOSUID)) {
  2024. return -EPERM;
  2025. }
  2026. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  2027. !(mnt_flags & MNT_NOEXEC)) {
  2028. return -EPERM;
  2029. }
  2030. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  2031. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  2032. return -EPERM;
  2033. }
  2034. err = security_sb_remount(sb, data);
  2035. if (err)
  2036. return err;
  2037. down_write(&sb->s_umount);
  2038. if (flags & MS_BIND)
  2039. err = change_mount_flags(path->mnt, flags);
  2040. else if (!capable(CAP_SYS_ADMIN))
  2041. err = -EPERM;
  2042. else
  2043. err = do_remount_sb(sb, flags, data, 0);
  2044. if (!err) {
  2045. lock_mount_hash();
  2046. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  2047. mnt->mnt.mnt_flags = mnt_flags;
  2048. touch_mnt_namespace(mnt->mnt_ns);
  2049. unlock_mount_hash();
  2050. }
  2051. up_write(&sb->s_umount);
  2052. return err;
  2053. }
  2054. static inline int tree_contains_unbindable(struct mount *mnt)
  2055. {
  2056. struct mount *p;
  2057. for (p = mnt; p; p = next_mnt(p, mnt)) {
  2058. if (IS_MNT_UNBINDABLE(p))
  2059. return 1;
  2060. }
  2061. return 0;
  2062. }
  2063. static int do_move_mount(struct path *path, const char *old_name)
  2064. {
  2065. struct path old_path, parent_path;
  2066. struct mount *p;
  2067. struct mount *old;
  2068. struct mountpoint *mp;
  2069. int err;
  2070. if (!old_name || !*old_name)
  2071. return -EINVAL;
  2072. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  2073. if (err)
  2074. return err;
  2075. mp = lock_mount(path);
  2076. err = PTR_ERR(mp);
  2077. if (IS_ERR(mp))
  2078. goto out;
  2079. old = real_mount(old_path.mnt);
  2080. p = real_mount(path->mnt);
  2081. err = -EINVAL;
  2082. if (!check_mnt(p) || !check_mnt(old))
  2083. goto out1;
  2084. if (old->mnt.mnt_flags & MNT_LOCKED)
  2085. goto out1;
  2086. err = -EINVAL;
  2087. if (old_path.dentry != old_path.mnt->mnt_root)
  2088. goto out1;
  2089. if (!mnt_has_parent(old))
  2090. goto out1;
  2091. if (d_is_dir(path->dentry) !=
  2092. d_is_dir(old_path.dentry))
  2093. goto out1;
  2094. /*
  2095. * Don't move a mount residing in a shared parent.
  2096. */
  2097. if (IS_MNT_SHARED(old->mnt_parent))
  2098. goto out1;
  2099. /*
  2100. * Don't move a mount tree containing unbindable mounts to a destination
  2101. * mount which is shared.
  2102. */
  2103. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  2104. goto out1;
  2105. err = -ELOOP;
  2106. for (; mnt_has_parent(p); p = p->mnt_parent)
  2107. if (p == old)
  2108. goto out1;
  2109. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  2110. if (err)
  2111. goto out1;
  2112. /* if the mount is moved, it should no longer be expire
  2113. * automatically */
  2114. list_del_init(&old->mnt_expire);
  2115. out1:
  2116. unlock_mount(mp);
  2117. out:
  2118. if (!err)
  2119. path_put(&parent_path);
  2120. path_put(&old_path);
  2121. return err;
  2122. }
  2123. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2124. {
  2125. int err;
  2126. const char *subtype = strchr(fstype, '.');
  2127. if (subtype) {
  2128. subtype++;
  2129. err = -EINVAL;
  2130. if (!subtype[0])
  2131. goto err;
  2132. } else
  2133. subtype = "";
  2134. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2135. err = -ENOMEM;
  2136. if (!mnt->mnt_sb->s_subtype)
  2137. goto err;
  2138. return mnt;
  2139. err:
  2140. mntput(mnt);
  2141. return ERR_PTR(err);
  2142. }
  2143. /*
  2144. * add a mount into a namespace's mount tree
  2145. */
  2146. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2147. {
  2148. struct mountpoint *mp;
  2149. struct mount *parent;
  2150. int err;
  2151. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2152. mp = lock_mount(path);
  2153. if (IS_ERR(mp))
  2154. return PTR_ERR(mp);
  2155. parent = real_mount(path->mnt);
  2156. err = -EINVAL;
  2157. if (unlikely(!check_mnt(parent))) {
  2158. /* that's acceptable only for automounts done in private ns */
  2159. if (!(mnt_flags & MNT_SHRINKABLE))
  2160. goto unlock;
  2161. /* ... and for those we'd better have mountpoint still alive */
  2162. if (!parent->mnt_ns)
  2163. goto unlock;
  2164. }
  2165. /* Refuse the same filesystem on the same mount point */
  2166. err = -EBUSY;
  2167. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2168. path->mnt->mnt_root == path->dentry)
  2169. goto unlock;
  2170. err = -EINVAL;
  2171. if (d_is_symlink(newmnt->mnt.mnt_root))
  2172. goto unlock;
  2173. newmnt->mnt.mnt_flags = mnt_flags;
  2174. err = graft_tree(newmnt, parent, mp);
  2175. unlock:
  2176. unlock_mount(mp);
  2177. return err;
  2178. }
  2179. static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
  2180. /*
  2181. * create a new mount for userspace and request it to be added into the
  2182. * namespace's tree
  2183. */
  2184. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2185. int mnt_flags, const char *name, void *data)
  2186. {
  2187. struct file_system_type *type;
  2188. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  2189. struct vfsmount *mnt;
  2190. int err;
  2191. if (!fstype)
  2192. return -EINVAL;
  2193. type = get_fs_type(fstype);
  2194. if (!type)
  2195. return -ENODEV;
  2196. if (user_ns != &init_user_ns) {
  2197. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  2198. put_filesystem(type);
  2199. return -EPERM;
  2200. }
  2201. /* Only in special cases allow devices from mounts
  2202. * created outside the initial user namespace.
  2203. */
  2204. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  2205. flags |= MS_NODEV;
  2206. mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
  2207. }
  2208. if (type->fs_flags & FS_USERNS_VISIBLE) {
  2209. if (!fs_fully_visible(type, &mnt_flags)) {
  2210. put_filesystem(type);
  2211. return -EPERM;
  2212. }
  2213. }
  2214. }
  2215. mnt = vfs_kern_mount(type, flags, name, data);
  2216. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2217. !mnt->mnt_sb->s_subtype)
  2218. mnt = fs_set_subtype(mnt, fstype);
  2219. put_filesystem(type);
  2220. if (IS_ERR(mnt))
  2221. return PTR_ERR(mnt);
  2222. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2223. if (err)
  2224. mntput(mnt);
  2225. return err;
  2226. }
  2227. int finish_automount(struct vfsmount *m, struct path *path)
  2228. {
  2229. struct mount *mnt = real_mount(m);
  2230. int err;
  2231. /* The new mount record should have at least 2 refs to prevent it being
  2232. * expired before we get a chance to add it
  2233. */
  2234. BUG_ON(mnt_get_count(mnt) < 2);
  2235. if (m->mnt_sb == path->mnt->mnt_sb &&
  2236. m->mnt_root == path->dentry) {
  2237. err = -ELOOP;
  2238. goto fail;
  2239. }
  2240. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2241. if (!err)
  2242. return 0;
  2243. fail:
  2244. /* remove m from any expiration list it may be on */
  2245. if (!list_empty(&mnt->mnt_expire)) {
  2246. namespace_lock();
  2247. list_del_init(&mnt->mnt_expire);
  2248. namespace_unlock();
  2249. }
  2250. mntput(m);
  2251. mntput(m);
  2252. return err;
  2253. }
  2254. /**
  2255. * mnt_set_expiry - Put a mount on an expiration list
  2256. * @mnt: The mount to list.
  2257. * @expiry_list: The list to add the mount to.
  2258. */
  2259. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2260. {
  2261. namespace_lock();
  2262. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2263. namespace_unlock();
  2264. }
  2265. EXPORT_SYMBOL(mnt_set_expiry);
  2266. /*
  2267. * process a list of expirable mountpoints with the intent of discarding any
  2268. * mountpoints that aren't in use and haven't been touched since last we came
  2269. * here
  2270. */
  2271. void mark_mounts_for_expiry(struct list_head *mounts)
  2272. {
  2273. struct mount *mnt, *next;
  2274. LIST_HEAD(graveyard);
  2275. if (list_empty(mounts))
  2276. return;
  2277. namespace_lock();
  2278. lock_mount_hash();
  2279. /* extract from the expiration list every vfsmount that matches the
  2280. * following criteria:
  2281. * - only referenced by its parent vfsmount
  2282. * - still marked for expiry (marked on the last call here; marks are
  2283. * cleared by mntput())
  2284. */
  2285. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2286. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2287. propagate_mount_busy(mnt, 1))
  2288. continue;
  2289. list_move(&mnt->mnt_expire, &graveyard);
  2290. }
  2291. while (!list_empty(&graveyard)) {
  2292. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2293. touch_mnt_namespace(mnt->mnt_ns);
  2294. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2295. }
  2296. unlock_mount_hash();
  2297. namespace_unlock();
  2298. }
  2299. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2300. /*
  2301. * Ripoff of 'select_parent()'
  2302. *
  2303. * search the list of submounts for a given mountpoint, and move any
  2304. * shrinkable submounts to the 'graveyard' list.
  2305. */
  2306. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2307. {
  2308. struct mount *this_parent = parent;
  2309. struct list_head *next;
  2310. int found = 0;
  2311. repeat:
  2312. next = this_parent->mnt_mounts.next;
  2313. resume:
  2314. while (next != &this_parent->mnt_mounts) {
  2315. struct list_head *tmp = next;
  2316. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2317. next = tmp->next;
  2318. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2319. continue;
  2320. /*
  2321. * Descend a level if the d_mounts list is non-empty.
  2322. */
  2323. if (!list_empty(&mnt->mnt_mounts)) {
  2324. this_parent = mnt;
  2325. goto repeat;
  2326. }
  2327. if (!propagate_mount_busy(mnt, 1)) {
  2328. list_move_tail(&mnt->mnt_expire, graveyard);
  2329. found++;
  2330. }
  2331. }
  2332. /*
  2333. * All done at this level ... ascend and resume the search
  2334. */
  2335. if (this_parent != parent) {
  2336. next = this_parent->mnt_child.next;
  2337. this_parent = this_parent->mnt_parent;
  2338. goto resume;
  2339. }
  2340. return found;
  2341. }
  2342. /*
  2343. * process a list of expirable mountpoints with the intent of discarding any
  2344. * submounts of a specific parent mountpoint
  2345. *
  2346. * mount_lock must be held for write
  2347. */
  2348. static void shrink_submounts(struct mount *mnt)
  2349. {
  2350. LIST_HEAD(graveyard);
  2351. struct mount *m;
  2352. /* extract submounts of 'mountpoint' from the expiration list */
  2353. while (select_submounts(mnt, &graveyard)) {
  2354. while (!list_empty(&graveyard)) {
  2355. m = list_first_entry(&graveyard, struct mount,
  2356. mnt_expire);
  2357. touch_mnt_namespace(m->mnt_ns);
  2358. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2359. }
  2360. }
  2361. }
  2362. /*
  2363. * Some copy_from_user() implementations do not return the exact number of
  2364. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2365. * Note that this function differs from copy_from_user() in that it will oops
  2366. * on bad values of `to', rather than returning a short copy.
  2367. */
  2368. static long exact_copy_from_user(void *to, const void __user * from,
  2369. unsigned long n)
  2370. {
  2371. char *t = to;
  2372. const char __user *f = from;
  2373. char c;
  2374. if (!access_ok(VERIFY_READ, from, n))
  2375. return n;
  2376. while (n) {
  2377. if (__get_user(c, f)) {
  2378. memset(t, 0, n);
  2379. break;
  2380. }
  2381. *t++ = c;
  2382. f++;
  2383. n--;
  2384. }
  2385. return n;
  2386. }
  2387. int copy_mount_options(const void __user * data, unsigned long *where)
  2388. {
  2389. int i;
  2390. unsigned long page;
  2391. unsigned long size;
  2392. *where = 0;
  2393. if (!data)
  2394. return 0;
  2395. if (!(page = __get_free_page(GFP_KERNEL)))
  2396. return -ENOMEM;
  2397. /* We only care that *some* data at the address the user
  2398. * gave us is valid. Just in case, we'll zero
  2399. * the remainder of the page.
  2400. */
  2401. /* copy_from_user cannot cross TASK_SIZE ! */
  2402. size = TASK_SIZE - (unsigned long)data;
  2403. if (size > PAGE_SIZE)
  2404. size = PAGE_SIZE;
  2405. i = size - exact_copy_from_user((void *)page, data, size);
  2406. if (!i) {
  2407. free_page(page);
  2408. return -EFAULT;
  2409. }
  2410. if (i != PAGE_SIZE)
  2411. memset((char *)page + i, 0, PAGE_SIZE - i);
  2412. *where = page;
  2413. return 0;
  2414. }
  2415. char *copy_mount_string(const void __user *data)
  2416. {
  2417. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2418. }
  2419. /*
  2420. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2421. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2422. *
  2423. * data is a (void *) that can point to any structure up to
  2424. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2425. * information (or be NULL).
  2426. *
  2427. * Pre-0.97 versions of mount() didn't have a flags word.
  2428. * When the flags word was introduced its top half was required
  2429. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2430. * Therefore, if this magic number is present, it carries no information
  2431. * and must be discarded.
  2432. */
  2433. long do_mount(const char *dev_name, const char __user *dir_name,
  2434. const char *type_page, unsigned long flags, void *data_page)
  2435. {
  2436. struct path path;
  2437. int retval = 0;
  2438. int mnt_flags = 0;
  2439. /* Discard magic */
  2440. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2441. flags &= ~MS_MGC_MSK;
  2442. /* Basic sanity checks */
  2443. if (data_page)
  2444. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2445. /* ... and get the mountpoint */
  2446. retval = user_path(dir_name, &path);
  2447. if (retval)
  2448. return retval;
  2449. retval = security_sb_mount(dev_name, &path,
  2450. type_page, flags, data_page);
  2451. if (!retval && !may_mount())
  2452. retval = -EPERM;
  2453. if (retval)
  2454. goto dput_out;
  2455. /* Default to relatime unless overriden */
  2456. if (!(flags & MS_NOATIME))
  2457. mnt_flags |= MNT_RELATIME;
  2458. /* Separate the per-mountpoint flags */
  2459. if (flags & MS_NOSUID)
  2460. mnt_flags |= MNT_NOSUID;
  2461. if (flags & MS_NODEV)
  2462. mnt_flags |= MNT_NODEV;
  2463. if (flags & MS_NOEXEC)
  2464. mnt_flags |= MNT_NOEXEC;
  2465. if (flags & MS_NOATIME)
  2466. mnt_flags |= MNT_NOATIME;
  2467. if (flags & MS_NODIRATIME)
  2468. mnt_flags |= MNT_NODIRATIME;
  2469. if (flags & MS_STRICTATIME)
  2470. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2471. if (flags & MS_RDONLY)
  2472. mnt_flags |= MNT_READONLY;
  2473. /* The default atime for remount is preservation */
  2474. if ((flags & MS_REMOUNT) &&
  2475. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2476. MS_STRICTATIME)) == 0)) {
  2477. mnt_flags &= ~MNT_ATIME_MASK;
  2478. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2479. }
  2480. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2481. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2482. MS_STRICTATIME);
  2483. if (flags & MS_REMOUNT)
  2484. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2485. data_page);
  2486. else if (flags & MS_BIND)
  2487. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2488. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2489. retval = do_change_type(&path, flags);
  2490. else if (flags & MS_MOVE)
  2491. retval = do_move_mount(&path, dev_name);
  2492. else
  2493. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2494. dev_name, data_page);
  2495. dput_out:
  2496. path_put(&path);
  2497. return retval;
  2498. }
  2499. static void free_mnt_ns(struct mnt_namespace *ns)
  2500. {
  2501. ns_free_inum(&ns->ns);
  2502. put_user_ns(ns->user_ns);
  2503. kfree(ns);
  2504. }
  2505. /*
  2506. * Assign a sequence number so we can detect when we attempt to bind
  2507. * mount a reference to an older mount namespace into the current
  2508. * mount namespace, preventing reference counting loops. A 64bit
  2509. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2510. * is effectively never, so we can ignore the possibility.
  2511. */
  2512. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2513. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2514. {
  2515. struct mnt_namespace *new_ns;
  2516. int ret;
  2517. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2518. if (!new_ns)
  2519. return ERR_PTR(-ENOMEM);
  2520. ret = ns_alloc_inum(&new_ns->ns);
  2521. if (ret) {
  2522. kfree(new_ns);
  2523. return ERR_PTR(ret);
  2524. }
  2525. new_ns->ns.ops = &mntns_operations;
  2526. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2527. atomic_set(&new_ns->count, 1);
  2528. new_ns->root = NULL;
  2529. INIT_LIST_HEAD(&new_ns->list);
  2530. init_waitqueue_head(&new_ns->poll);
  2531. new_ns->event = 0;
  2532. new_ns->user_ns = get_user_ns(user_ns);
  2533. new_ns->mounts = 0;
  2534. new_ns->pending_mounts = 0;
  2535. return new_ns;
  2536. }
  2537. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2538. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2539. {
  2540. struct mnt_namespace *new_ns;
  2541. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2542. struct mount *p, *q;
  2543. struct mount *old;
  2544. struct mount *new;
  2545. int copy_flags;
  2546. BUG_ON(!ns);
  2547. if (likely(!(flags & CLONE_NEWNS))) {
  2548. get_mnt_ns(ns);
  2549. return ns;
  2550. }
  2551. old = ns->root;
  2552. new_ns = alloc_mnt_ns(user_ns);
  2553. if (IS_ERR(new_ns))
  2554. return new_ns;
  2555. namespace_lock();
  2556. /* First pass: copy the tree topology */
  2557. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2558. if (user_ns != ns->user_ns)
  2559. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2560. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2561. if (IS_ERR(new)) {
  2562. namespace_unlock();
  2563. free_mnt_ns(new_ns);
  2564. return ERR_CAST(new);
  2565. }
  2566. new_ns->root = new;
  2567. list_add_tail(&new_ns->list, &new->mnt_list);
  2568. /*
  2569. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2570. * as belonging to new namespace. We have already acquired a private
  2571. * fs_struct, so tsk->fs->lock is not needed.
  2572. */
  2573. p = old;
  2574. q = new;
  2575. while (p) {
  2576. q->mnt_ns = new_ns;
  2577. new_ns->mounts++;
  2578. if (new_fs) {
  2579. if (&p->mnt == new_fs->root.mnt) {
  2580. new_fs->root.mnt = mntget(&q->mnt);
  2581. rootmnt = &p->mnt;
  2582. }
  2583. if (&p->mnt == new_fs->pwd.mnt) {
  2584. new_fs->pwd.mnt = mntget(&q->mnt);
  2585. pwdmnt = &p->mnt;
  2586. }
  2587. }
  2588. p = next_mnt(p, old);
  2589. q = next_mnt(q, new);
  2590. if (!q)
  2591. break;
  2592. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2593. p = next_mnt(p, old);
  2594. }
  2595. namespace_unlock();
  2596. if (rootmnt)
  2597. mntput(rootmnt);
  2598. if (pwdmnt)
  2599. mntput(pwdmnt);
  2600. return new_ns;
  2601. }
  2602. /**
  2603. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2604. * @mnt: pointer to the new root filesystem mountpoint
  2605. */
  2606. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2607. {
  2608. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2609. if (!IS_ERR(new_ns)) {
  2610. struct mount *mnt = real_mount(m);
  2611. mnt->mnt_ns = new_ns;
  2612. new_ns->root = mnt;
  2613. new_ns->mounts++;
  2614. list_add(&mnt->mnt_list, &new_ns->list);
  2615. } else {
  2616. mntput(m);
  2617. }
  2618. return new_ns;
  2619. }
  2620. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2621. {
  2622. struct mnt_namespace *ns;
  2623. struct super_block *s;
  2624. struct path path;
  2625. int err;
  2626. ns = create_mnt_ns(mnt);
  2627. if (IS_ERR(ns))
  2628. return ERR_CAST(ns);
  2629. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2630. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2631. put_mnt_ns(ns);
  2632. if (err)
  2633. return ERR_PTR(err);
  2634. /* trade a vfsmount reference for active sb one */
  2635. s = path.mnt->mnt_sb;
  2636. atomic_inc(&s->s_active);
  2637. mntput(path.mnt);
  2638. /* lock the sucker */
  2639. down_write(&s->s_umount);
  2640. /* ... and return the root of (sub)tree on it */
  2641. return path.dentry;
  2642. }
  2643. EXPORT_SYMBOL(mount_subtree);
  2644. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2645. char __user *, type, unsigned long, flags, void __user *, data)
  2646. {
  2647. int ret;
  2648. char *kernel_type;
  2649. char *kernel_dev;
  2650. unsigned long data_page;
  2651. kernel_type = copy_mount_string(type);
  2652. ret = PTR_ERR(kernel_type);
  2653. if (IS_ERR(kernel_type))
  2654. goto out_type;
  2655. kernel_dev = copy_mount_string(dev_name);
  2656. ret = PTR_ERR(kernel_dev);
  2657. if (IS_ERR(kernel_dev))
  2658. goto out_dev;
  2659. ret = copy_mount_options(data, &data_page);
  2660. if (ret < 0)
  2661. goto out_data;
  2662. ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
  2663. (void *) data_page);
  2664. free_page(data_page);
  2665. out_data:
  2666. kfree(kernel_dev);
  2667. out_dev:
  2668. kfree(kernel_type);
  2669. out_type:
  2670. return ret;
  2671. }
  2672. /*
  2673. * Return true if path is reachable from root
  2674. *
  2675. * namespace_sem or mount_lock is held
  2676. */
  2677. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2678. const struct path *root)
  2679. {
  2680. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2681. dentry = mnt->mnt_mountpoint;
  2682. mnt = mnt->mnt_parent;
  2683. }
  2684. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2685. }
  2686. int path_is_under(struct path *path1, struct path *path2)
  2687. {
  2688. int res;
  2689. read_seqlock_excl(&mount_lock);
  2690. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2691. read_sequnlock_excl(&mount_lock);
  2692. return res;
  2693. }
  2694. EXPORT_SYMBOL(path_is_under);
  2695. /*
  2696. * pivot_root Semantics:
  2697. * Moves the root file system of the current process to the directory put_old,
  2698. * makes new_root as the new root file system of the current process, and sets
  2699. * root/cwd of all processes which had them on the current root to new_root.
  2700. *
  2701. * Restrictions:
  2702. * The new_root and put_old must be directories, and must not be on the
  2703. * same file system as the current process root. The put_old must be
  2704. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2705. * pointed to by put_old must yield the same directory as new_root. No other
  2706. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2707. *
  2708. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2709. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2710. * in this situation.
  2711. *
  2712. * Notes:
  2713. * - we don't move root/cwd if they are not at the root (reason: if something
  2714. * cared enough to change them, it's probably wrong to force them elsewhere)
  2715. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2716. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2717. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2718. * first.
  2719. */
  2720. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2721. const char __user *, put_old)
  2722. {
  2723. struct path new, old, parent_path, root_parent, root;
  2724. struct mount *new_mnt, *root_mnt, *old_mnt;
  2725. struct mountpoint *old_mp, *root_mp;
  2726. int error;
  2727. if (!may_mount())
  2728. return -EPERM;
  2729. error = user_path_dir(new_root, &new);
  2730. if (error)
  2731. goto out0;
  2732. error = user_path_dir(put_old, &old);
  2733. if (error)
  2734. goto out1;
  2735. error = security_sb_pivotroot(&old, &new);
  2736. if (error)
  2737. goto out2;
  2738. get_fs_root(current->fs, &root);
  2739. old_mp = lock_mount(&old);
  2740. error = PTR_ERR(old_mp);
  2741. if (IS_ERR(old_mp))
  2742. goto out3;
  2743. error = -EINVAL;
  2744. new_mnt = real_mount(new.mnt);
  2745. root_mnt = real_mount(root.mnt);
  2746. old_mnt = real_mount(old.mnt);
  2747. if (IS_MNT_SHARED(old_mnt) ||
  2748. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2749. IS_MNT_SHARED(root_mnt->mnt_parent))
  2750. goto out4;
  2751. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2752. goto out4;
  2753. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2754. goto out4;
  2755. error = -ENOENT;
  2756. if (d_unlinked(new.dentry))
  2757. goto out4;
  2758. error = -EBUSY;
  2759. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2760. goto out4; /* loop, on the same file system */
  2761. error = -EINVAL;
  2762. if (root.mnt->mnt_root != root.dentry)
  2763. goto out4; /* not a mountpoint */
  2764. if (!mnt_has_parent(root_mnt))
  2765. goto out4; /* not attached */
  2766. root_mp = root_mnt->mnt_mp;
  2767. if (new.mnt->mnt_root != new.dentry)
  2768. goto out4; /* not a mountpoint */
  2769. if (!mnt_has_parent(new_mnt))
  2770. goto out4; /* not attached */
  2771. /* make sure we can reach put_old from new_root */
  2772. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2773. goto out4;
  2774. /* make certain new is below the root */
  2775. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2776. goto out4;
  2777. root_mp->m_count++; /* pin it so it won't go away */
  2778. lock_mount_hash();
  2779. detach_mnt(new_mnt, &parent_path);
  2780. detach_mnt(root_mnt, &root_parent);
  2781. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2782. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2783. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2784. }
  2785. /* mount old root on put_old */
  2786. attach_mnt(root_mnt, old_mnt, old_mp);
  2787. /* mount new_root on / */
  2788. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2789. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2790. /* A moved mount should not expire automatically */
  2791. list_del_init(&new_mnt->mnt_expire);
  2792. put_mountpoint(root_mp);
  2793. unlock_mount_hash();
  2794. chroot_fs_refs(&root, &new);
  2795. error = 0;
  2796. out4:
  2797. unlock_mount(old_mp);
  2798. if (!error) {
  2799. path_put(&root_parent);
  2800. path_put(&parent_path);
  2801. }
  2802. out3:
  2803. path_put(&root);
  2804. out2:
  2805. path_put(&old);
  2806. out1:
  2807. path_put(&new);
  2808. out0:
  2809. return error;
  2810. }
  2811. static void __init init_mount_tree(void)
  2812. {
  2813. struct vfsmount *mnt;
  2814. struct mnt_namespace *ns;
  2815. struct path root;
  2816. struct file_system_type *type;
  2817. type = get_fs_type("rootfs");
  2818. if (!type)
  2819. panic("Can't find rootfs type");
  2820. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2821. put_filesystem(type);
  2822. if (IS_ERR(mnt))
  2823. panic("Can't create rootfs");
  2824. ns = create_mnt_ns(mnt);
  2825. if (IS_ERR(ns))
  2826. panic("Can't allocate initial namespace");
  2827. init_task.nsproxy->mnt_ns = ns;
  2828. get_mnt_ns(ns);
  2829. root.mnt = mnt;
  2830. root.dentry = mnt->mnt_root;
  2831. mnt->mnt_flags |= MNT_LOCKED;
  2832. set_fs_pwd(current->fs, &root);
  2833. set_fs_root(current->fs, &root);
  2834. }
  2835. void __init mnt_init(void)
  2836. {
  2837. unsigned u;
  2838. int err;
  2839. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2840. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2841. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2842. sizeof(struct hlist_head),
  2843. mhash_entries, 19,
  2844. 0,
  2845. &m_hash_shift, &m_hash_mask, 0, 0);
  2846. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2847. sizeof(struct hlist_head),
  2848. mphash_entries, 19,
  2849. 0,
  2850. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2851. if (!mount_hashtable || !mountpoint_hashtable)
  2852. panic("Failed to allocate mount hash table\n");
  2853. for (u = 0; u <= m_hash_mask; u++)
  2854. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2855. for (u = 0; u <= mp_hash_mask; u++)
  2856. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2857. kernfs_init();
  2858. err = sysfs_init();
  2859. if (err)
  2860. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2861. __func__, err);
  2862. fs_kobj = kobject_create_and_add("fs", NULL);
  2863. if (!fs_kobj)
  2864. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2865. init_rootfs();
  2866. init_mount_tree();
  2867. }
  2868. void put_mnt_ns(struct mnt_namespace *ns)
  2869. {
  2870. if (!atomic_dec_and_test(&ns->count))
  2871. return;
  2872. drop_collected_mounts(&ns->root->mnt);
  2873. free_mnt_ns(ns);
  2874. }
  2875. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2876. {
  2877. struct vfsmount *mnt;
  2878. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2879. if (!IS_ERR(mnt)) {
  2880. /*
  2881. * it is a longterm mount, don't release mnt until
  2882. * we unmount before file sys is unregistered
  2883. */
  2884. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2885. }
  2886. return mnt;
  2887. }
  2888. EXPORT_SYMBOL_GPL(kern_mount_data);
  2889. void kern_unmount(struct vfsmount *mnt)
  2890. {
  2891. /* release long term mount so mount point can be released */
  2892. if (!IS_ERR_OR_NULL(mnt)) {
  2893. real_mount(mnt)->mnt_ns = NULL;
  2894. synchronize_rcu(); /* yecchhh... */
  2895. mntput(mnt);
  2896. }
  2897. }
  2898. EXPORT_SYMBOL(kern_unmount);
  2899. bool our_mnt(struct vfsmount *mnt)
  2900. {
  2901. return check_mnt(real_mount(mnt));
  2902. }
  2903. bool current_chrooted(void)
  2904. {
  2905. /* Does the current process have a non-standard root */
  2906. struct path ns_root;
  2907. struct path fs_root;
  2908. bool chrooted;
  2909. /* Find the namespace root */
  2910. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2911. ns_root.dentry = ns_root.mnt->mnt_root;
  2912. path_get(&ns_root);
  2913. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2914. ;
  2915. get_fs_root(current->fs, &fs_root);
  2916. chrooted = !path_equal(&fs_root, &ns_root);
  2917. path_put(&fs_root);
  2918. path_put(&ns_root);
  2919. return chrooted;
  2920. }
  2921. static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
  2922. {
  2923. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2924. int new_flags = *new_mnt_flags;
  2925. struct mount *mnt;
  2926. bool visible = false;
  2927. if (unlikely(!ns))
  2928. return false;
  2929. down_read(&namespace_sem);
  2930. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2931. struct mount *child;
  2932. int mnt_flags;
  2933. if (mnt->mnt.mnt_sb->s_type != type)
  2934. continue;
  2935. /* This mount is not fully visible if it's root directory
  2936. * is not the root directory of the filesystem.
  2937. */
  2938. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2939. continue;
  2940. /* Read the mount flags and filter out flags that
  2941. * may safely be ignored.
  2942. */
  2943. mnt_flags = mnt->mnt.mnt_flags;
  2944. if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
  2945. mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
  2946. /* Don't miss readonly hidden in the superblock flags */
  2947. if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
  2948. mnt_flags |= MNT_LOCK_READONLY;
  2949. /* Verify the mount flags are equal to or more permissive
  2950. * than the proposed new mount.
  2951. */
  2952. if ((mnt_flags & MNT_LOCK_READONLY) &&
  2953. !(new_flags & MNT_READONLY))
  2954. continue;
  2955. if ((mnt_flags & MNT_LOCK_NODEV) &&
  2956. !(new_flags & MNT_NODEV))
  2957. continue;
  2958. if ((mnt_flags & MNT_LOCK_NOSUID) &&
  2959. !(new_flags & MNT_NOSUID))
  2960. continue;
  2961. if ((mnt_flags & MNT_LOCK_NOEXEC) &&
  2962. !(new_flags & MNT_NOEXEC))
  2963. continue;
  2964. if ((mnt_flags & MNT_LOCK_ATIME) &&
  2965. ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2966. continue;
  2967. /* This mount is not fully visible if there are any
  2968. * locked child mounts that cover anything except for
  2969. * empty directories.
  2970. */
  2971. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2972. struct inode *inode = child->mnt_mountpoint->d_inode;
  2973. /* Only worry about locked mounts */
  2974. if (!(child->mnt.mnt_flags & MNT_LOCKED))
  2975. continue;
  2976. /* Is the directory permanetly empty? */
  2977. if (!is_empty_dir_inode(inode))
  2978. goto next;
  2979. }
  2980. /* Preserve the locked attributes */
  2981. *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
  2982. MNT_LOCK_NODEV | \
  2983. MNT_LOCK_NOSUID | \
  2984. MNT_LOCK_NOEXEC | \
  2985. MNT_LOCK_ATIME);
  2986. visible = true;
  2987. goto found;
  2988. next: ;
  2989. }
  2990. found:
  2991. up_read(&namespace_sem);
  2992. return visible;
  2993. }
  2994. static struct ns_common *mntns_get(struct task_struct *task)
  2995. {
  2996. struct ns_common *ns = NULL;
  2997. struct nsproxy *nsproxy;
  2998. task_lock(task);
  2999. nsproxy = task->nsproxy;
  3000. if (nsproxy) {
  3001. ns = &nsproxy->mnt_ns->ns;
  3002. get_mnt_ns(to_mnt_ns(ns));
  3003. }
  3004. task_unlock(task);
  3005. return ns;
  3006. }
  3007. static void mntns_put(struct ns_common *ns)
  3008. {
  3009. put_mnt_ns(to_mnt_ns(ns));
  3010. }
  3011. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  3012. {
  3013. struct fs_struct *fs = current->fs;
  3014. struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
  3015. struct path root;
  3016. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  3017. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  3018. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  3019. return -EPERM;
  3020. if (fs->users != 1)
  3021. return -EINVAL;
  3022. get_mnt_ns(mnt_ns);
  3023. put_mnt_ns(nsproxy->mnt_ns);
  3024. nsproxy->mnt_ns = mnt_ns;
  3025. /* Find the root */
  3026. root.mnt = &mnt_ns->root->mnt;
  3027. root.dentry = mnt_ns->root->mnt.mnt_root;
  3028. path_get(&root);
  3029. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  3030. ;
  3031. /* Update the pwd and root */
  3032. set_fs_pwd(fs, &root);
  3033. set_fs_root(fs, &root);
  3034. path_put(&root);
  3035. return 0;
  3036. }
  3037. const struct proc_ns_operations mntns_operations = {
  3038. .name = "mnt",
  3039. .type = CLONE_NEWNS,
  3040. .get = mntns_get,
  3041. .put = mntns_put,
  3042. .install = mntns_install,
  3043. };