fixp-arith.h 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156
  1. #ifndef _FIXP_ARITH_H
  2. #define _FIXP_ARITH_H
  3. #include <linux/math64.h>
  4. /*
  5. * Simplistic fixed-point arithmetics.
  6. * Hmm, I'm probably duplicating some code :(
  7. *
  8. * Copyright (c) 2002 Johann Deneux
  9. */
  10. /*
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  24. *
  25. * Should you need to contact me, the author, you can do so by
  26. * e-mail - mail your message to <johann.deneux@gmail.com>
  27. */
  28. #include <linux/types.h>
  29. static const s32 sin_table[] = {
  30. 0x00000000, 0x023be165, 0x04779632, 0x06b2f1d2, 0x08edc7b6, 0x0b27eb5c,
  31. 0x0d61304d, 0x0f996a26, 0x11d06c96, 0x14060b67, 0x163a1a7d, 0x186c6ddd,
  32. 0x1a9cd9ac, 0x1ccb3236, 0x1ef74bf2, 0x2120fb82, 0x234815ba, 0x256c6f9e,
  33. 0x278dde6e, 0x29ac379f, 0x2bc750e8, 0x2ddf003f, 0x2ff31bdd, 0x32037a44,
  34. 0x340ff241, 0x36185aee, 0x381c8bb5, 0x3a1c5c56, 0x3c17a4e7, 0x3e0e3ddb,
  35. 0x3fffffff, 0x41ecc483, 0x43d464fa, 0x45b6bb5d, 0x4793a20f, 0x496af3e1,
  36. 0x4b3c8c11, 0x4d084650, 0x4ecdfec6, 0x508d9210, 0x5246dd48, 0x53f9be04,
  37. 0x55a6125a, 0x574bb8e5, 0x58ea90c2, 0x5a827999, 0x5c135399, 0x5d9cff82,
  38. 0x5f1f5ea0, 0x609a52d1, 0x620dbe8a, 0x637984d3, 0x64dd894f, 0x6639b039,
  39. 0x678dde6d, 0x68d9f963, 0x6a1de735, 0x6b598ea1, 0x6c8cd70a, 0x6db7a879,
  40. 0x6ed9eba0, 0x6ff389de, 0x71046d3c, 0x720c8074, 0x730baeec, 0x7401e4bf,
  41. 0x74ef0ebb, 0x75d31a5f, 0x76adf5e5, 0x777f903b, 0x7847d908, 0x7906c0af,
  42. 0x79bc384c, 0x7a6831b8, 0x7b0a9f8c, 0x7ba3751c, 0x7c32a67c, 0x7cb82884,
  43. 0x7d33f0c8, 0x7da5f5a3, 0x7e0e2e31, 0x7e6c924f, 0x7ec11aa3, 0x7f0bc095,
  44. 0x7f4c7e52, 0x7f834ecf, 0x7fb02dc4, 0x7fd317b3, 0x7fec09e1, 0x7ffb025e,
  45. 0x7fffffff
  46. };
  47. /**
  48. * __fixp_sin32() returns the sin of an angle in degrees
  49. *
  50. * @degrees: angle, in degrees, from 0 to 360.
  51. *
  52. * The returned value ranges from -0x7fffffff to +0x7fffffff.
  53. */
  54. static inline s32 __fixp_sin32(int degrees)
  55. {
  56. s32 ret;
  57. bool negative = false;
  58. if (degrees > 180) {
  59. negative = true;
  60. degrees -= 180;
  61. }
  62. if (degrees > 90)
  63. degrees = 180 - degrees;
  64. ret = sin_table[degrees];
  65. return negative ? -ret : ret;
  66. }
  67. /**
  68. * fixp_sin32() returns the sin of an angle in degrees
  69. *
  70. * @degrees: angle, in degrees. The angle can be positive or negative
  71. *
  72. * The returned value ranges from -0x7fffffff to +0x7fffffff.
  73. */
  74. static inline s32 fixp_sin32(int degrees)
  75. {
  76. degrees = (degrees % 360 + 360) % 360;
  77. return __fixp_sin32(degrees);
  78. }
  79. /* cos(x) = sin(x + 90 degrees) */
  80. #define fixp_cos32(v) fixp_sin32((v) + 90)
  81. /*
  82. * 16 bits variants
  83. *
  84. * The returned value ranges from -0x7fff to 0x7fff
  85. */
  86. #define fixp_sin16(v) (fixp_sin32(v) >> 16)
  87. #define fixp_cos16(v) (fixp_cos32(v) >> 16)
  88. /**
  89. * fixp_sin32_rad() - calculates the sin of an angle in radians
  90. *
  91. * @radians: angle, in radians
  92. * @twopi: value to be used for 2*pi
  93. *
  94. * Provides a variant for the cases where just 360
  95. * values is not enough. This function uses linear
  96. * interpolation to a wider range of values given by
  97. * twopi var.
  98. *
  99. * Experimental tests gave a maximum difference of
  100. * 0.000038 between the value calculated by sin() and
  101. * the one produced by this function, when twopi is
  102. * equal to 360000. That seems to be enough precision
  103. * for practical purposes.
  104. *
  105. * Please notice that two high numbers for twopi could cause
  106. * overflows, so the routine will not allow values of twopi
  107. * bigger than 1^18.
  108. */
  109. static inline s32 fixp_sin32_rad(u32 radians, u32 twopi)
  110. {
  111. int degrees;
  112. s32 v1, v2, dx, dy;
  113. s64 tmp;
  114. /*
  115. * Avoid too large values for twopi, as we don't want overflows.
  116. */
  117. BUG_ON(twopi > 1 << 18);
  118. degrees = (radians * 360) / twopi;
  119. tmp = radians - (degrees * twopi) / 360;
  120. degrees = (degrees % 360 + 360) % 360;
  121. v1 = __fixp_sin32(degrees);
  122. v2 = fixp_sin32(degrees + 1);
  123. dx = twopi / 360;
  124. dy = v2 - v1;
  125. tmp *= dy;
  126. return v1 + div_s64(tmp, dx);
  127. }
  128. /* cos(x) = sin(x + pi/2 radians) */
  129. #define fixp_cos32_rad(rad, twopi) \
  130. fixp_sin32_rad(rad + twopi / 4, twopi)
  131. #endif