jiffies.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448
  1. #ifndef _LINUX_JIFFIES_H
  2. #define _LINUX_JIFFIES_H
  3. #include <linux/cache.h>
  4. #include <linux/math64.h>
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/time.h>
  8. #include <linux/timex.h>
  9. #include <asm/param.h> /* for HZ */
  10. #include <generated/timeconst.h>
  11. /*
  12. * The following defines establish the engineering parameters of the PLL
  13. * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  14. * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  15. * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  16. * nearest power of two in order to avoid hardware multiply operations.
  17. */
  18. #if HZ >= 12 && HZ < 24
  19. # define SHIFT_HZ 4
  20. #elif HZ >= 24 && HZ < 48
  21. # define SHIFT_HZ 5
  22. #elif HZ >= 48 && HZ < 96
  23. # define SHIFT_HZ 6
  24. #elif HZ >= 96 && HZ < 192
  25. # define SHIFT_HZ 7
  26. #elif HZ >= 192 && HZ < 384
  27. # define SHIFT_HZ 8
  28. #elif HZ >= 384 && HZ < 768
  29. # define SHIFT_HZ 9
  30. #elif HZ >= 768 && HZ < 1536
  31. # define SHIFT_HZ 10
  32. #elif HZ >= 1536 && HZ < 3072
  33. # define SHIFT_HZ 11
  34. #elif HZ >= 3072 && HZ < 6144
  35. # define SHIFT_HZ 12
  36. #elif HZ >= 6144 && HZ < 12288
  37. # define SHIFT_HZ 13
  38. #else
  39. # error Invalid value of HZ.
  40. #endif
  41. /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
  42. * improve accuracy by shifting LSH bits, hence calculating:
  43. * (NOM << LSH) / DEN
  44. * This however means trouble for large NOM, because (NOM << LSH) may no
  45. * longer fit in 32 bits. The following way of calculating this gives us
  46. * some slack, under the following conditions:
  47. * - (NOM / DEN) fits in (32 - LSH) bits.
  48. * - (NOM % DEN) fits in (32 - LSH) bits.
  49. */
  50. #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
  51. + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
  52. /* LATCH is used in the interval timer and ftape setup. */
  53. #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
  54. extern int register_refined_jiffies(long clock_tick_rate);
  55. /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
  56. #define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
  57. /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  58. #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  59. #ifndef __jiffy_arch_data
  60. #define __jiffy_arch_data
  61. #endif
  62. /*
  63. * The 64-bit value is not atomic - you MUST NOT read it
  64. * without sampling the sequence number in jiffies_lock.
  65. * get_jiffies_64() will do this for you as appropriate.
  66. */
  67. extern u64 __cacheline_aligned_in_smp jiffies_64;
  68. extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
  69. #if (BITS_PER_LONG < 64)
  70. u64 get_jiffies_64(void);
  71. #else
  72. static inline u64 get_jiffies_64(void)
  73. {
  74. return (u64)jiffies;
  75. }
  76. #endif
  77. /*
  78. * These inlines deal with timer wrapping correctly. You are
  79. * strongly encouraged to use them
  80. * 1. Because people otherwise forget
  81. * 2. Because if the timer wrap changes in future you won't have to
  82. * alter your driver code.
  83. *
  84. * time_after(a,b) returns true if the time a is after time b.
  85. *
  86. * Do this with "<0" and ">=0" to only test the sign of the result. A
  87. * good compiler would generate better code (and a really good compiler
  88. * wouldn't care). Gcc is currently neither.
  89. */
  90. #define time_after(a,b) \
  91. (typecheck(unsigned long, a) && \
  92. typecheck(unsigned long, b) && \
  93. ((long)((b) - (a)) < 0))
  94. #define time_before(a,b) time_after(b,a)
  95. #define time_after_eq(a,b) \
  96. (typecheck(unsigned long, a) && \
  97. typecheck(unsigned long, b) && \
  98. ((long)((a) - (b)) >= 0))
  99. #define time_before_eq(a,b) time_after_eq(b,a)
  100. /*
  101. * Calculate whether a is in the range of [b, c].
  102. */
  103. #define time_in_range(a,b,c) \
  104. (time_after_eq(a,b) && \
  105. time_before_eq(a,c))
  106. /*
  107. * Calculate whether a is in the range of [b, c).
  108. */
  109. #define time_in_range_open(a,b,c) \
  110. (time_after_eq(a,b) && \
  111. time_before(a,c))
  112. /* Same as above, but does so with platform independent 64bit types.
  113. * These must be used when utilizing jiffies_64 (i.e. return value of
  114. * get_jiffies_64() */
  115. #define time_after64(a,b) \
  116. (typecheck(__u64, a) && \
  117. typecheck(__u64, b) && \
  118. ((__s64)((b) - (a)) < 0))
  119. #define time_before64(a,b) time_after64(b,a)
  120. #define time_after_eq64(a,b) \
  121. (typecheck(__u64, a) && \
  122. typecheck(__u64, b) && \
  123. ((__s64)((a) - (b)) >= 0))
  124. #define time_before_eq64(a,b) time_after_eq64(b,a)
  125. #define time_in_range64(a, b, c) \
  126. (time_after_eq64(a, b) && \
  127. time_before_eq64(a, c))
  128. /*
  129. * These four macros compare jiffies and 'a' for convenience.
  130. */
  131. /* time_is_before_jiffies(a) return true if a is before jiffies */
  132. #define time_is_before_jiffies(a) time_after(jiffies, a)
  133. /* time_is_after_jiffies(a) return true if a is after jiffies */
  134. #define time_is_after_jiffies(a) time_before(jiffies, a)
  135. /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
  136. #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
  137. /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
  138. #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
  139. /*
  140. * Have the 32 bit jiffies value wrap 5 minutes after boot
  141. * so jiffies wrap bugs show up earlier.
  142. */
  143. #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
  144. /*
  145. * Change timeval to jiffies, trying to avoid the
  146. * most obvious overflows..
  147. *
  148. * And some not so obvious.
  149. *
  150. * Note that we don't want to return LONG_MAX, because
  151. * for various timeout reasons we often end up having
  152. * to wait "jiffies+1" in order to guarantee that we wait
  153. * at _least_ "jiffies" - so "jiffies+1" had better still
  154. * be positive.
  155. */
  156. #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
  157. extern unsigned long preset_lpj;
  158. /*
  159. * We want to do realistic conversions of time so we need to use the same
  160. * values the update wall clock code uses as the jiffies size. This value
  161. * is: TICK_NSEC (which is defined in timex.h). This
  162. * is a constant and is in nanoseconds. We will use scaled math
  163. * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
  164. * NSEC_JIFFIE_SC. Note that these defines contain nothing but
  165. * constants and so are computed at compile time. SHIFT_HZ (computed in
  166. * timex.h) adjusts the scaling for different HZ values.
  167. * Scaled math??? What is that?
  168. *
  169. * Scaled math is a way to do integer math on values that would,
  170. * otherwise, either overflow, underflow, or cause undesired div
  171. * instructions to appear in the execution path. In short, we "scale"
  172. * up the operands so they take more bits (more precision, less
  173. * underflow), do the desired operation and then "scale" the result back
  174. * by the same amount. If we do the scaling by shifting we avoid the
  175. * costly mpy and the dastardly div instructions.
  176. * Suppose, for example, we want to convert from seconds to jiffies
  177. * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
  178. * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
  179. * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
  180. * might calculate at compile time, however, the result will only have
  181. * about 3-4 bits of precision (less for smaller values of HZ).
  182. *
  183. * So, we scale as follows:
  184. * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
  185. * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
  186. * Then we make SCALE a power of two so:
  187. * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
  188. * Now we define:
  189. * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
  190. * jiff = (sec * SEC_CONV) >> SCALE;
  191. *
  192. * Often the math we use will expand beyond 32-bits so we tell C how to
  193. * do this and pass the 64-bit result of the mpy through the ">> SCALE"
  194. * which should take the result back to 32-bits. We want this expansion
  195. * to capture as much precision as possible. At the same time we don't
  196. * want to overflow so we pick the SCALE to avoid this. In this file,
  197. * that means using a different scale for each range of HZ values (as
  198. * defined in timex.h).
  199. *
  200. * For those who want to know, gcc will give a 64-bit result from a "*"
  201. * operator if the result is a long long AND at least one of the
  202. * operands is cast to long long (usually just prior to the "*" so as
  203. * not to confuse it into thinking it really has a 64-bit operand,
  204. * which, buy the way, it can do, but it takes more code and at least 2
  205. * mpys).
  206. * We also need to be aware that one second in nanoseconds is only a
  207. * couple of bits away from overflowing a 32-bit word, so we MUST use
  208. * 64-bits to get the full range time in nanoseconds.
  209. */
  210. /*
  211. * Here are the scales we will use. One for seconds, nanoseconds and
  212. * microseconds.
  213. *
  214. * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
  215. * check if the sign bit is set. If not, we bump the shift count by 1.
  216. * (Gets an extra bit of precision where we can use it.)
  217. * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
  218. * Haven't tested others.
  219. * Limits of cpp (for #if expressions) only long (no long long), but
  220. * then we only need the most signicant bit.
  221. */
  222. #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
  223. #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
  224. #undef SEC_JIFFIE_SC
  225. #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
  226. #endif
  227. #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
  228. #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
  229. TICK_NSEC -1) / (u64)TICK_NSEC))
  230. #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
  231. TICK_NSEC -1) / (u64)TICK_NSEC))
  232. /*
  233. * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
  234. * into seconds. The 64-bit case will overflow if we are not careful,
  235. * so use the messy SH_DIV macro to do it. Still all constants.
  236. */
  237. #if BITS_PER_LONG < 64
  238. # define MAX_SEC_IN_JIFFIES \
  239. (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
  240. #else /* take care of overflow on 64 bits machines */
  241. # define MAX_SEC_IN_JIFFIES \
  242. (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
  243. #endif
  244. /*
  245. * Convert various time units to each other:
  246. */
  247. extern unsigned int jiffies_to_msecs(const unsigned long j);
  248. extern unsigned int jiffies_to_usecs(const unsigned long j);
  249. static inline u64 jiffies_to_nsecs(const unsigned long j)
  250. {
  251. return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
  252. }
  253. extern unsigned long __msecs_to_jiffies(const unsigned int m);
  254. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  255. /*
  256. * HZ is equal to or smaller than 1000, and 1000 is a nice round
  257. * multiple of HZ, divide with the factor between them, but round
  258. * upwards:
  259. */
  260. static inline unsigned long _msecs_to_jiffies(const unsigned int m)
  261. {
  262. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  263. }
  264. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  265. /*
  266. * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
  267. * simply multiply with the factor between them.
  268. *
  269. * But first make sure the multiplication result cannot overflow:
  270. */
  271. static inline unsigned long _msecs_to_jiffies(const unsigned int m)
  272. {
  273. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  274. return MAX_JIFFY_OFFSET;
  275. return m * (HZ / MSEC_PER_SEC);
  276. }
  277. #else
  278. /*
  279. * Generic case - multiply, round and divide. But first check that if
  280. * we are doing a net multiplication, that we wouldn't overflow:
  281. */
  282. static inline unsigned long _msecs_to_jiffies(const unsigned int m)
  283. {
  284. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  285. return MAX_JIFFY_OFFSET;
  286. return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
  287. }
  288. #endif
  289. /**
  290. * msecs_to_jiffies: - convert milliseconds to jiffies
  291. * @m: time in milliseconds
  292. *
  293. * conversion is done as follows:
  294. *
  295. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  296. *
  297. * - 'too large' values [that would result in larger than
  298. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  299. *
  300. * - all other values are converted to jiffies by either multiplying
  301. * the input value by a factor or dividing it with a factor and
  302. * handling any 32-bit overflows.
  303. * for the details see __msecs_to_jiffies()
  304. *
  305. * msecs_to_jiffies() checks for the passed in value being a constant
  306. * via __builtin_constant_p() allowing gcc to eliminate most of the
  307. * code, __msecs_to_jiffies() is called if the value passed does not
  308. * allow constant folding and the actual conversion must be done at
  309. * runtime.
  310. * the HZ range specific helpers _msecs_to_jiffies() are called both
  311. * directly here and from __msecs_to_jiffies() in the case where
  312. * constant folding is not possible.
  313. */
  314. static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
  315. {
  316. if (__builtin_constant_p(m)) {
  317. if ((int)m < 0)
  318. return MAX_JIFFY_OFFSET;
  319. return _msecs_to_jiffies(m);
  320. } else {
  321. return __msecs_to_jiffies(m);
  322. }
  323. }
  324. extern unsigned long __usecs_to_jiffies(const unsigned int u);
  325. #if !(USEC_PER_SEC % HZ)
  326. static inline unsigned long _usecs_to_jiffies(const unsigned int u)
  327. {
  328. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  329. }
  330. #else
  331. static inline unsigned long _usecs_to_jiffies(const unsigned int u)
  332. {
  333. return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
  334. >> USEC_TO_HZ_SHR32;
  335. }
  336. #endif
  337. /**
  338. * usecs_to_jiffies: - convert microseconds to jiffies
  339. * @u: time in microseconds
  340. *
  341. * conversion is done as follows:
  342. *
  343. * - 'too large' values [that would result in larger than
  344. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  345. *
  346. * - all other values are converted to jiffies by either multiplying
  347. * the input value by a factor or dividing it with a factor and
  348. * handling any 32-bit overflows as for msecs_to_jiffies.
  349. *
  350. * usecs_to_jiffies() checks for the passed in value being a constant
  351. * via __builtin_constant_p() allowing gcc to eliminate most of the
  352. * code, __usecs_to_jiffies() is called if the value passed does not
  353. * allow constant folding and the actual conversion must be done at
  354. * runtime.
  355. * the HZ range specific helpers _usecs_to_jiffies() are called both
  356. * directly here and from __msecs_to_jiffies() in the case where
  357. * constant folding is not possible.
  358. */
  359. static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
  360. {
  361. if (__builtin_constant_p(u)) {
  362. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  363. return MAX_JIFFY_OFFSET;
  364. return _usecs_to_jiffies(u);
  365. } else {
  366. return __usecs_to_jiffies(u);
  367. }
  368. }
  369. extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
  370. extern void jiffies_to_timespec64(const unsigned long jiffies,
  371. struct timespec64 *value);
  372. static inline unsigned long timespec_to_jiffies(const struct timespec *value)
  373. {
  374. struct timespec64 ts = timespec_to_timespec64(*value);
  375. return timespec64_to_jiffies(&ts);
  376. }
  377. static inline void jiffies_to_timespec(const unsigned long jiffies,
  378. struct timespec *value)
  379. {
  380. struct timespec64 ts;
  381. jiffies_to_timespec64(jiffies, &ts);
  382. *value = timespec64_to_timespec(ts);
  383. }
  384. extern unsigned long timeval_to_jiffies(const struct timeval *value);
  385. extern void jiffies_to_timeval(const unsigned long jiffies,
  386. struct timeval *value);
  387. extern clock_t jiffies_to_clock_t(unsigned long x);
  388. static inline clock_t jiffies_delta_to_clock_t(long delta)
  389. {
  390. return jiffies_to_clock_t(max(0L, delta));
  391. }
  392. extern unsigned long clock_t_to_jiffies(unsigned long x);
  393. extern u64 jiffies_64_to_clock_t(u64 x);
  394. extern u64 nsec_to_clock_t(u64 x);
  395. extern u64 nsecs_to_jiffies64(u64 n);
  396. extern unsigned long nsecs_to_jiffies(u64 n);
  397. #define TIMESTAMP_SIZE 30
  398. #endif