123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619 |
- /*
- * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
- *
- * (C) SGI 2006, Christoph Lameter
- * Cleaned up and restructured to ease the addition of alternative
- * implementations of SLAB allocators.
- * (C) Linux Foundation 2008-2013
- * Unified interface for all slab allocators
- */
- #ifndef _LINUX_SLAB_H
- #define _LINUX_SLAB_H
- #include <linux/gfp.h>
- #include <linux/types.h>
- #include <linux/workqueue.h>
- /*
- * Flags to pass to kmem_cache_create().
- * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
- */
- #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
- #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
- #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
- #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
- #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
- #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
- #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
- /*
- * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
- *
- * This delays freeing the SLAB page by a grace period, it does _NOT_
- * delay object freeing. This means that if you do kmem_cache_free()
- * that memory location is free to be reused at any time. Thus it may
- * be possible to see another object there in the same RCU grace period.
- *
- * This feature only ensures the memory location backing the object
- * stays valid, the trick to using this is relying on an independent
- * object validation pass. Something like:
- *
- * rcu_read_lock()
- * again:
- * obj = lockless_lookup(key);
- * if (obj) {
- * if (!try_get_ref(obj)) // might fail for free objects
- * goto again;
- *
- * if (obj->key != key) { // not the object we expected
- * put_ref(obj);
- * goto again;
- * }
- * }
- * rcu_read_unlock();
- *
- * This is useful if we need to approach a kernel structure obliquely,
- * from its address obtained without the usual locking. We can lock
- * the structure to stabilize it and check it's still at the given address,
- * only if we can be sure that the memory has not been meanwhile reused
- * for some other kind of object (which our subsystem's lock might corrupt).
- *
- * rcu_read_lock before reading the address, then rcu_read_unlock after
- * taking the spinlock within the structure expected at that address.
- */
- #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
- #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
- #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
- /* Flag to prevent checks on free */
- #ifdef CONFIG_DEBUG_OBJECTS
- # define SLAB_DEBUG_OBJECTS 0x00400000UL
- #else
- # define SLAB_DEBUG_OBJECTS 0x00000000UL
- #endif
- #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
- /* Don't track use of uninitialized memory */
- #ifdef CONFIG_KMEMCHECK
- # define SLAB_NOTRACK 0x01000000UL
- #else
- # define SLAB_NOTRACK 0x00000000UL
- #endif
- #ifdef CONFIG_FAILSLAB
- # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
- #else
- # define SLAB_FAILSLAB 0x00000000UL
- #endif
- /* The following flags affect the page allocator grouping pages by mobility */
- #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
- #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
- /*
- * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
- *
- * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
- *
- * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
- * Both make kfree a no-op.
- */
- #define ZERO_SIZE_PTR ((void *)16)
- #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
- (unsigned long)ZERO_SIZE_PTR)
- #include <linux/kmemleak.h>
- #include <linux/kasan.h>
- struct mem_cgroup;
- /*
- * struct kmem_cache related prototypes
- */
- void __init kmem_cache_init(void);
- bool slab_is_available(void);
- struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
- unsigned long,
- void (*)(void *));
- void kmem_cache_destroy(struct kmem_cache *);
- int kmem_cache_shrink(struct kmem_cache *);
- void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
- void memcg_deactivate_kmem_caches(struct mem_cgroup *);
- void memcg_destroy_kmem_caches(struct mem_cgroup *);
- /*
- * Please use this macro to create slab caches. Simply specify the
- * name of the structure and maybe some flags that are listed above.
- *
- * The alignment of the struct determines object alignment. If you
- * f.e. add ____cacheline_aligned_in_smp to the struct declaration
- * then the objects will be properly aligned in SMP configurations.
- */
- #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
- sizeof(struct __struct), __alignof__(struct __struct),\
- (__flags), NULL)
- /*
- * Common kmalloc functions provided by all allocators
- */
- void * __must_check __krealloc(const void *, size_t, gfp_t);
- void * __must_check krealloc(const void *, size_t, gfp_t);
- void kfree(const void *);
- void kzfree(const void *);
- size_t ksize(const void *);
- /*
- * Some archs want to perform DMA into kmalloc caches and need a guaranteed
- * alignment larger than the alignment of a 64-bit integer.
- * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
- */
- #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
- #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
- #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
- #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
- #else
- #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
- #endif
- /*
- * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
- * Intended for arches that get misalignment faults even for 64 bit integer
- * aligned buffers.
- */
- #ifndef ARCH_SLAB_MINALIGN
- #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
- #endif
- /*
- * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
- * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
- * aligned pointers.
- */
- #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
- #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
- #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
- /*
- * Kmalloc array related definitions
- */
- #ifdef CONFIG_SLAB
- /*
- * The largest kmalloc size supported by the SLAB allocators is
- * 32 megabyte (2^25) or the maximum allocatable page order if that is
- * less than 32 MB.
- *
- * WARNING: Its not easy to increase this value since the allocators have
- * to do various tricks to work around compiler limitations in order to
- * ensure proper constant folding.
- */
- #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
- (MAX_ORDER + PAGE_SHIFT - 1) : 25)
- #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
- #ifndef KMALLOC_SHIFT_LOW
- #define KMALLOC_SHIFT_LOW 5
- #endif
- #endif
- #ifdef CONFIG_SLUB
- /*
- * SLUB directly allocates requests fitting in to an order-1 page
- * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
- */
- #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
- #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
- #ifndef KMALLOC_SHIFT_LOW
- #define KMALLOC_SHIFT_LOW 3
- #endif
- #endif
- #ifdef CONFIG_SLOB
- /*
- * SLOB passes all requests larger than one page to the page allocator.
- * No kmalloc array is necessary since objects of different sizes can
- * be allocated from the same page.
- */
- #define KMALLOC_SHIFT_HIGH PAGE_SHIFT
- #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
- #ifndef KMALLOC_SHIFT_LOW
- #define KMALLOC_SHIFT_LOW 3
- #endif
- #endif
- /* Maximum allocatable size */
- #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
- /* Maximum size for which we actually use a slab cache */
- #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
- /* Maximum order allocatable via the slab allocagtor */
- #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
- /*
- * Kmalloc subsystem.
- */
- #ifndef KMALLOC_MIN_SIZE
- #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
- #endif
- /*
- * This restriction comes from byte sized index implementation.
- * Page size is normally 2^12 bytes and, in this case, if we want to use
- * byte sized index which can represent 2^8 entries, the size of the object
- * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
- * If minimum size of kmalloc is less than 16, we use it as minimum object
- * size and give up to use byte sized index.
- */
- #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
- (KMALLOC_MIN_SIZE) : 16)
- #ifndef CONFIG_SLOB
- extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
- #ifdef CONFIG_ZONE_DMA
- extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
- #endif
- /*
- * Figure out which kmalloc slab an allocation of a certain size
- * belongs to.
- * 0 = zero alloc
- * 1 = 65 .. 96 bytes
- * 2 = 129 .. 192 bytes
- * n = 2^(n-1)+1 .. 2^n
- */
- static __always_inline int kmalloc_index(size_t size)
- {
- if (!size)
- return 0;
- if (size <= KMALLOC_MIN_SIZE)
- return KMALLOC_SHIFT_LOW;
- if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
- return 1;
- if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
- return 2;
- if (size <= 8) return 3;
- if (size <= 16) return 4;
- if (size <= 32) return 5;
- if (size <= 64) return 6;
- if (size <= 128) return 7;
- if (size <= 256) return 8;
- if (size <= 512) return 9;
- if (size <= 1024) return 10;
- if (size <= 2 * 1024) return 11;
- if (size <= 4 * 1024) return 12;
- if (size <= 8 * 1024) return 13;
- if (size <= 16 * 1024) return 14;
- if (size <= 32 * 1024) return 15;
- if (size <= 64 * 1024) return 16;
- if (size <= 128 * 1024) return 17;
- if (size <= 256 * 1024) return 18;
- if (size <= 512 * 1024) return 19;
- if (size <= 1024 * 1024) return 20;
- if (size <= 2 * 1024 * 1024) return 21;
- if (size <= 4 * 1024 * 1024) return 22;
- if (size <= 8 * 1024 * 1024) return 23;
- if (size <= 16 * 1024 * 1024) return 24;
- if (size <= 32 * 1024 * 1024) return 25;
- if (size <= 64 * 1024 * 1024) return 26;
- BUG();
- /* Will never be reached. Needed because the compiler may complain */
- return -1;
- }
- #endif /* !CONFIG_SLOB */
- void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment;
- void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment;
- void kmem_cache_free(struct kmem_cache *, void *);
- /*
- * Bulk allocation and freeing operations. These are accellerated in an
- * allocator specific way to avoid taking locks repeatedly or building
- * metadata structures unnecessarily.
- *
- * Note that interrupts must be enabled when calling these functions.
- */
- void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
- int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
- #ifdef CONFIG_NUMA
- void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment;
- void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment;
- #else
- static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
- {
- return __kmalloc(size, flags);
- }
- static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
- {
- return kmem_cache_alloc(s, flags);
- }
- #endif
- #ifdef CONFIG_TRACING
- extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment;
- #ifdef CONFIG_NUMA
- extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
- gfp_t gfpflags,
- int node, size_t size) __assume_slab_alignment;
- #else
- static __always_inline void *
- kmem_cache_alloc_node_trace(struct kmem_cache *s,
- gfp_t gfpflags,
- int node, size_t size)
- {
- return kmem_cache_alloc_trace(s, gfpflags, size);
- }
- #endif /* CONFIG_NUMA */
- #else /* CONFIG_TRACING */
- static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
- gfp_t flags, size_t size)
- {
- void *ret = kmem_cache_alloc(s, flags);
- kasan_kmalloc(s, ret, size);
- return ret;
- }
- static __always_inline void *
- kmem_cache_alloc_node_trace(struct kmem_cache *s,
- gfp_t gfpflags,
- int node, size_t size)
- {
- void *ret = kmem_cache_alloc_node(s, gfpflags, node);
- kasan_kmalloc(s, ret, size);
- return ret;
- }
- #endif /* CONFIG_TRACING */
- extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
- #ifdef CONFIG_TRACING
- extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
- #else
- static __always_inline void *
- kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
- {
- return kmalloc_order(size, flags, order);
- }
- #endif
- static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
- {
- unsigned int order = get_order(size);
- return kmalloc_order_trace(size, flags, order);
- }
- /**
- * kmalloc - allocate memory
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
- *
- * kmalloc is the normal method of allocating memory
- * for objects smaller than page size in the kernel.
- *
- * The @flags argument may be one of:
- *
- * %GFP_USER - Allocate memory on behalf of user. May sleep.
- *
- * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
- *
- * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
- * For example, use this inside interrupt handlers.
- *
- * %GFP_HIGHUSER - Allocate pages from high memory.
- *
- * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
- *
- * %GFP_NOFS - Do not make any fs calls while trying to get memory.
- *
- * %GFP_NOWAIT - Allocation will not sleep.
- *
- * %__GFP_THISNODE - Allocate node-local memory only.
- *
- * %GFP_DMA - Allocation suitable for DMA.
- * Should only be used for kmalloc() caches. Otherwise, use a
- * slab created with SLAB_DMA.
- *
- * Also it is possible to set different flags by OR'ing
- * in one or more of the following additional @flags:
- *
- * %__GFP_COLD - Request cache-cold pages instead of
- * trying to return cache-warm pages.
- *
- * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
- *
- * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
- * (think twice before using).
- *
- * %__GFP_NORETRY - If memory is not immediately available,
- * then give up at once.
- *
- * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
- *
- * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
- *
- * There are other flags available as well, but these are not intended
- * for general use, and so are not documented here. For a full list of
- * potential flags, always refer to linux/gfp.h.
- */
- static __always_inline void *kmalloc(size_t size, gfp_t flags)
- {
- if (__builtin_constant_p(size)) {
- if (size > KMALLOC_MAX_CACHE_SIZE)
- return kmalloc_large(size, flags);
- #ifndef CONFIG_SLOB
- if (!(flags & GFP_DMA)) {
- int index = kmalloc_index(size);
- if (!index)
- return ZERO_SIZE_PTR;
- return kmem_cache_alloc_trace(kmalloc_caches[index],
- flags, size);
- }
- #endif
- }
- return __kmalloc(size, flags);
- }
- /*
- * Determine size used for the nth kmalloc cache.
- * return size or 0 if a kmalloc cache for that
- * size does not exist
- */
- static __always_inline int kmalloc_size(int n)
- {
- #ifndef CONFIG_SLOB
- if (n > 2)
- return 1 << n;
- if (n == 1 && KMALLOC_MIN_SIZE <= 32)
- return 96;
- if (n == 2 && KMALLOC_MIN_SIZE <= 64)
- return 192;
- #endif
- return 0;
- }
- static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
- {
- #ifndef CONFIG_SLOB
- if (__builtin_constant_p(size) &&
- size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
- int i = kmalloc_index(size);
- if (!i)
- return ZERO_SIZE_PTR;
- return kmem_cache_alloc_node_trace(kmalloc_caches[i],
- flags, node, size);
- }
- #endif
- return __kmalloc_node(size, flags, node);
- }
- struct memcg_cache_array {
- struct rcu_head rcu;
- struct kmem_cache *entries[0];
- };
- /*
- * This is the main placeholder for memcg-related information in kmem caches.
- * Both the root cache and the child caches will have it. For the root cache,
- * this will hold a dynamically allocated array large enough to hold
- * information about the currently limited memcgs in the system. To allow the
- * array to be accessed without taking any locks, on relocation we free the old
- * version only after a grace period.
- *
- * Child caches will hold extra metadata needed for its operation. Fields are:
- *
- * @memcg: pointer to the memcg this cache belongs to
- * @root_cache: pointer to the global, root cache, this cache was derived from
- *
- * Both root and child caches of the same kind are linked into a list chained
- * through @list.
- */
- struct memcg_cache_params {
- bool is_root_cache;
- struct list_head list;
- union {
- struct memcg_cache_array __rcu *memcg_caches;
- struct {
- struct mem_cgroup *memcg;
- struct kmem_cache *root_cache;
- };
- };
- };
- int memcg_update_all_caches(int num_memcgs);
- /**
- * kmalloc_array - allocate memory for an array.
- * @n: number of elements.
- * @size: element size.
- * @flags: the type of memory to allocate (see kmalloc).
- */
- static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
- {
- if (size != 0 && n > SIZE_MAX / size)
- return NULL;
- return __kmalloc(n * size, flags);
- }
- /**
- * kcalloc - allocate memory for an array. The memory is set to zero.
- * @n: number of elements.
- * @size: element size.
- * @flags: the type of memory to allocate (see kmalloc).
- */
- static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
- {
- return kmalloc_array(n, size, flags | __GFP_ZERO);
- }
- /*
- * kmalloc_track_caller is a special version of kmalloc that records the
- * calling function of the routine calling it for slab leak tracking instead
- * of just the calling function (confusing, eh?).
- * It's useful when the call to kmalloc comes from a widely-used standard
- * allocator where we care about the real place the memory allocation
- * request comes from.
- */
- extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
- #define kmalloc_track_caller(size, flags) \
- __kmalloc_track_caller(size, flags, _RET_IP_)
- #ifdef CONFIG_NUMA
- extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
- #define kmalloc_node_track_caller(size, flags, node) \
- __kmalloc_node_track_caller(size, flags, node, \
- _RET_IP_)
- #else /* CONFIG_NUMA */
- #define kmalloc_node_track_caller(size, flags, node) \
- kmalloc_track_caller(size, flags)
- #endif /* CONFIG_NUMA */
- /*
- * Shortcuts
- */
- static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
- {
- return kmem_cache_alloc(k, flags | __GFP_ZERO);
- }
- /**
- * kzalloc - allocate memory. The memory is set to zero.
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate (see kmalloc).
- */
- static inline void *kzalloc(size_t size, gfp_t flags)
- {
- return kmalloc(size, flags | __GFP_ZERO);
- }
- /**
- * kzalloc_node - allocate zeroed memory from a particular memory node.
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate (see kmalloc).
- * @node: memory node from which to allocate
- */
- static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
- {
- return kmalloc_node(size, flags | __GFP_ZERO, node);
- }
- unsigned int kmem_cache_size(struct kmem_cache *s);
- void __init kmem_cache_init_late(void);
- #endif /* _LINUX_SLAB_H */
|