mqueue.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471
  1. /*
  2. * POSIX message queues filesystem for Linux.
  3. *
  4. * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
  5. * Michal Wronski (michal.wronski@gmail.com)
  6. *
  7. * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
  8. * Lockless receive & send, fd based notify:
  9. * Manfred Spraul (manfred@colorfullife.com)
  10. *
  11. * Audit: George Wilson (ltcgcw@us.ibm.com)
  12. *
  13. * This file is released under the GPL.
  14. */
  15. #include <linux/capability.h>
  16. #include <linux/init.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/file.h>
  19. #include <linux/mount.h>
  20. #include <linux/namei.h>
  21. #include <linux/sysctl.h>
  22. #include <linux/poll.h>
  23. #include <linux/mqueue.h>
  24. #include <linux/msg.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/netlink.h>
  28. #include <linux/syscalls.h>
  29. #include <linux/audit.h>
  30. #include <linux/signal.h>
  31. #include <linux/mutex.h>
  32. #include <linux/nsproxy.h>
  33. #include <linux/pid.h>
  34. #include <linux/ipc_namespace.h>
  35. #include <linux/user_namespace.h>
  36. #include <linux/slab.h>
  37. #include <net/sock.h>
  38. #include "util.h"
  39. #define MQUEUE_MAGIC 0x19800202
  40. #define DIRENT_SIZE 20
  41. #define FILENT_SIZE 80
  42. #define SEND 0
  43. #define RECV 1
  44. #define STATE_NONE 0
  45. #define STATE_READY 1
  46. struct posix_msg_tree_node {
  47. struct rb_node rb_node;
  48. struct list_head msg_list;
  49. int priority;
  50. };
  51. struct ext_wait_queue { /* queue of sleeping tasks */
  52. struct task_struct *task;
  53. struct list_head list;
  54. struct msg_msg *msg; /* ptr of loaded message */
  55. int state; /* one of STATE_* values */
  56. };
  57. struct mqueue_inode_info {
  58. spinlock_t lock;
  59. struct inode vfs_inode;
  60. wait_queue_head_t wait_q;
  61. struct rb_root msg_tree;
  62. struct posix_msg_tree_node *node_cache;
  63. struct mq_attr attr;
  64. struct sigevent notify;
  65. struct pid *notify_owner;
  66. struct user_namespace *notify_user_ns;
  67. struct user_struct *user; /* user who created, for accounting */
  68. struct sock *notify_sock;
  69. struct sk_buff *notify_cookie;
  70. /* for tasks waiting for free space and messages, respectively */
  71. struct ext_wait_queue e_wait_q[2];
  72. unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  73. };
  74. static const struct inode_operations mqueue_dir_inode_operations;
  75. static const struct file_operations mqueue_file_operations;
  76. static const struct super_operations mqueue_super_ops;
  77. static void remove_notification(struct mqueue_inode_info *info);
  78. static struct kmem_cache *mqueue_inode_cachep;
  79. static struct ctl_table_header *mq_sysctl_table;
  80. static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  81. {
  82. return container_of(inode, struct mqueue_inode_info, vfs_inode);
  83. }
  84. /*
  85. * This routine should be called with the mq_lock held.
  86. */
  87. static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
  88. {
  89. return get_ipc_ns(inode->i_sb->s_fs_info);
  90. }
  91. static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
  92. {
  93. struct ipc_namespace *ns;
  94. spin_lock(&mq_lock);
  95. ns = __get_ns_from_inode(inode);
  96. spin_unlock(&mq_lock);
  97. return ns;
  98. }
  99. /* Auxiliary functions to manipulate messages' list */
  100. static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
  101. {
  102. struct rb_node **p, *parent = NULL;
  103. struct posix_msg_tree_node *leaf;
  104. p = &info->msg_tree.rb_node;
  105. while (*p) {
  106. parent = *p;
  107. leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
  108. if (likely(leaf->priority == msg->m_type))
  109. goto insert_msg;
  110. else if (msg->m_type < leaf->priority)
  111. p = &(*p)->rb_left;
  112. else
  113. p = &(*p)->rb_right;
  114. }
  115. if (info->node_cache) {
  116. leaf = info->node_cache;
  117. info->node_cache = NULL;
  118. } else {
  119. leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
  120. if (!leaf)
  121. return -ENOMEM;
  122. INIT_LIST_HEAD(&leaf->msg_list);
  123. }
  124. leaf->priority = msg->m_type;
  125. rb_link_node(&leaf->rb_node, parent, p);
  126. rb_insert_color(&leaf->rb_node, &info->msg_tree);
  127. insert_msg:
  128. info->attr.mq_curmsgs++;
  129. info->qsize += msg->m_ts;
  130. list_add_tail(&msg->m_list, &leaf->msg_list);
  131. return 0;
  132. }
  133. static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
  134. {
  135. struct rb_node **p, *parent = NULL;
  136. struct posix_msg_tree_node *leaf;
  137. struct msg_msg *msg;
  138. try_again:
  139. p = &info->msg_tree.rb_node;
  140. while (*p) {
  141. parent = *p;
  142. /*
  143. * During insert, low priorities go to the left and high to the
  144. * right. On receive, we want the highest priorities first, so
  145. * walk all the way to the right.
  146. */
  147. p = &(*p)->rb_right;
  148. }
  149. if (!parent) {
  150. if (info->attr.mq_curmsgs) {
  151. pr_warn_once("Inconsistency in POSIX message queue, "
  152. "no tree element, but supposedly messages "
  153. "should exist!\n");
  154. info->attr.mq_curmsgs = 0;
  155. }
  156. return NULL;
  157. }
  158. leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
  159. if (unlikely(list_empty(&leaf->msg_list))) {
  160. pr_warn_once("Inconsistency in POSIX message queue, "
  161. "empty leaf node but we haven't implemented "
  162. "lazy leaf delete!\n");
  163. rb_erase(&leaf->rb_node, &info->msg_tree);
  164. if (info->node_cache) {
  165. kfree(leaf);
  166. } else {
  167. info->node_cache = leaf;
  168. }
  169. goto try_again;
  170. } else {
  171. msg = list_first_entry(&leaf->msg_list,
  172. struct msg_msg, m_list);
  173. list_del(&msg->m_list);
  174. if (list_empty(&leaf->msg_list)) {
  175. rb_erase(&leaf->rb_node, &info->msg_tree);
  176. if (info->node_cache) {
  177. kfree(leaf);
  178. } else {
  179. info->node_cache = leaf;
  180. }
  181. }
  182. }
  183. info->attr.mq_curmsgs--;
  184. info->qsize -= msg->m_ts;
  185. return msg;
  186. }
  187. static struct inode *mqueue_get_inode(struct super_block *sb,
  188. struct ipc_namespace *ipc_ns, umode_t mode,
  189. struct mq_attr *attr)
  190. {
  191. struct user_struct *u = current_user();
  192. struct inode *inode;
  193. int ret = -ENOMEM;
  194. inode = new_inode(sb);
  195. if (!inode)
  196. goto err;
  197. inode->i_ino = get_next_ino();
  198. inode->i_mode = mode;
  199. inode->i_uid = current_fsuid();
  200. inode->i_gid = current_fsgid();
  201. inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
  202. if (S_ISREG(mode)) {
  203. struct mqueue_inode_info *info;
  204. unsigned long mq_bytes, mq_treesize;
  205. inode->i_fop = &mqueue_file_operations;
  206. inode->i_size = FILENT_SIZE;
  207. /* mqueue specific info */
  208. info = MQUEUE_I(inode);
  209. spin_lock_init(&info->lock);
  210. init_waitqueue_head(&info->wait_q);
  211. INIT_LIST_HEAD(&info->e_wait_q[0].list);
  212. INIT_LIST_HEAD(&info->e_wait_q[1].list);
  213. info->notify_owner = NULL;
  214. info->notify_user_ns = NULL;
  215. info->qsize = 0;
  216. info->user = NULL; /* set when all is ok */
  217. info->msg_tree = RB_ROOT;
  218. info->node_cache = NULL;
  219. memset(&info->attr, 0, sizeof(info->attr));
  220. info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
  221. ipc_ns->mq_msg_default);
  222. info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
  223. ipc_ns->mq_msgsize_default);
  224. if (attr) {
  225. info->attr.mq_maxmsg = attr->mq_maxmsg;
  226. info->attr.mq_msgsize = attr->mq_msgsize;
  227. }
  228. /*
  229. * We used to allocate a static array of pointers and account
  230. * the size of that array as well as one msg_msg struct per
  231. * possible message into the queue size. That's no longer
  232. * accurate as the queue is now an rbtree and will grow and
  233. * shrink depending on usage patterns. We can, however, still
  234. * account one msg_msg struct per message, but the nodes are
  235. * allocated depending on priority usage, and most programs
  236. * only use one, or a handful, of priorities. However, since
  237. * this is pinned memory, we need to assume worst case, so
  238. * that means the min(mq_maxmsg, max_priorities) * struct
  239. * posix_msg_tree_node.
  240. */
  241. mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
  242. min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
  243. sizeof(struct posix_msg_tree_node);
  244. mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
  245. info->attr.mq_msgsize);
  246. spin_lock(&mq_lock);
  247. if (u->mq_bytes + mq_bytes < u->mq_bytes ||
  248. u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
  249. spin_unlock(&mq_lock);
  250. /* mqueue_evict_inode() releases info->messages */
  251. ret = -EMFILE;
  252. goto out_inode;
  253. }
  254. u->mq_bytes += mq_bytes;
  255. spin_unlock(&mq_lock);
  256. /* all is ok */
  257. info->user = get_uid(u);
  258. } else if (S_ISDIR(mode)) {
  259. inc_nlink(inode);
  260. /* Some things misbehave if size == 0 on a directory */
  261. inode->i_size = 2 * DIRENT_SIZE;
  262. inode->i_op = &mqueue_dir_inode_operations;
  263. inode->i_fop = &simple_dir_operations;
  264. }
  265. return inode;
  266. out_inode:
  267. iput(inode);
  268. err:
  269. return ERR_PTR(ret);
  270. }
  271. static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
  272. {
  273. struct inode *inode;
  274. struct ipc_namespace *ns = data;
  275. sb->s_blocksize = PAGE_CACHE_SIZE;
  276. sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
  277. sb->s_magic = MQUEUE_MAGIC;
  278. sb->s_op = &mqueue_super_ops;
  279. inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
  280. if (IS_ERR(inode))
  281. return PTR_ERR(inode);
  282. sb->s_root = d_make_root(inode);
  283. if (!sb->s_root)
  284. return -ENOMEM;
  285. return 0;
  286. }
  287. static struct dentry *mqueue_mount(struct file_system_type *fs_type,
  288. int flags, const char *dev_name,
  289. void *data)
  290. {
  291. if (!(flags & MS_KERNMOUNT)) {
  292. struct ipc_namespace *ns = current->nsproxy->ipc_ns;
  293. /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
  294. * over the ipc namespace.
  295. */
  296. if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
  297. return ERR_PTR(-EPERM);
  298. data = ns;
  299. }
  300. return mount_ns(fs_type, flags, data, mqueue_fill_super);
  301. }
  302. static void init_once(void *foo)
  303. {
  304. struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
  305. inode_init_once(&p->vfs_inode);
  306. }
  307. static struct inode *mqueue_alloc_inode(struct super_block *sb)
  308. {
  309. struct mqueue_inode_info *ei;
  310. ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
  311. if (!ei)
  312. return NULL;
  313. return &ei->vfs_inode;
  314. }
  315. static void mqueue_i_callback(struct rcu_head *head)
  316. {
  317. struct inode *inode = container_of(head, struct inode, i_rcu);
  318. kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
  319. }
  320. static void mqueue_destroy_inode(struct inode *inode)
  321. {
  322. call_rcu(&inode->i_rcu, mqueue_i_callback);
  323. }
  324. static void mqueue_evict_inode(struct inode *inode)
  325. {
  326. struct mqueue_inode_info *info;
  327. struct user_struct *user;
  328. unsigned long mq_bytes, mq_treesize;
  329. struct ipc_namespace *ipc_ns;
  330. struct msg_msg *msg;
  331. clear_inode(inode);
  332. if (S_ISDIR(inode->i_mode))
  333. return;
  334. ipc_ns = get_ns_from_inode(inode);
  335. info = MQUEUE_I(inode);
  336. spin_lock(&info->lock);
  337. while ((msg = msg_get(info)) != NULL)
  338. free_msg(msg);
  339. kfree(info->node_cache);
  340. spin_unlock(&info->lock);
  341. /* Total amount of bytes accounted for the mqueue */
  342. mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
  343. min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
  344. sizeof(struct posix_msg_tree_node);
  345. mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
  346. info->attr.mq_msgsize);
  347. user = info->user;
  348. if (user) {
  349. spin_lock(&mq_lock);
  350. user->mq_bytes -= mq_bytes;
  351. /*
  352. * get_ns_from_inode() ensures that the
  353. * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
  354. * to which we now hold a reference, or it is NULL.
  355. * We can't put it here under mq_lock, though.
  356. */
  357. if (ipc_ns)
  358. ipc_ns->mq_queues_count--;
  359. spin_unlock(&mq_lock);
  360. free_uid(user);
  361. }
  362. if (ipc_ns)
  363. put_ipc_ns(ipc_ns);
  364. }
  365. static int mqueue_create(struct inode *dir, struct dentry *dentry,
  366. umode_t mode, bool excl)
  367. {
  368. struct inode *inode;
  369. struct mq_attr *attr = dentry->d_fsdata;
  370. int error;
  371. struct ipc_namespace *ipc_ns;
  372. spin_lock(&mq_lock);
  373. ipc_ns = __get_ns_from_inode(dir);
  374. if (!ipc_ns) {
  375. error = -EACCES;
  376. goto out_unlock;
  377. }
  378. if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
  379. !capable(CAP_SYS_RESOURCE)) {
  380. error = -ENOSPC;
  381. goto out_unlock;
  382. }
  383. ipc_ns->mq_queues_count++;
  384. spin_unlock(&mq_lock);
  385. inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
  386. if (IS_ERR(inode)) {
  387. error = PTR_ERR(inode);
  388. spin_lock(&mq_lock);
  389. ipc_ns->mq_queues_count--;
  390. goto out_unlock;
  391. }
  392. put_ipc_ns(ipc_ns);
  393. dir->i_size += DIRENT_SIZE;
  394. dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
  395. d_instantiate(dentry, inode);
  396. dget(dentry);
  397. return 0;
  398. out_unlock:
  399. spin_unlock(&mq_lock);
  400. if (ipc_ns)
  401. put_ipc_ns(ipc_ns);
  402. return error;
  403. }
  404. static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
  405. {
  406. struct inode *inode = d_inode(dentry);
  407. dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
  408. dir->i_size -= DIRENT_SIZE;
  409. drop_nlink(inode);
  410. dput(dentry);
  411. return 0;
  412. }
  413. /*
  414. * This is routine for system read from queue file.
  415. * To avoid mess with doing here some sort of mq_receive we allow
  416. * to read only queue size & notification info (the only values
  417. * that are interesting from user point of view and aren't accessible
  418. * through std routines)
  419. */
  420. static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
  421. size_t count, loff_t *off)
  422. {
  423. struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
  424. char buffer[FILENT_SIZE];
  425. ssize_t ret;
  426. spin_lock(&info->lock);
  427. snprintf(buffer, sizeof(buffer),
  428. "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
  429. info->qsize,
  430. info->notify_owner ? info->notify.sigev_notify : 0,
  431. (info->notify_owner &&
  432. info->notify.sigev_notify == SIGEV_SIGNAL) ?
  433. info->notify.sigev_signo : 0,
  434. pid_vnr(info->notify_owner));
  435. spin_unlock(&info->lock);
  436. buffer[sizeof(buffer)-1] = '\0';
  437. ret = simple_read_from_buffer(u_data, count, off, buffer,
  438. strlen(buffer));
  439. if (ret <= 0)
  440. return ret;
  441. file_inode(filp)->i_atime = file_inode(filp)->i_ctime = CURRENT_TIME;
  442. return ret;
  443. }
  444. static int mqueue_flush_file(struct file *filp, fl_owner_t id)
  445. {
  446. struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
  447. spin_lock(&info->lock);
  448. if (task_tgid(current) == info->notify_owner)
  449. remove_notification(info);
  450. spin_unlock(&info->lock);
  451. return 0;
  452. }
  453. static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
  454. {
  455. struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
  456. int retval = 0;
  457. poll_wait(filp, &info->wait_q, poll_tab);
  458. spin_lock(&info->lock);
  459. if (info->attr.mq_curmsgs)
  460. retval = POLLIN | POLLRDNORM;
  461. if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
  462. retval |= POLLOUT | POLLWRNORM;
  463. spin_unlock(&info->lock);
  464. return retval;
  465. }
  466. /* Adds current to info->e_wait_q[sr] before element with smaller prio */
  467. static void wq_add(struct mqueue_inode_info *info, int sr,
  468. struct ext_wait_queue *ewp)
  469. {
  470. struct ext_wait_queue *walk;
  471. ewp->task = current;
  472. list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
  473. if (walk->task->static_prio <= current->static_prio) {
  474. list_add_tail(&ewp->list, &walk->list);
  475. return;
  476. }
  477. }
  478. list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
  479. }
  480. /*
  481. * Puts current task to sleep. Caller must hold queue lock. After return
  482. * lock isn't held.
  483. * sr: SEND or RECV
  484. */
  485. static int wq_sleep(struct mqueue_inode_info *info, int sr,
  486. ktime_t *timeout, struct ext_wait_queue *ewp)
  487. {
  488. int retval;
  489. signed long time;
  490. wq_add(info, sr, ewp);
  491. for (;;) {
  492. __set_current_state(TASK_INTERRUPTIBLE);
  493. spin_unlock(&info->lock);
  494. time = schedule_hrtimeout_range_clock(timeout, 0,
  495. HRTIMER_MODE_ABS, CLOCK_REALTIME);
  496. if (ewp->state == STATE_READY) {
  497. retval = 0;
  498. goto out;
  499. }
  500. spin_lock(&info->lock);
  501. if (ewp->state == STATE_READY) {
  502. retval = 0;
  503. goto out_unlock;
  504. }
  505. if (signal_pending(current)) {
  506. retval = -ERESTARTSYS;
  507. break;
  508. }
  509. if (time == 0) {
  510. retval = -ETIMEDOUT;
  511. break;
  512. }
  513. }
  514. list_del(&ewp->list);
  515. out_unlock:
  516. spin_unlock(&info->lock);
  517. out:
  518. return retval;
  519. }
  520. /*
  521. * Returns waiting task that should be serviced first or NULL if none exists
  522. */
  523. static struct ext_wait_queue *wq_get_first_waiter(
  524. struct mqueue_inode_info *info, int sr)
  525. {
  526. struct list_head *ptr;
  527. ptr = info->e_wait_q[sr].list.prev;
  528. if (ptr == &info->e_wait_q[sr].list)
  529. return NULL;
  530. return list_entry(ptr, struct ext_wait_queue, list);
  531. }
  532. static inline void set_cookie(struct sk_buff *skb, char code)
  533. {
  534. ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
  535. }
  536. /*
  537. * The next function is only to split too long sys_mq_timedsend
  538. */
  539. static void __do_notify(struct mqueue_inode_info *info)
  540. {
  541. /* notification
  542. * invoked when there is registered process and there isn't process
  543. * waiting synchronously for message AND state of queue changed from
  544. * empty to not empty. Here we are sure that no one is waiting
  545. * synchronously. */
  546. if (info->notify_owner &&
  547. info->attr.mq_curmsgs == 1) {
  548. struct siginfo sig_i;
  549. switch (info->notify.sigev_notify) {
  550. case SIGEV_NONE:
  551. break;
  552. case SIGEV_SIGNAL:
  553. /* sends signal */
  554. sig_i.si_signo = info->notify.sigev_signo;
  555. sig_i.si_errno = 0;
  556. sig_i.si_code = SI_MESGQ;
  557. sig_i.si_value = info->notify.sigev_value;
  558. /* map current pid/uid into info->owner's namespaces */
  559. rcu_read_lock();
  560. sig_i.si_pid = task_tgid_nr_ns(current,
  561. ns_of_pid(info->notify_owner));
  562. sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
  563. rcu_read_unlock();
  564. kill_pid_info(info->notify.sigev_signo,
  565. &sig_i, info->notify_owner);
  566. break;
  567. case SIGEV_THREAD:
  568. set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
  569. netlink_sendskb(info->notify_sock, info->notify_cookie);
  570. break;
  571. }
  572. /* after notification unregisters process */
  573. put_pid(info->notify_owner);
  574. put_user_ns(info->notify_user_ns);
  575. info->notify_owner = NULL;
  576. info->notify_user_ns = NULL;
  577. }
  578. wake_up(&info->wait_q);
  579. }
  580. static int prepare_timeout(const struct timespec __user *u_abs_timeout,
  581. ktime_t *expires, struct timespec *ts)
  582. {
  583. if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
  584. return -EFAULT;
  585. if (!timespec_valid(ts))
  586. return -EINVAL;
  587. *expires = timespec_to_ktime(*ts);
  588. return 0;
  589. }
  590. static void remove_notification(struct mqueue_inode_info *info)
  591. {
  592. if (info->notify_owner != NULL &&
  593. info->notify.sigev_notify == SIGEV_THREAD) {
  594. set_cookie(info->notify_cookie, NOTIFY_REMOVED);
  595. netlink_sendskb(info->notify_sock, info->notify_cookie);
  596. }
  597. put_pid(info->notify_owner);
  598. put_user_ns(info->notify_user_ns);
  599. info->notify_owner = NULL;
  600. info->notify_user_ns = NULL;
  601. }
  602. static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
  603. {
  604. int mq_treesize;
  605. unsigned long total_size;
  606. if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
  607. return -EINVAL;
  608. if (capable(CAP_SYS_RESOURCE)) {
  609. if (attr->mq_maxmsg > HARD_MSGMAX ||
  610. attr->mq_msgsize > HARD_MSGSIZEMAX)
  611. return -EINVAL;
  612. } else {
  613. if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
  614. attr->mq_msgsize > ipc_ns->mq_msgsize_max)
  615. return -EINVAL;
  616. }
  617. /* check for overflow */
  618. if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
  619. return -EOVERFLOW;
  620. mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
  621. min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
  622. sizeof(struct posix_msg_tree_node);
  623. total_size = attr->mq_maxmsg * attr->mq_msgsize;
  624. if (total_size + mq_treesize < total_size)
  625. return -EOVERFLOW;
  626. return 0;
  627. }
  628. /*
  629. * Invoked when creating a new queue via sys_mq_open
  630. */
  631. static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
  632. struct path *path, int oflag, umode_t mode,
  633. struct mq_attr *attr)
  634. {
  635. const struct cred *cred = current_cred();
  636. int ret;
  637. if (attr) {
  638. ret = mq_attr_ok(ipc_ns, attr);
  639. if (ret)
  640. return ERR_PTR(ret);
  641. /* store for use during create */
  642. path->dentry->d_fsdata = attr;
  643. } else {
  644. struct mq_attr def_attr;
  645. def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
  646. ipc_ns->mq_msg_default);
  647. def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
  648. ipc_ns->mq_msgsize_default);
  649. ret = mq_attr_ok(ipc_ns, &def_attr);
  650. if (ret)
  651. return ERR_PTR(ret);
  652. }
  653. mode &= ~current_umask();
  654. ret = vfs_create(dir, path->dentry, mode, true);
  655. path->dentry->d_fsdata = NULL;
  656. if (ret)
  657. return ERR_PTR(ret);
  658. return dentry_open(path, oflag, cred);
  659. }
  660. /* Opens existing queue */
  661. static struct file *do_open(struct path *path, int oflag)
  662. {
  663. static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
  664. MAY_READ | MAY_WRITE };
  665. int acc;
  666. if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
  667. return ERR_PTR(-EINVAL);
  668. acc = oflag2acc[oflag & O_ACCMODE];
  669. if (inode_permission(d_inode(path->dentry), acc))
  670. return ERR_PTR(-EACCES);
  671. return dentry_open(path, oflag, current_cred());
  672. }
  673. SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
  674. struct mq_attr __user *, u_attr)
  675. {
  676. struct path path;
  677. struct file *filp;
  678. struct filename *name;
  679. struct mq_attr attr;
  680. int fd, error;
  681. struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
  682. struct vfsmount *mnt = ipc_ns->mq_mnt;
  683. struct dentry *root = mnt->mnt_root;
  684. int ro;
  685. if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
  686. return -EFAULT;
  687. audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
  688. if (IS_ERR(name = getname(u_name)))
  689. return PTR_ERR(name);
  690. fd = get_unused_fd_flags(O_CLOEXEC);
  691. if (fd < 0)
  692. goto out_putname;
  693. ro = mnt_want_write(mnt); /* we'll drop it in any case */
  694. error = 0;
  695. mutex_lock(&d_inode(root)->i_mutex);
  696. path.dentry = lookup_one_len(name->name, root, strlen(name->name));
  697. if (IS_ERR(path.dentry)) {
  698. error = PTR_ERR(path.dentry);
  699. goto out_putfd;
  700. }
  701. path.mnt = mntget(mnt);
  702. if (oflag & O_CREAT) {
  703. if (d_really_is_positive(path.dentry)) { /* entry already exists */
  704. audit_inode(name, path.dentry, 0);
  705. if (oflag & O_EXCL) {
  706. error = -EEXIST;
  707. goto out;
  708. }
  709. filp = do_open(&path, oflag);
  710. } else {
  711. if (ro) {
  712. error = ro;
  713. goto out;
  714. }
  715. audit_inode_parent_hidden(name, root);
  716. filp = do_create(ipc_ns, d_inode(root),
  717. &path, oflag, mode,
  718. u_attr ? &attr : NULL);
  719. }
  720. } else {
  721. if (d_really_is_negative(path.dentry)) {
  722. error = -ENOENT;
  723. goto out;
  724. }
  725. audit_inode(name, path.dentry, 0);
  726. filp = do_open(&path, oflag);
  727. }
  728. if (!IS_ERR(filp))
  729. fd_install(fd, filp);
  730. else
  731. error = PTR_ERR(filp);
  732. out:
  733. path_put(&path);
  734. out_putfd:
  735. if (error) {
  736. put_unused_fd(fd);
  737. fd = error;
  738. }
  739. mutex_unlock(&d_inode(root)->i_mutex);
  740. if (!ro)
  741. mnt_drop_write(mnt);
  742. out_putname:
  743. putname(name);
  744. return fd;
  745. }
  746. SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
  747. {
  748. int err;
  749. struct filename *name;
  750. struct dentry *dentry;
  751. struct inode *inode = NULL;
  752. struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
  753. struct vfsmount *mnt = ipc_ns->mq_mnt;
  754. name = getname(u_name);
  755. if (IS_ERR(name))
  756. return PTR_ERR(name);
  757. audit_inode_parent_hidden(name, mnt->mnt_root);
  758. err = mnt_want_write(mnt);
  759. if (err)
  760. goto out_name;
  761. mutex_lock_nested(&d_inode(mnt->mnt_root)->i_mutex, I_MUTEX_PARENT);
  762. dentry = lookup_one_len(name->name, mnt->mnt_root,
  763. strlen(name->name));
  764. if (IS_ERR(dentry)) {
  765. err = PTR_ERR(dentry);
  766. goto out_unlock;
  767. }
  768. inode = d_inode(dentry);
  769. if (!inode) {
  770. err = -ENOENT;
  771. } else {
  772. ihold(inode);
  773. err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
  774. }
  775. dput(dentry);
  776. out_unlock:
  777. mutex_unlock(&d_inode(mnt->mnt_root)->i_mutex);
  778. if (inode)
  779. iput(inode);
  780. mnt_drop_write(mnt);
  781. out_name:
  782. putname(name);
  783. return err;
  784. }
  785. /* Pipelined send and receive functions.
  786. *
  787. * If a receiver finds no waiting message, then it registers itself in the
  788. * list of waiting receivers. A sender checks that list before adding the new
  789. * message into the message array. If there is a waiting receiver, then it
  790. * bypasses the message array and directly hands the message over to the
  791. * receiver. The receiver accepts the message and returns without grabbing the
  792. * queue spinlock:
  793. *
  794. * - Set pointer to message.
  795. * - Queue the receiver task for later wakeup (without the info->lock).
  796. * - Update its state to STATE_READY. Now the receiver can continue.
  797. * - Wake up the process after the lock is dropped. Should the process wake up
  798. * before this wakeup (due to a timeout or a signal) it will either see
  799. * STATE_READY and continue or acquire the lock to check the state again.
  800. *
  801. * The same algorithm is used for senders.
  802. */
  803. /* pipelined_send() - send a message directly to the task waiting in
  804. * sys_mq_timedreceive() (without inserting message into a queue).
  805. */
  806. static inline void pipelined_send(struct wake_q_head *wake_q,
  807. struct mqueue_inode_info *info,
  808. struct msg_msg *message,
  809. struct ext_wait_queue *receiver)
  810. {
  811. receiver->msg = message;
  812. list_del(&receiver->list);
  813. wake_q_add(wake_q, receiver->task);
  814. /*
  815. * Rely on the implicit cmpxchg barrier from wake_q_add such
  816. * that we can ensure that updating receiver->state is the last
  817. * write operation: As once set, the receiver can continue,
  818. * and if we don't have the reference count from the wake_q,
  819. * yet, at that point we can later have a use-after-free
  820. * condition and bogus wakeup.
  821. */
  822. receiver->state = STATE_READY;
  823. }
  824. /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
  825. * gets its message and put to the queue (we have one free place for sure). */
  826. static inline void pipelined_receive(struct wake_q_head *wake_q,
  827. struct mqueue_inode_info *info)
  828. {
  829. struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
  830. if (!sender) {
  831. /* for poll */
  832. wake_up_interruptible(&info->wait_q);
  833. return;
  834. }
  835. if (msg_insert(sender->msg, info))
  836. return;
  837. list_del(&sender->list);
  838. wake_q_add(wake_q, sender->task);
  839. sender->state = STATE_READY;
  840. }
  841. SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
  842. size_t, msg_len, unsigned int, msg_prio,
  843. const struct timespec __user *, u_abs_timeout)
  844. {
  845. struct fd f;
  846. struct inode *inode;
  847. struct ext_wait_queue wait;
  848. struct ext_wait_queue *receiver;
  849. struct msg_msg *msg_ptr;
  850. struct mqueue_inode_info *info;
  851. ktime_t expires, *timeout = NULL;
  852. struct timespec ts;
  853. struct posix_msg_tree_node *new_leaf = NULL;
  854. int ret = 0;
  855. WAKE_Q(wake_q);
  856. if (u_abs_timeout) {
  857. int res = prepare_timeout(u_abs_timeout, &expires, &ts);
  858. if (res)
  859. return res;
  860. timeout = &expires;
  861. }
  862. if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
  863. return -EINVAL;
  864. audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
  865. f = fdget(mqdes);
  866. if (unlikely(!f.file)) {
  867. ret = -EBADF;
  868. goto out;
  869. }
  870. inode = file_inode(f.file);
  871. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  872. ret = -EBADF;
  873. goto out_fput;
  874. }
  875. info = MQUEUE_I(inode);
  876. audit_file(f.file);
  877. if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
  878. ret = -EBADF;
  879. goto out_fput;
  880. }
  881. if (unlikely(msg_len > info->attr.mq_msgsize)) {
  882. ret = -EMSGSIZE;
  883. goto out_fput;
  884. }
  885. /* First try to allocate memory, before doing anything with
  886. * existing queues. */
  887. msg_ptr = load_msg(u_msg_ptr, msg_len);
  888. if (IS_ERR(msg_ptr)) {
  889. ret = PTR_ERR(msg_ptr);
  890. goto out_fput;
  891. }
  892. msg_ptr->m_ts = msg_len;
  893. msg_ptr->m_type = msg_prio;
  894. /*
  895. * msg_insert really wants us to have a valid, spare node struct so
  896. * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
  897. * fall back to that if necessary.
  898. */
  899. if (!info->node_cache)
  900. new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
  901. spin_lock(&info->lock);
  902. if (!info->node_cache && new_leaf) {
  903. /* Save our speculative allocation into the cache */
  904. INIT_LIST_HEAD(&new_leaf->msg_list);
  905. info->node_cache = new_leaf;
  906. new_leaf = NULL;
  907. } else {
  908. kfree(new_leaf);
  909. }
  910. if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
  911. if (f.file->f_flags & O_NONBLOCK) {
  912. ret = -EAGAIN;
  913. } else {
  914. wait.task = current;
  915. wait.msg = (void *) msg_ptr;
  916. wait.state = STATE_NONE;
  917. ret = wq_sleep(info, SEND, timeout, &wait);
  918. /*
  919. * wq_sleep must be called with info->lock held, and
  920. * returns with the lock released
  921. */
  922. goto out_free;
  923. }
  924. } else {
  925. receiver = wq_get_first_waiter(info, RECV);
  926. if (receiver) {
  927. pipelined_send(&wake_q, info, msg_ptr, receiver);
  928. } else {
  929. /* adds message to the queue */
  930. ret = msg_insert(msg_ptr, info);
  931. if (ret)
  932. goto out_unlock;
  933. __do_notify(info);
  934. }
  935. inode->i_atime = inode->i_mtime = inode->i_ctime =
  936. CURRENT_TIME;
  937. }
  938. out_unlock:
  939. spin_unlock(&info->lock);
  940. wake_up_q(&wake_q);
  941. out_free:
  942. if (ret)
  943. free_msg(msg_ptr);
  944. out_fput:
  945. fdput(f);
  946. out:
  947. return ret;
  948. }
  949. SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
  950. size_t, msg_len, unsigned int __user *, u_msg_prio,
  951. const struct timespec __user *, u_abs_timeout)
  952. {
  953. ssize_t ret;
  954. struct msg_msg *msg_ptr;
  955. struct fd f;
  956. struct inode *inode;
  957. struct mqueue_inode_info *info;
  958. struct ext_wait_queue wait;
  959. ktime_t expires, *timeout = NULL;
  960. struct timespec ts;
  961. struct posix_msg_tree_node *new_leaf = NULL;
  962. if (u_abs_timeout) {
  963. int res = prepare_timeout(u_abs_timeout, &expires, &ts);
  964. if (res)
  965. return res;
  966. timeout = &expires;
  967. }
  968. audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
  969. f = fdget(mqdes);
  970. if (unlikely(!f.file)) {
  971. ret = -EBADF;
  972. goto out;
  973. }
  974. inode = file_inode(f.file);
  975. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  976. ret = -EBADF;
  977. goto out_fput;
  978. }
  979. info = MQUEUE_I(inode);
  980. audit_file(f.file);
  981. if (unlikely(!(f.file->f_mode & FMODE_READ))) {
  982. ret = -EBADF;
  983. goto out_fput;
  984. }
  985. /* checks if buffer is big enough */
  986. if (unlikely(msg_len < info->attr.mq_msgsize)) {
  987. ret = -EMSGSIZE;
  988. goto out_fput;
  989. }
  990. /*
  991. * msg_insert really wants us to have a valid, spare node struct so
  992. * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
  993. * fall back to that if necessary.
  994. */
  995. if (!info->node_cache)
  996. new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
  997. spin_lock(&info->lock);
  998. if (!info->node_cache && new_leaf) {
  999. /* Save our speculative allocation into the cache */
  1000. INIT_LIST_HEAD(&new_leaf->msg_list);
  1001. info->node_cache = new_leaf;
  1002. } else {
  1003. kfree(new_leaf);
  1004. }
  1005. if (info->attr.mq_curmsgs == 0) {
  1006. if (f.file->f_flags & O_NONBLOCK) {
  1007. spin_unlock(&info->lock);
  1008. ret = -EAGAIN;
  1009. } else {
  1010. wait.task = current;
  1011. wait.state = STATE_NONE;
  1012. ret = wq_sleep(info, RECV, timeout, &wait);
  1013. msg_ptr = wait.msg;
  1014. }
  1015. } else {
  1016. WAKE_Q(wake_q);
  1017. msg_ptr = msg_get(info);
  1018. inode->i_atime = inode->i_mtime = inode->i_ctime =
  1019. CURRENT_TIME;
  1020. /* There is now free space in queue. */
  1021. pipelined_receive(&wake_q, info);
  1022. spin_unlock(&info->lock);
  1023. wake_up_q(&wake_q);
  1024. ret = 0;
  1025. }
  1026. if (ret == 0) {
  1027. ret = msg_ptr->m_ts;
  1028. if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
  1029. store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
  1030. ret = -EFAULT;
  1031. }
  1032. free_msg(msg_ptr);
  1033. }
  1034. out_fput:
  1035. fdput(f);
  1036. out:
  1037. return ret;
  1038. }
  1039. /*
  1040. * Notes: the case when user wants us to deregister (with NULL as pointer)
  1041. * and he isn't currently owner of notification, will be silently discarded.
  1042. * It isn't explicitly defined in the POSIX.
  1043. */
  1044. SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
  1045. const struct sigevent __user *, u_notification)
  1046. {
  1047. int ret;
  1048. struct fd f;
  1049. struct sock *sock;
  1050. struct inode *inode;
  1051. struct sigevent notification;
  1052. struct mqueue_inode_info *info;
  1053. struct sk_buff *nc;
  1054. if (u_notification) {
  1055. if (copy_from_user(&notification, u_notification,
  1056. sizeof(struct sigevent)))
  1057. return -EFAULT;
  1058. }
  1059. audit_mq_notify(mqdes, u_notification ? &notification : NULL);
  1060. nc = NULL;
  1061. sock = NULL;
  1062. if (u_notification != NULL) {
  1063. if (unlikely(notification.sigev_notify != SIGEV_NONE &&
  1064. notification.sigev_notify != SIGEV_SIGNAL &&
  1065. notification.sigev_notify != SIGEV_THREAD))
  1066. return -EINVAL;
  1067. if (notification.sigev_notify == SIGEV_SIGNAL &&
  1068. !valid_signal(notification.sigev_signo)) {
  1069. return -EINVAL;
  1070. }
  1071. if (notification.sigev_notify == SIGEV_THREAD) {
  1072. long timeo;
  1073. /* create the notify skb */
  1074. nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
  1075. if (!nc) {
  1076. ret = -ENOMEM;
  1077. goto out;
  1078. }
  1079. if (copy_from_user(nc->data,
  1080. notification.sigev_value.sival_ptr,
  1081. NOTIFY_COOKIE_LEN)) {
  1082. ret = -EFAULT;
  1083. goto out;
  1084. }
  1085. /* TODO: add a header? */
  1086. skb_put(nc, NOTIFY_COOKIE_LEN);
  1087. /* and attach it to the socket */
  1088. retry:
  1089. f = fdget(notification.sigev_signo);
  1090. if (!f.file) {
  1091. ret = -EBADF;
  1092. goto out;
  1093. }
  1094. sock = netlink_getsockbyfilp(f.file);
  1095. fdput(f);
  1096. if (IS_ERR(sock)) {
  1097. ret = PTR_ERR(sock);
  1098. sock = NULL;
  1099. goto out;
  1100. }
  1101. timeo = MAX_SCHEDULE_TIMEOUT;
  1102. ret = netlink_attachskb(sock, nc, &timeo, NULL);
  1103. if (ret == 1) {
  1104. sock = NULL;
  1105. goto retry;
  1106. }
  1107. if (ret) {
  1108. sock = NULL;
  1109. nc = NULL;
  1110. goto out;
  1111. }
  1112. }
  1113. }
  1114. f = fdget(mqdes);
  1115. if (!f.file) {
  1116. ret = -EBADF;
  1117. goto out;
  1118. }
  1119. inode = file_inode(f.file);
  1120. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  1121. ret = -EBADF;
  1122. goto out_fput;
  1123. }
  1124. info = MQUEUE_I(inode);
  1125. ret = 0;
  1126. spin_lock(&info->lock);
  1127. if (u_notification == NULL) {
  1128. if (info->notify_owner == task_tgid(current)) {
  1129. remove_notification(info);
  1130. inode->i_atime = inode->i_ctime = CURRENT_TIME;
  1131. }
  1132. } else if (info->notify_owner != NULL) {
  1133. ret = -EBUSY;
  1134. } else {
  1135. switch (notification.sigev_notify) {
  1136. case SIGEV_NONE:
  1137. info->notify.sigev_notify = SIGEV_NONE;
  1138. break;
  1139. case SIGEV_THREAD:
  1140. info->notify_sock = sock;
  1141. info->notify_cookie = nc;
  1142. sock = NULL;
  1143. nc = NULL;
  1144. info->notify.sigev_notify = SIGEV_THREAD;
  1145. break;
  1146. case SIGEV_SIGNAL:
  1147. info->notify.sigev_signo = notification.sigev_signo;
  1148. info->notify.sigev_value = notification.sigev_value;
  1149. info->notify.sigev_notify = SIGEV_SIGNAL;
  1150. break;
  1151. }
  1152. info->notify_owner = get_pid(task_tgid(current));
  1153. info->notify_user_ns = get_user_ns(current_user_ns());
  1154. inode->i_atime = inode->i_ctime = CURRENT_TIME;
  1155. }
  1156. spin_unlock(&info->lock);
  1157. out_fput:
  1158. fdput(f);
  1159. out:
  1160. if (sock)
  1161. netlink_detachskb(sock, nc);
  1162. else if (nc)
  1163. dev_kfree_skb(nc);
  1164. return ret;
  1165. }
  1166. SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
  1167. const struct mq_attr __user *, u_mqstat,
  1168. struct mq_attr __user *, u_omqstat)
  1169. {
  1170. int ret;
  1171. struct mq_attr mqstat, omqstat;
  1172. struct fd f;
  1173. struct inode *inode;
  1174. struct mqueue_inode_info *info;
  1175. if (u_mqstat != NULL) {
  1176. if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
  1177. return -EFAULT;
  1178. if (mqstat.mq_flags & (~O_NONBLOCK))
  1179. return -EINVAL;
  1180. }
  1181. f = fdget(mqdes);
  1182. if (!f.file) {
  1183. ret = -EBADF;
  1184. goto out;
  1185. }
  1186. inode = file_inode(f.file);
  1187. if (unlikely(f.file->f_op != &mqueue_file_operations)) {
  1188. ret = -EBADF;
  1189. goto out_fput;
  1190. }
  1191. info = MQUEUE_I(inode);
  1192. spin_lock(&info->lock);
  1193. omqstat = info->attr;
  1194. omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
  1195. if (u_mqstat) {
  1196. audit_mq_getsetattr(mqdes, &mqstat);
  1197. spin_lock(&f.file->f_lock);
  1198. if (mqstat.mq_flags & O_NONBLOCK)
  1199. f.file->f_flags |= O_NONBLOCK;
  1200. else
  1201. f.file->f_flags &= ~O_NONBLOCK;
  1202. spin_unlock(&f.file->f_lock);
  1203. inode->i_atime = inode->i_ctime = CURRENT_TIME;
  1204. }
  1205. spin_unlock(&info->lock);
  1206. ret = 0;
  1207. if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
  1208. sizeof(struct mq_attr)))
  1209. ret = -EFAULT;
  1210. out_fput:
  1211. fdput(f);
  1212. out:
  1213. return ret;
  1214. }
  1215. static const struct inode_operations mqueue_dir_inode_operations = {
  1216. .lookup = simple_lookup,
  1217. .create = mqueue_create,
  1218. .unlink = mqueue_unlink,
  1219. };
  1220. static const struct file_operations mqueue_file_operations = {
  1221. .flush = mqueue_flush_file,
  1222. .poll = mqueue_poll_file,
  1223. .read = mqueue_read_file,
  1224. .llseek = default_llseek,
  1225. };
  1226. static const struct super_operations mqueue_super_ops = {
  1227. .alloc_inode = mqueue_alloc_inode,
  1228. .destroy_inode = mqueue_destroy_inode,
  1229. .evict_inode = mqueue_evict_inode,
  1230. .statfs = simple_statfs,
  1231. };
  1232. static struct file_system_type mqueue_fs_type = {
  1233. .name = "mqueue",
  1234. .mount = mqueue_mount,
  1235. .kill_sb = kill_litter_super,
  1236. .fs_flags = FS_USERNS_MOUNT,
  1237. };
  1238. int mq_init_ns(struct ipc_namespace *ns)
  1239. {
  1240. ns->mq_queues_count = 0;
  1241. ns->mq_queues_max = DFLT_QUEUESMAX;
  1242. ns->mq_msg_max = DFLT_MSGMAX;
  1243. ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
  1244. ns->mq_msg_default = DFLT_MSG;
  1245. ns->mq_msgsize_default = DFLT_MSGSIZE;
  1246. ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
  1247. if (IS_ERR(ns->mq_mnt)) {
  1248. int err = PTR_ERR(ns->mq_mnt);
  1249. ns->mq_mnt = NULL;
  1250. return err;
  1251. }
  1252. return 0;
  1253. }
  1254. void mq_clear_sbinfo(struct ipc_namespace *ns)
  1255. {
  1256. ns->mq_mnt->mnt_sb->s_fs_info = NULL;
  1257. }
  1258. void mq_put_mnt(struct ipc_namespace *ns)
  1259. {
  1260. kern_unmount(ns->mq_mnt);
  1261. }
  1262. static int __init init_mqueue_fs(void)
  1263. {
  1264. int error;
  1265. mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
  1266. sizeof(struct mqueue_inode_info), 0,
  1267. SLAB_HWCACHE_ALIGN, init_once);
  1268. if (mqueue_inode_cachep == NULL)
  1269. return -ENOMEM;
  1270. /* ignore failures - they are not fatal */
  1271. mq_sysctl_table = mq_register_sysctl_table();
  1272. error = register_filesystem(&mqueue_fs_type);
  1273. if (error)
  1274. goto out_sysctl;
  1275. spin_lock_init(&mq_lock);
  1276. error = mq_init_ns(&init_ipc_ns);
  1277. if (error)
  1278. goto out_filesystem;
  1279. return 0;
  1280. out_filesystem:
  1281. unregister_filesystem(&mqueue_fs_type);
  1282. out_sysctl:
  1283. if (mq_sysctl_table)
  1284. unregister_sysctl_table(mq_sysctl_table);
  1285. kmem_cache_destroy(mqueue_inode_cachep);
  1286. return error;
  1287. }
  1288. device_initcall(init_mqueue_fs);