123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- #ifndef _FIXP_ARITH_H
- #define _FIXP_ARITH_H
- #include <linux/math64.h>
- /*
- * Simplistic fixed-point arithmetics.
- * Hmm, I'm probably duplicating some code :(
- *
- * Copyright (c) 2002 Johann Deneux
- */
- /*
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- *
- * Should you need to contact me, the author, you can do so by
- * e-mail - mail your message to <johann.deneux@gmail.com>
- */
- #include <linux/types.h>
- static const s32 sin_table[] = {
- 0x00000000, 0x023be165, 0x04779632, 0x06b2f1d2, 0x08edc7b6, 0x0b27eb5c,
- 0x0d61304d, 0x0f996a26, 0x11d06c96, 0x14060b67, 0x163a1a7d, 0x186c6ddd,
- 0x1a9cd9ac, 0x1ccb3236, 0x1ef74bf2, 0x2120fb82, 0x234815ba, 0x256c6f9e,
- 0x278dde6e, 0x29ac379f, 0x2bc750e8, 0x2ddf003f, 0x2ff31bdd, 0x32037a44,
- 0x340ff241, 0x36185aee, 0x381c8bb5, 0x3a1c5c56, 0x3c17a4e7, 0x3e0e3ddb,
- 0x3fffffff, 0x41ecc483, 0x43d464fa, 0x45b6bb5d, 0x4793a20f, 0x496af3e1,
- 0x4b3c8c11, 0x4d084650, 0x4ecdfec6, 0x508d9210, 0x5246dd48, 0x53f9be04,
- 0x55a6125a, 0x574bb8e5, 0x58ea90c2, 0x5a827999, 0x5c135399, 0x5d9cff82,
- 0x5f1f5ea0, 0x609a52d1, 0x620dbe8a, 0x637984d3, 0x64dd894f, 0x6639b039,
- 0x678dde6d, 0x68d9f963, 0x6a1de735, 0x6b598ea1, 0x6c8cd70a, 0x6db7a879,
- 0x6ed9eba0, 0x6ff389de, 0x71046d3c, 0x720c8074, 0x730baeec, 0x7401e4bf,
- 0x74ef0ebb, 0x75d31a5f, 0x76adf5e5, 0x777f903b, 0x7847d908, 0x7906c0af,
- 0x79bc384c, 0x7a6831b8, 0x7b0a9f8c, 0x7ba3751c, 0x7c32a67c, 0x7cb82884,
- 0x7d33f0c8, 0x7da5f5a3, 0x7e0e2e31, 0x7e6c924f, 0x7ec11aa3, 0x7f0bc095,
- 0x7f4c7e52, 0x7f834ecf, 0x7fb02dc4, 0x7fd317b3, 0x7fec09e1, 0x7ffb025e,
- 0x7fffffff
- };
- /**
- * __fixp_sin32() returns the sin of an angle in degrees
- *
- * @degrees: angle, in degrees, from 0 to 360.
- *
- * The returned value ranges from -0x7fffffff to +0x7fffffff.
- */
- static inline s32 __fixp_sin32(int degrees)
- {
- s32 ret;
- bool negative = false;
- if (degrees > 180) {
- negative = true;
- degrees -= 180;
- }
- if (degrees > 90)
- degrees = 180 - degrees;
- ret = sin_table[degrees];
- return negative ? -ret : ret;
- }
- /**
- * fixp_sin32() returns the sin of an angle in degrees
- *
- * @degrees: angle, in degrees. The angle can be positive or negative
- *
- * The returned value ranges from -0x7fffffff to +0x7fffffff.
- */
- static inline s32 fixp_sin32(int degrees)
- {
- degrees = (degrees % 360 + 360) % 360;
- return __fixp_sin32(degrees);
- }
- /* cos(x) = sin(x + 90 degrees) */
- #define fixp_cos32(v) fixp_sin32((v) + 90)
- /*
- * 16 bits variants
- *
- * The returned value ranges from -0x7fff to 0x7fff
- */
- #define fixp_sin16(v) (fixp_sin32(v) >> 16)
- #define fixp_cos16(v) (fixp_cos32(v) >> 16)
- /**
- * fixp_sin32_rad() - calculates the sin of an angle in radians
- *
- * @radians: angle, in radians
- * @twopi: value to be used for 2*pi
- *
- * Provides a variant for the cases where just 360
- * values is not enough. This function uses linear
- * interpolation to a wider range of values given by
- * twopi var.
- *
- * Experimental tests gave a maximum difference of
- * 0.000038 between the value calculated by sin() and
- * the one produced by this function, when twopi is
- * equal to 360000. That seems to be enough precision
- * for practical purposes.
- *
- * Please notice that two high numbers for twopi could cause
- * overflows, so the routine will not allow values of twopi
- * bigger than 1^18.
- */
- static inline s32 fixp_sin32_rad(u32 radians, u32 twopi)
- {
- int degrees;
- s32 v1, v2, dx, dy;
- s64 tmp;
- /*
- * Avoid too large values for twopi, as we don't want overflows.
- */
- BUG_ON(twopi > 1 << 18);
- degrees = (radians * 360) / twopi;
- tmp = radians - (degrees * twopi) / 360;
- degrees = (degrees % 360 + 360) % 360;
- v1 = __fixp_sin32(degrees);
- v2 = fixp_sin32(degrees + 1);
- dx = twopi / 360;
- dy = v2 - v1;
- tmp *= dy;
- return v1 + div_s64(tmp, dx);
- }
- /* cos(x) = sin(x + pi/2 radians) */
- #define fixp_cos32_rad(rad, twopi) \
- fixp_sin32_rad(rad + twopi / 4, twopi)
- #endif
|