slab.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619
  1. /*
  2. * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
  3. *
  4. * (C) SGI 2006, Christoph Lameter
  5. * Cleaned up and restructured to ease the addition of alternative
  6. * implementations of SLAB allocators.
  7. * (C) Linux Foundation 2008-2013
  8. * Unified interface for all slab allocators
  9. */
  10. #ifndef _LINUX_SLAB_H
  11. #define _LINUX_SLAB_H
  12. #include <linux/gfp.h>
  13. #include <linux/types.h>
  14. #include <linux/workqueue.h>
  15. /*
  16. * Flags to pass to kmem_cache_create().
  17. * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
  18. */
  19. #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
  20. #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
  21. #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
  22. #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
  23. #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
  24. #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
  25. #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
  26. /*
  27. * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
  28. *
  29. * This delays freeing the SLAB page by a grace period, it does _NOT_
  30. * delay object freeing. This means that if you do kmem_cache_free()
  31. * that memory location is free to be reused at any time. Thus it may
  32. * be possible to see another object there in the same RCU grace period.
  33. *
  34. * This feature only ensures the memory location backing the object
  35. * stays valid, the trick to using this is relying on an independent
  36. * object validation pass. Something like:
  37. *
  38. * rcu_read_lock()
  39. * again:
  40. * obj = lockless_lookup(key);
  41. * if (obj) {
  42. * if (!try_get_ref(obj)) // might fail for free objects
  43. * goto again;
  44. *
  45. * if (obj->key != key) { // not the object we expected
  46. * put_ref(obj);
  47. * goto again;
  48. * }
  49. * }
  50. * rcu_read_unlock();
  51. *
  52. * This is useful if we need to approach a kernel structure obliquely,
  53. * from its address obtained without the usual locking. We can lock
  54. * the structure to stabilize it and check it's still at the given address,
  55. * only if we can be sure that the memory has not been meanwhile reused
  56. * for some other kind of object (which our subsystem's lock might corrupt).
  57. *
  58. * rcu_read_lock before reading the address, then rcu_read_unlock after
  59. * taking the spinlock within the structure expected at that address.
  60. */
  61. #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
  62. #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
  63. #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
  64. /* Flag to prevent checks on free */
  65. #ifdef CONFIG_DEBUG_OBJECTS
  66. # define SLAB_DEBUG_OBJECTS 0x00400000UL
  67. #else
  68. # define SLAB_DEBUG_OBJECTS 0x00000000UL
  69. #endif
  70. #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
  71. /* Don't track use of uninitialized memory */
  72. #ifdef CONFIG_KMEMCHECK
  73. # define SLAB_NOTRACK 0x01000000UL
  74. #else
  75. # define SLAB_NOTRACK 0x00000000UL
  76. #endif
  77. #ifdef CONFIG_FAILSLAB
  78. # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
  79. #else
  80. # define SLAB_FAILSLAB 0x00000000UL
  81. #endif
  82. /* The following flags affect the page allocator grouping pages by mobility */
  83. #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
  84. #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
  85. /*
  86. * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  87. *
  88. * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  89. *
  90. * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  91. * Both make kfree a no-op.
  92. */
  93. #define ZERO_SIZE_PTR ((void *)16)
  94. #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  95. (unsigned long)ZERO_SIZE_PTR)
  96. #include <linux/kmemleak.h>
  97. #include <linux/kasan.h>
  98. struct mem_cgroup;
  99. /*
  100. * struct kmem_cache related prototypes
  101. */
  102. void __init kmem_cache_init(void);
  103. bool slab_is_available(void);
  104. struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
  105. unsigned long,
  106. void (*)(void *));
  107. void kmem_cache_destroy(struct kmem_cache *);
  108. int kmem_cache_shrink(struct kmem_cache *);
  109. void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
  110. void memcg_deactivate_kmem_caches(struct mem_cgroup *);
  111. void memcg_destroy_kmem_caches(struct mem_cgroup *);
  112. /*
  113. * Please use this macro to create slab caches. Simply specify the
  114. * name of the structure and maybe some flags that are listed above.
  115. *
  116. * The alignment of the struct determines object alignment. If you
  117. * f.e. add ____cacheline_aligned_in_smp to the struct declaration
  118. * then the objects will be properly aligned in SMP configurations.
  119. */
  120. #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
  121. sizeof(struct __struct), __alignof__(struct __struct),\
  122. (__flags), NULL)
  123. /*
  124. * Common kmalloc functions provided by all allocators
  125. */
  126. void * __must_check __krealloc(const void *, size_t, gfp_t);
  127. void * __must_check krealloc(const void *, size_t, gfp_t);
  128. void kfree(const void *);
  129. void kzfree(const void *);
  130. size_t ksize(const void *);
  131. /*
  132. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  133. * alignment larger than the alignment of a 64-bit integer.
  134. * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
  135. */
  136. #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
  137. #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
  138. #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
  139. #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
  140. #else
  141. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  142. #endif
  143. /*
  144. * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
  145. * Intended for arches that get misalignment faults even for 64 bit integer
  146. * aligned buffers.
  147. */
  148. #ifndef ARCH_SLAB_MINALIGN
  149. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  150. #endif
  151. /*
  152. * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
  153. * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
  154. * aligned pointers.
  155. */
  156. #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
  157. #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
  158. #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
  159. /*
  160. * Kmalloc array related definitions
  161. */
  162. #ifdef CONFIG_SLAB
  163. /*
  164. * The largest kmalloc size supported by the SLAB allocators is
  165. * 32 megabyte (2^25) or the maximum allocatable page order if that is
  166. * less than 32 MB.
  167. *
  168. * WARNING: Its not easy to increase this value since the allocators have
  169. * to do various tricks to work around compiler limitations in order to
  170. * ensure proper constant folding.
  171. */
  172. #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
  173. (MAX_ORDER + PAGE_SHIFT - 1) : 25)
  174. #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
  175. #ifndef KMALLOC_SHIFT_LOW
  176. #define KMALLOC_SHIFT_LOW 5
  177. #endif
  178. #endif
  179. #ifdef CONFIG_SLUB
  180. /*
  181. * SLUB directly allocates requests fitting in to an order-1 page
  182. * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
  183. */
  184. #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
  185. #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
  186. #ifndef KMALLOC_SHIFT_LOW
  187. #define KMALLOC_SHIFT_LOW 3
  188. #endif
  189. #endif
  190. #ifdef CONFIG_SLOB
  191. /*
  192. * SLOB passes all requests larger than one page to the page allocator.
  193. * No kmalloc array is necessary since objects of different sizes can
  194. * be allocated from the same page.
  195. */
  196. #define KMALLOC_SHIFT_HIGH PAGE_SHIFT
  197. #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
  198. #ifndef KMALLOC_SHIFT_LOW
  199. #define KMALLOC_SHIFT_LOW 3
  200. #endif
  201. #endif
  202. /* Maximum allocatable size */
  203. #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
  204. /* Maximum size for which we actually use a slab cache */
  205. #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
  206. /* Maximum order allocatable via the slab allocagtor */
  207. #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
  208. /*
  209. * Kmalloc subsystem.
  210. */
  211. #ifndef KMALLOC_MIN_SIZE
  212. #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
  213. #endif
  214. /*
  215. * This restriction comes from byte sized index implementation.
  216. * Page size is normally 2^12 bytes and, in this case, if we want to use
  217. * byte sized index which can represent 2^8 entries, the size of the object
  218. * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
  219. * If minimum size of kmalloc is less than 16, we use it as minimum object
  220. * size and give up to use byte sized index.
  221. */
  222. #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
  223. (KMALLOC_MIN_SIZE) : 16)
  224. #ifndef CONFIG_SLOB
  225. extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
  226. #ifdef CONFIG_ZONE_DMA
  227. extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
  228. #endif
  229. /*
  230. * Figure out which kmalloc slab an allocation of a certain size
  231. * belongs to.
  232. * 0 = zero alloc
  233. * 1 = 65 .. 96 bytes
  234. * 2 = 129 .. 192 bytes
  235. * n = 2^(n-1)+1 .. 2^n
  236. */
  237. static __always_inline int kmalloc_index(size_t size)
  238. {
  239. if (!size)
  240. return 0;
  241. if (size <= KMALLOC_MIN_SIZE)
  242. return KMALLOC_SHIFT_LOW;
  243. if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  244. return 1;
  245. if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  246. return 2;
  247. if (size <= 8) return 3;
  248. if (size <= 16) return 4;
  249. if (size <= 32) return 5;
  250. if (size <= 64) return 6;
  251. if (size <= 128) return 7;
  252. if (size <= 256) return 8;
  253. if (size <= 512) return 9;
  254. if (size <= 1024) return 10;
  255. if (size <= 2 * 1024) return 11;
  256. if (size <= 4 * 1024) return 12;
  257. if (size <= 8 * 1024) return 13;
  258. if (size <= 16 * 1024) return 14;
  259. if (size <= 32 * 1024) return 15;
  260. if (size <= 64 * 1024) return 16;
  261. if (size <= 128 * 1024) return 17;
  262. if (size <= 256 * 1024) return 18;
  263. if (size <= 512 * 1024) return 19;
  264. if (size <= 1024 * 1024) return 20;
  265. if (size <= 2 * 1024 * 1024) return 21;
  266. if (size <= 4 * 1024 * 1024) return 22;
  267. if (size <= 8 * 1024 * 1024) return 23;
  268. if (size <= 16 * 1024 * 1024) return 24;
  269. if (size <= 32 * 1024 * 1024) return 25;
  270. if (size <= 64 * 1024 * 1024) return 26;
  271. BUG();
  272. /* Will never be reached. Needed because the compiler may complain */
  273. return -1;
  274. }
  275. #endif /* !CONFIG_SLOB */
  276. void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment;
  277. void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment;
  278. void kmem_cache_free(struct kmem_cache *, void *);
  279. /*
  280. * Bulk allocation and freeing operations. These are accellerated in an
  281. * allocator specific way to avoid taking locks repeatedly or building
  282. * metadata structures unnecessarily.
  283. *
  284. * Note that interrupts must be enabled when calling these functions.
  285. */
  286. void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
  287. int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
  288. #ifdef CONFIG_NUMA
  289. void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment;
  290. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment;
  291. #else
  292. static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
  293. {
  294. return __kmalloc(size, flags);
  295. }
  296. static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
  297. {
  298. return kmem_cache_alloc(s, flags);
  299. }
  300. #endif
  301. #ifdef CONFIG_TRACING
  302. extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment;
  303. #ifdef CONFIG_NUMA
  304. extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  305. gfp_t gfpflags,
  306. int node, size_t size) __assume_slab_alignment;
  307. #else
  308. static __always_inline void *
  309. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  310. gfp_t gfpflags,
  311. int node, size_t size)
  312. {
  313. return kmem_cache_alloc_trace(s, gfpflags, size);
  314. }
  315. #endif /* CONFIG_NUMA */
  316. #else /* CONFIG_TRACING */
  317. static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
  318. gfp_t flags, size_t size)
  319. {
  320. void *ret = kmem_cache_alloc(s, flags);
  321. kasan_kmalloc(s, ret, size);
  322. return ret;
  323. }
  324. static __always_inline void *
  325. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  326. gfp_t gfpflags,
  327. int node, size_t size)
  328. {
  329. void *ret = kmem_cache_alloc_node(s, gfpflags, node);
  330. kasan_kmalloc(s, ret, size);
  331. return ret;
  332. }
  333. #endif /* CONFIG_TRACING */
  334. extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
  335. #ifdef CONFIG_TRACING
  336. extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment;
  337. #else
  338. static __always_inline void *
  339. kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  340. {
  341. return kmalloc_order(size, flags, order);
  342. }
  343. #endif
  344. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  345. {
  346. unsigned int order = get_order(size);
  347. return kmalloc_order_trace(size, flags, order);
  348. }
  349. /**
  350. * kmalloc - allocate memory
  351. * @size: how many bytes of memory are required.
  352. * @flags: the type of memory to allocate.
  353. *
  354. * kmalloc is the normal method of allocating memory
  355. * for objects smaller than page size in the kernel.
  356. *
  357. * The @flags argument may be one of:
  358. *
  359. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  360. *
  361. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  362. *
  363. * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
  364. * For example, use this inside interrupt handlers.
  365. *
  366. * %GFP_HIGHUSER - Allocate pages from high memory.
  367. *
  368. * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
  369. *
  370. * %GFP_NOFS - Do not make any fs calls while trying to get memory.
  371. *
  372. * %GFP_NOWAIT - Allocation will not sleep.
  373. *
  374. * %__GFP_THISNODE - Allocate node-local memory only.
  375. *
  376. * %GFP_DMA - Allocation suitable for DMA.
  377. * Should only be used for kmalloc() caches. Otherwise, use a
  378. * slab created with SLAB_DMA.
  379. *
  380. * Also it is possible to set different flags by OR'ing
  381. * in one or more of the following additional @flags:
  382. *
  383. * %__GFP_COLD - Request cache-cold pages instead of
  384. * trying to return cache-warm pages.
  385. *
  386. * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
  387. *
  388. * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
  389. * (think twice before using).
  390. *
  391. * %__GFP_NORETRY - If memory is not immediately available,
  392. * then give up at once.
  393. *
  394. * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
  395. *
  396. * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
  397. *
  398. * There are other flags available as well, but these are not intended
  399. * for general use, and so are not documented here. For a full list of
  400. * potential flags, always refer to linux/gfp.h.
  401. */
  402. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  403. {
  404. if (__builtin_constant_p(size)) {
  405. if (size > KMALLOC_MAX_CACHE_SIZE)
  406. return kmalloc_large(size, flags);
  407. #ifndef CONFIG_SLOB
  408. if (!(flags & GFP_DMA)) {
  409. int index = kmalloc_index(size);
  410. if (!index)
  411. return ZERO_SIZE_PTR;
  412. return kmem_cache_alloc_trace(kmalloc_caches[index],
  413. flags, size);
  414. }
  415. #endif
  416. }
  417. return __kmalloc(size, flags);
  418. }
  419. /*
  420. * Determine size used for the nth kmalloc cache.
  421. * return size or 0 if a kmalloc cache for that
  422. * size does not exist
  423. */
  424. static __always_inline int kmalloc_size(int n)
  425. {
  426. #ifndef CONFIG_SLOB
  427. if (n > 2)
  428. return 1 << n;
  429. if (n == 1 && KMALLOC_MIN_SIZE <= 32)
  430. return 96;
  431. if (n == 2 && KMALLOC_MIN_SIZE <= 64)
  432. return 192;
  433. #endif
  434. return 0;
  435. }
  436. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  437. {
  438. #ifndef CONFIG_SLOB
  439. if (__builtin_constant_p(size) &&
  440. size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
  441. int i = kmalloc_index(size);
  442. if (!i)
  443. return ZERO_SIZE_PTR;
  444. return kmem_cache_alloc_node_trace(kmalloc_caches[i],
  445. flags, node, size);
  446. }
  447. #endif
  448. return __kmalloc_node(size, flags, node);
  449. }
  450. struct memcg_cache_array {
  451. struct rcu_head rcu;
  452. struct kmem_cache *entries[0];
  453. };
  454. /*
  455. * This is the main placeholder for memcg-related information in kmem caches.
  456. * Both the root cache and the child caches will have it. For the root cache,
  457. * this will hold a dynamically allocated array large enough to hold
  458. * information about the currently limited memcgs in the system. To allow the
  459. * array to be accessed without taking any locks, on relocation we free the old
  460. * version only after a grace period.
  461. *
  462. * Child caches will hold extra metadata needed for its operation. Fields are:
  463. *
  464. * @memcg: pointer to the memcg this cache belongs to
  465. * @root_cache: pointer to the global, root cache, this cache was derived from
  466. *
  467. * Both root and child caches of the same kind are linked into a list chained
  468. * through @list.
  469. */
  470. struct memcg_cache_params {
  471. bool is_root_cache;
  472. struct list_head list;
  473. union {
  474. struct memcg_cache_array __rcu *memcg_caches;
  475. struct {
  476. struct mem_cgroup *memcg;
  477. struct kmem_cache *root_cache;
  478. };
  479. };
  480. };
  481. int memcg_update_all_caches(int num_memcgs);
  482. /**
  483. * kmalloc_array - allocate memory for an array.
  484. * @n: number of elements.
  485. * @size: element size.
  486. * @flags: the type of memory to allocate (see kmalloc).
  487. */
  488. static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
  489. {
  490. if (size != 0 && n > SIZE_MAX / size)
  491. return NULL;
  492. return __kmalloc(n * size, flags);
  493. }
  494. /**
  495. * kcalloc - allocate memory for an array. The memory is set to zero.
  496. * @n: number of elements.
  497. * @size: element size.
  498. * @flags: the type of memory to allocate (see kmalloc).
  499. */
  500. static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
  501. {
  502. return kmalloc_array(n, size, flags | __GFP_ZERO);
  503. }
  504. /*
  505. * kmalloc_track_caller is a special version of kmalloc that records the
  506. * calling function of the routine calling it for slab leak tracking instead
  507. * of just the calling function (confusing, eh?).
  508. * It's useful when the call to kmalloc comes from a widely-used standard
  509. * allocator where we care about the real place the memory allocation
  510. * request comes from.
  511. */
  512. extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
  513. #define kmalloc_track_caller(size, flags) \
  514. __kmalloc_track_caller(size, flags, _RET_IP_)
  515. #ifdef CONFIG_NUMA
  516. extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
  517. #define kmalloc_node_track_caller(size, flags, node) \
  518. __kmalloc_node_track_caller(size, flags, node, \
  519. _RET_IP_)
  520. #else /* CONFIG_NUMA */
  521. #define kmalloc_node_track_caller(size, flags, node) \
  522. kmalloc_track_caller(size, flags)
  523. #endif /* CONFIG_NUMA */
  524. /*
  525. * Shortcuts
  526. */
  527. static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
  528. {
  529. return kmem_cache_alloc(k, flags | __GFP_ZERO);
  530. }
  531. /**
  532. * kzalloc - allocate memory. The memory is set to zero.
  533. * @size: how many bytes of memory are required.
  534. * @flags: the type of memory to allocate (see kmalloc).
  535. */
  536. static inline void *kzalloc(size_t size, gfp_t flags)
  537. {
  538. return kmalloc(size, flags | __GFP_ZERO);
  539. }
  540. /**
  541. * kzalloc_node - allocate zeroed memory from a particular memory node.
  542. * @size: how many bytes of memory are required.
  543. * @flags: the type of memory to allocate (see kmalloc).
  544. * @node: memory node from which to allocate
  545. */
  546. static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
  547. {
  548. return kmalloc_node(size, flags | __GFP_ZERO, node);
  549. }
  550. unsigned int kmem_cache_size(struct kmem_cache *s);
  551. void __init kmem_cache_init_late(void);
  552. #endif /* _LINUX_SLAB_H */