auditsc.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429
  1. /* auditsc.c -- System-call auditing support
  2. * Handles all system-call specific auditing features.
  3. *
  4. * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
  5. * Copyright 2005 Hewlett-Packard Development Company, L.P.
  6. * Copyright (C) 2005, 2006 IBM Corporation
  7. * All Rights Reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  22. *
  23. * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24. *
  25. * Many of the ideas implemented here are from Stephen C. Tweedie,
  26. * especially the idea of avoiding a copy by using getname.
  27. *
  28. * The method for actual interception of syscall entry and exit (not in
  29. * this file -- see entry.S) is based on a GPL'd patch written by
  30. * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31. *
  32. * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33. * 2006.
  34. *
  35. * The support of additional filter rules compares (>, <, >=, <=) was
  36. * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37. *
  38. * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39. * filesystem information.
  40. *
  41. * Subject and object context labeling support added by <danjones@us.ibm.com>
  42. * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43. */
  44. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45. #include <linux/init.h>
  46. #include <asm/types.h>
  47. #include <linux/atomic.h>
  48. #include <linux/fs.h>
  49. #include <linux/namei.h>
  50. #include <linux/mm.h>
  51. #include <linux/export.h>
  52. #include <linux/slab.h>
  53. #include <linux/mount.h>
  54. #include <linux/socket.h>
  55. #include <linux/mqueue.h>
  56. #include <linux/audit.h>
  57. #include <linux/personality.h>
  58. #include <linux/time.h>
  59. #include <linux/netlink.h>
  60. #include <linux/compiler.h>
  61. #include <asm/unistd.h>
  62. #include <linux/security.h>
  63. #include <linux/list.h>
  64. #include <linux/tty.h>
  65. #include <linux/binfmts.h>
  66. #include <linux/highmem.h>
  67. #include <linux/syscalls.h>
  68. #include <asm/syscall.h>
  69. #include <linux/capability.h>
  70. #include <linux/fs_struct.h>
  71. #include <linux/compat.h>
  72. #include <linux/ctype.h>
  73. #include <linux/string.h>
  74. #include <linux/uaccess.h>
  75. #include <uapi/linux/limits.h>
  76. #include "audit.h"
  77. /* flags stating the success for a syscall */
  78. #define AUDITSC_INVALID 0
  79. #define AUDITSC_SUCCESS 1
  80. #define AUDITSC_FAILURE 2
  81. /* no execve audit message should be longer than this (userspace limits),
  82. * see the note near the top of audit_log_execve_info() about this value */
  83. #define MAX_EXECVE_AUDIT_LEN 7500
  84. /* max length to print of cmdline/proctitle value during audit */
  85. #define MAX_PROCTITLE_AUDIT_LEN 128
  86. /* number of audit rules */
  87. int audit_n_rules;
  88. /* determines whether we collect data for signals sent */
  89. int audit_signals;
  90. struct audit_aux_data {
  91. struct audit_aux_data *next;
  92. int type;
  93. };
  94. #define AUDIT_AUX_IPCPERM 0
  95. /* Number of target pids per aux struct. */
  96. #define AUDIT_AUX_PIDS 16
  97. struct audit_aux_data_pids {
  98. struct audit_aux_data d;
  99. pid_t target_pid[AUDIT_AUX_PIDS];
  100. kuid_t target_auid[AUDIT_AUX_PIDS];
  101. kuid_t target_uid[AUDIT_AUX_PIDS];
  102. unsigned int target_sessionid[AUDIT_AUX_PIDS];
  103. u32 target_sid[AUDIT_AUX_PIDS];
  104. char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
  105. int pid_count;
  106. };
  107. struct audit_aux_data_bprm_fcaps {
  108. struct audit_aux_data d;
  109. struct audit_cap_data fcap;
  110. unsigned int fcap_ver;
  111. struct audit_cap_data old_pcap;
  112. struct audit_cap_data new_pcap;
  113. };
  114. struct audit_tree_refs {
  115. struct audit_tree_refs *next;
  116. struct audit_chunk *c[31];
  117. };
  118. static int audit_match_perm(struct audit_context *ctx, int mask)
  119. {
  120. unsigned n;
  121. if (unlikely(!ctx))
  122. return 0;
  123. n = ctx->major;
  124. switch (audit_classify_syscall(ctx->arch, n)) {
  125. case 0: /* native */
  126. if ((mask & AUDIT_PERM_WRITE) &&
  127. audit_match_class(AUDIT_CLASS_WRITE, n))
  128. return 1;
  129. if ((mask & AUDIT_PERM_READ) &&
  130. audit_match_class(AUDIT_CLASS_READ, n))
  131. return 1;
  132. if ((mask & AUDIT_PERM_ATTR) &&
  133. audit_match_class(AUDIT_CLASS_CHATTR, n))
  134. return 1;
  135. return 0;
  136. case 1: /* 32bit on biarch */
  137. if ((mask & AUDIT_PERM_WRITE) &&
  138. audit_match_class(AUDIT_CLASS_WRITE_32, n))
  139. return 1;
  140. if ((mask & AUDIT_PERM_READ) &&
  141. audit_match_class(AUDIT_CLASS_READ_32, n))
  142. return 1;
  143. if ((mask & AUDIT_PERM_ATTR) &&
  144. audit_match_class(AUDIT_CLASS_CHATTR_32, n))
  145. return 1;
  146. return 0;
  147. case 2: /* open */
  148. return mask & ACC_MODE(ctx->argv[1]);
  149. case 3: /* openat */
  150. return mask & ACC_MODE(ctx->argv[2]);
  151. case 4: /* socketcall */
  152. return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
  153. case 5: /* execve */
  154. return mask & AUDIT_PERM_EXEC;
  155. default:
  156. return 0;
  157. }
  158. }
  159. static int audit_match_filetype(struct audit_context *ctx, int val)
  160. {
  161. struct audit_names *n;
  162. umode_t mode = (umode_t)val;
  163. if (unlikely(!ctx))
  164. return 0;
  165. list_for_each_entry(n, &ctx->names_list, list) {
  166. if ((n->ino != AUDIT_INO_UNSET) &&
  167. ((n->mode & S_IFMT) == mode))
  168. return 1;
  169. }
  170. return 0;
  171. }
  172. /*
  173. * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
  174. * ->first_trees points to its beginning, ->trees - to the current end of data.
  175. * ->tree_count is the number of free entries in array pointed to by ->trees.
  176. * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
  177. * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
  178. * it's going to remain 1-element for almost any setup) until we free context itself.
  179. * References in it _are_ dropped - at the same time we free/drop aux stuff.
  180. */
  181. #ifdef CONFIG_AUDIT_TREE
  182. static void audit_set_auditable(struct audit_context *ctx)
  183. {
  184. if (!ctx->prio) {
  185. ctx->prio = 1;
  186. ctx->current_state = AUDIT_RECORD_CONTEXT;
  187. }
  188. }
  189. static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
  190. {
  191. struct audit_tree_refs *p = ctx->trees;
  192. int left = ctx->tree_count;
  193. if (likely(left)) {
  194. p->c[--left] = chunk;
  195. ctx->tree_count = left;
  196. return 1;
  197. }
  198. if (!p)
  199. return 0;
  200. p = p->next;
  201. if (p) {
  202. p->c[30] = chunk;
  203. ctx->trees = p;
  204. ctx->tree_count = 30;
  205. return 1;
  206. }
  207. return 0;
  208. }
  209. static int grow_tree_refs(struct audit_context *ctx)
  210. {
  211. struct audit_tree_refs *p = ctx->trees;
  212. ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
  213. if (!ctx->trees) {
  214. ctx->trees = p;
  215. return 0;
  216. }
  217. if (p)
  218. p->next = ctx->trees;
  219. else
  220. ctx->first_trees = ctx->trees;
  221. ctx->tree_count = 31;
  222. return 1;
  223. }
  224. #endif
  225. static void unroll_tree_refs(struct audit_context *ctx,
  226. struct audit_tree_refs *p, int count)
  227. {
  228. #ifdef CONFIG_AUDIT_TREE
  229. struct audit_tree_refs *q;
  230. int n;
  231. if (!p) {
  232. /* we started with empty chain */
  233. p = ctx->first_trees;
  234. count = 31;
  235. /* if the very first allocation has failed, nothing to do */
  236. if (!p)
  237. return;
  238. }
  239. n = count;
  240. for (q = p; q != ctx->trees; q = q->next, n = 31) {
  241. while (n--) {
  242. audit_put_chunk(q->c[n]);
  243. q->c[n] = NULL;
  244. }
  245. }
  246. while (n-- > ctx->tree_count) {
  247. audit_put_chunk(q->c[n]);
  248. q->c[n] = NULL;
  249. }
  250. ctx->trees = p;
  251. ctx->tree_count = count;
  252. #endif
  253. }
  254. static void free_tree_refs(struct audit_context *ctx)
  255. {
  256. struct audit_tree_refs *p, *q;
  257. for (p = ctx->first_trees; p; p = q) {
  258. q = p->next;
  259. kfree(p);
  260. }
  261. }
  262. static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
  263. {
  264. #ifdef CONFIG_AUDIT_TREE
  265. struct audit_tree_refs *p;
  266. int n;
  267. if (!tree)
  268. return 0;
  269. /* full ones */
  270. for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
  271. for (n = 0; n < 31; n++)
  272. if (audit_tree_match(p->c[n], tree))
  273. return 1;
  274. }
  275. /* partial */
  276. if (p) {
  277. for (n = ctx->tree_count; n < 31; n++)
  278. if (audit_tree_match(p->c[n], tree))
  279. return 1;
  280. }
  281. #endif
  282. return 0;
  283. }
  284. static int audit_compare_uid(kuid_t uid,
  285. struct audit_names *name,
  286. struct audit_field *f,
  287. struct audit_context *ctx)
  288. {
  289. struct audit_names *n;
  290. int rc;
  291. if (name) {
  292. rc = audit_uid_comparator(uid, f->op, name->uid);
  293. if (rc)
  294. return rc;
  295. }
  296. if (ctx) {
  297. list_for_each_entry(n, &ctx->names_list, list) {
  298. rc = audit_uid_comparator(uid, f->op, n->uid);
  299. if (rc)
  300. return rc;
  301. }
  302. }
  303. return 0;
  304. }
  305. static int audit_compare_gid(kgid_t gid,
  306. struct audit_names *name,
  307. struct audit_field *f,
  308. struct audit_context *ctx)
  309. {
  310. struct audit_names *n;
  311. int rc;
  312. if (name) {
  313. rc = audit_gid_comparator(gid, f->op, name->gid);
  314. if (rc)
  315. return rc;
  316. }
  317. if (ctx) {
  318. list_for_each_entry(n, &ctx->names_list, list) {
  319. rc = audit_gid_comparator(gid, f->op, n->gid);
  320. if (rc)
  321. return rc;
  322. }
  323. }
  324. return 0;
  325. }
  326. static int audit_field_compare(struct task_struct *tsk,
  327. const struct cred *cred,
  328. struct audit_field *f,
  329. struct audit_context *ctx,
  330. struct audit_names *name)
  331. {
  332. switch (f->val) {
  333. /* process to file object comparisons */
  334. case AUDIT_COMPARE_UID_TO_OBJ_UID:
  335. return audit_compare_uid(cred->uid, name, f, ctx);
  336. case AUDIT_COMPARE_GID_TO_OBJ_GID:
  337. return audit_compare_gid(cred->gid, name, f, ctx);
  338. case AUDIT_COMPARE_EUID_TO_OBJ_UID:
  339. return audit_compare_uid(cred->euid, name, f, ctx);
  340. case AUDIT_COMPARE_EGID_TO_OBJ_GID:
  341. return audit_compare_gid(cred->egid, name, f, ctx);
  342. case AUDIT_COMPARE_AUID_TO_OBJ_UID:
  343. return audit_compare_uid(tsk->loginuid, name, f, ctx);
  344. case AUDIT_COMPARE_SUID_TO_OBJ_UID:
  345. return audit_compare_uid(cred->suid, name, f, ctx);
  346. case AUDIT_COMPARE_SGID_TO_OBJ_GID:
  347. return audit_compare_gid(cred->sgid, name, f, ctx);
  348. case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
  349. return audit_compare_uid(cred->fsuid, name, f, ctx);
  350. case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
  351. return audit_compare_gid(cred->fsgid, name, f, ctx);
  352. /* uid comparisons */
  353. case AUDIT_COMPARE_UID_TO_AUID:
  354. return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
  355. case AUDIT_COMPARE_UID_TO_EUID:
  356. return audit_uid_comparator(cred->uid, f->op, cred->euid);
  357. case AUDIT_COMPARE_UID_TO_SUID:
  358. return audit_uid_comparator(cred->uid, f->op, cred->suid);
  359. case AUDIT_COMPARE_UID_TO_FSUID:
  360. return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
  361. /* auid comparisons */
  362. case AUDIT_COMPARE_AUID_TO_EUID:
  363. return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
  364. case AUDIT_COMPARE_AUID_TO_SUID:
  365. return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
  366. case AUDIT_COMPARE_AUID_TO_FSUID:
  367. return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
  368. /* euid comparisons */
  369. case AUDIT_COMPARE_EUID_TO_SUID:
  370. return audit_uid_comparator(cred->euid, f->op, cred->suid);
  371. case AUDIT_COMPARE_EUID_TO_FSUID:
  372. return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
  373. /* suid comparisons */
  374. case AUDIT_COMPARE_SUID_TO_FSUID:
  375. return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
  376. /* gid comparisons */
  377. case AUDIT_COMPARE_GID_TO_EGID:
  378. return audit_gid_comparator(cred->gid, f->op, cred->egid);
  379. case AUDIT_COMPARE_GID_TO_SGID:
  380. return audit_gid_comparator(cred->gid, f->op, cred->sgid);
  381. case AUDIT_COMPARE_GID_TO_FSGID:
  382. return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
  383. /* egid comparisons */
  384. case AUDIT_COMPARE_EGID_TO_SGID:
  385. return audit_gid_comparator(cred->egid, f->op, cred->sgid);
  386. case AUDIT_COMPARE_EGID_TO_FSGID:
  387. return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
  388. /* sgid comparison */
  389. case AUDIT_COMPARE_SGID_TO_FSGID:
  390. return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
  391. default:
  392. WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
  393. return 0;
  394. }
  395. return 0;
  396. }
  397. /* Determine if any context name data matches a rule's watch data */
  398. /* Compare a task_struct with an audit_rule. Return 1 on match, 0
  399. * otherwise.
  400. *
  401. * If task_creation is true, this is an explicit indication that we are
  402. * filtering a task rule at task creation time. This and tsk == current are
  403. * the only situations where tsk->cred may be accessed without an rcu read lock.
  404. */
  405. static int audit_filter_rules(struct task_struct *tsk,
  406. struct audit_krule *rule,
  407. struct audit_context *ctx,
  408. struct audit_names *name,
  409. enum audit_state *state,
  410. bool task_creation)
  411. {
  412. const struct cred *cred;
  413. int i, need_sid = 1;
  414. u32 sid;
  415. cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
  416. for (i = 0; i < rule->field_count; i++) {
  417. struct audit_field *f = &rule->fields[i];
  418. struct audit_names *n;
  419. int result = 0;
  420. pid_t pid;
  421. switch (f->type) {
  422. case AUDIT_PID:
  423. pid = task_pid_nr(tsk);
  424. result = audit_comparator(pid, f->op, f->val);
  425. break;
  426. case AUDIT_PPID:
  427. if (ctx) {
  428. if (!ctx->ppid)
  429. ctx->ppid = task_ppid_nr(tsk);
  430. result = audit_comparator(ctx->ppid, f->op, f->val);
  431. }
  432. break;
  433. case AUDIT_EXE:
  434. result = audit_exe_compare(tsk, rule->exe);
  435. if (f->op == Audit_not_equal)
  436. result = !result;
  437. break;
  438. case AUDIT_UID:
  439. result = audit_uid_comparator(cred->uid, f->op, f->uid);
  440. break;
  441. case AUDIT_EUID:
  442. result = audit_uid_comparator(cred->euid, f->op, f->uid);
  443. break;
  444. case AUDIT_SUID:
  445. result = audit_uid_comparator(cred->suid, f->op, f->uid);
  446. break;
  447. case AUDIT_FSUID:
  448. result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
  449. break;
  450. case AUDIT_GID:
  451. result = audit_gid_comparator(cred->gid, f->op, f->gid);
  452. if (f->op == Audit_equal) {
  453. if (!result)
  454. result = in_group_p(f->gid);
  455. } else if (f->op == Audit_not_equal) {
  456. if (result)
  457. result = !in_group_p(f->gid);
  458. }
  459. break;
  460. case AUDIT_EGID:
  461. result = audit_gid_comparator(cred->egid, f->op, f->gid);
  462. if (f->op == Audit_equal) {
  463. if (!result)
  464. result = in_egroup_p(f->gid);
  465. } else if (f->op == Audit_not_equal) {
  466. if (result)
  467. result = !in_egroup_p(f->gid);
  468. }
  469. break;
  470. case AUDIT_SGID:
  471. result = audit_gid_comparator(cred->sgid, f->op, f->gid);
  472. break;
  473. case AUDIT_FSGID:
  474. result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
  475. break;
  476. case AUDIT_PERS:
  477. result = audit_comparator(tsk->personality, f->op, f->val);
  478. break;
  479. case AUDIT_ARCH:
  480. if (ctx)
  481. result = audit_comparator(ctx->arch, f->op, f->val);
  482. break;
  483. case AUDIT_EXIT:
  484. if (ctx && ctx->return_valid)
  485. result = audit_comparator(ctx->return_code, f->op, f->val);
  486. break;
  487. case AUDIT_SUCCESS:
  488. if (ctx && ctx->return_valid) {
  489. if (f->val)
  490. result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
  491. else
  492. result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
  493. }
  494. break;
  495. case AUDIT_DEVMAJOR:
  496. if (name) {
  497. if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
  498. audit_comparator(MAJOR(name->rdev), f->op, f->val))
  499. ++result;
  500. } else if (ctx) {
  501. list_for_each_entry(n, &ctx->names_list, list) {
  502. if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
  503. audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
  504. ++result;
  505. break;
  506. }
  507. }
  508. }
  509. break;
  510. case AUDIT_DEVMINOR:
  511. if (name) {
  512. if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
  513. audit_comparator(MINOR(name->rdev), f->op, f->val))
  514. ++result;
  515. } else if (ctx) {
  516. list_for_each_entry(n, &ctx->names_list, list) {
  517. if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
  518. audit_comparator(MINOR(n->rdev), f->op, f->val)) {
  519. ++result;
  520. break;
  521. }
  522. }
  523. }
  524. break;
  525. case AUDIT_INODE:
  526. if (name)
  527. result = audit_comparator(name->ino, f->op, f->val);
  528. else if (ctx) {
  529. list_for_each_entry(n, &ctx->names_list, list) {
  530. if (audit_comparator(n->ino, f->op, f->val)) {
  531. ++result;
  532. break;
  533. }
  534. }
  535. }
  536. break;
  537. case AUDIT_OBJ_UID:
  538. if (name) {
  539. result = audit_uid_comparator(name->uid, f->op, f->uid);
  540. } else if (ctx) {
  541. list_for_each_entry(n, &ctx->names_list, list) {
  542. if (audit_uid_comparator(n->uid, f->op, f->uid)) {
  543. ++result;
  544. break;
  545. }
  546. }
  547. }
  548. break;
  549. case AUDIT_OBJ_GID:
  550. if (name) {
  551. result = audit_gid_comparator(name->gid, f->op, f->gid);
  552. } else if (ctx) {
  553. list_for_each_entry(n, &ctx->names_list, list) {
  554. if (audit_gid_comparator(n->gid, f->op, f->gid)) {
  555. ++result;
  556. break;
  557. }
  558. }
  559. }
  560. break;
  561. case AUDIT_WATCH:
  562. if (name)
  563. result = audit_watch_compare(rule->watch, name->ino, name->dev);
  564. break;
  565. case AUDIT_DIR:
  566. if (ctx)
  567. result = match_tree_refs(ctx, rule->tree);
  568. break;
  569. case AUDIT_LOGINUID:
  570. result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
  571. break;
  572. case AUDIT_LOGINUID_SET:
  573. result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
  574. break;
  575. case AUDIT_SUBJ_USER:
  576. case AUDIT_SUBJ_ROLE:
  577. case AUDIT_SUBJ_TYPE:
  578. case AUDIT_SUBJ_SEN:
  579. case AUDIT_SUBJ_CLR:
  580. /* NOTE: this may return negative values indicating
  581. a temporary error. We simply treat this as a
  582. match for now to avoid losing information that
  583. may be wanted. An error message will also be
  584. logged upon error */
  585. if (f->lsm_rule) {
  586. if (need_sid) {
  587. security_task_getsecid(tsk, &sid);
  588. need_sid = 0;
  589. }
  590. result = security_audit_rule_match(sid, f->type,
  591. f->op,
  592. f->lsm_rule,
  593. ctx);
  594. }
  595. break;
  596. case AUDIT_OBJ_USER:
  597. case AUDIT_OBJ_ROLE:
  598. case AUDIT_OBJ_TYPE:
  599. case AUDIT_OBJ_LEV_LOW:
  600. case AUDIT_OBJ_LEV_HIGH:
  601. /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
  602. also applies here */
  603. if (f->lsm_rule) {
  604. /* Find files that match */
  605. if (name) {
  606. result = security_audit_rule_match(
  607. name->osid, f->type, f->op,
  608. f->lsm_rule, ctx);
  609. } else if (ctx) {
  610. list_for_each_entry(n, &ctx->names_list, list) {
  611. if (security_audit_rule_match(n->osid, f->type,
  612. f->op, f->lsm_rule,
  613. ctx)) {
  614. ++result;
  615. break;
  616. }
  617. }
  618. }
  619. /* Find ipc objects that match */
  620. if (!ctx || ctx->type != AUDIT_IPC)
  621. break;
  622. if (security_audit_rule_match(ctx->ipc.osid,
  623. f->type, f->op,
  624. f->lsm_rule, ctx))
  625. ++result;
  626. }
  627. break;
  628. case AUDIT_ARG0:
  629. case AUDIT_ARG1:
  630. case AUDIT_ARG2:
  631. case AUDIT_ARG3:
  632. if (ctx)
  633. result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
  634. break;
  635. case AUDIT_FILTERKEY:
  636. /* ignore this field for filtering */
  637. result = 1;
  638. break;
  639. case AUDIT_PERM:
  640. result = audit_match_perm(ctx, f->val);
  641. break;
  642. case AUDIT_FILETYPE:
  643. result = audit_match_filetype(ctx, f->val);
  644. break;
  645. case AUDIT_FIELD_COMPARE:
  646. result = audit_field_compare(tsk, cred, f, ctx, name);
  647. break;
  648. }
  649. if (!result)
  650. return 0;
  651. }
  652. if (ctx) {
  653. if (rule->prio <= ctx->prio)
  654. return 0;
  655. if (rule->filterkey) {
  656. kfree(ctx->filterkey);
  657. ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
  658. }
  659. ctx->prio = rule->prio;
  660. }
  661. switch (rule->action) {
  662. case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
  663. case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
  664. }
  665. return 1;
  666. }
  667. /* At process creation time, we can determine if system-call auditing is
  668. * completely disabled for this task. Since we only have the task
  669. * structure at this point, we can only check uid and gid.
  670. */
  671. static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
  672. {
  673. struct audit_entry *e;
  674. enum audit_state state;
  675. rcu_read_lock();
  676. list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
  677. if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
  678. &state, true)) {
  679. if (state == AUDIT_RECORD_CONTEXT)
  680. *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
  681. rcu_read_unlock();
  682. return state;
  683. }
  684. }
  685. rcu_read_unlock();
  686. return AUDIT_BUILD_CONTEXT;
  687. }
  688. static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
  689. {
  690. int word, bit;
  691. if (val > 0xffffffff)
  692. return false;
  693. word = AUDIT_WORD(val);
  694. if (word >= AUDIT_BITMASK_SIZE)
  695. return false;
  696. bit = AUDIT_BIT(val);
  697. return rule->mask[word] & bit;
  698. }
  699. /* At syscall entry and exit time, this filter is called if the
  700. * audit_state is not low enough that auditing cannot take place, but is
  701. * also not high enough that we already know we have to write an audit
  702. * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
  703. */
  704. static enum audit_state audit_filter_syscall(struct task_struct *tsk,
  705. struct audit_context *ctx,
  706. struct list_head *list)
  707. {
  708. struct audit_entry *e;
  709. enum audit_state state;
  710. if (audit_pid && tsk->tgid == audit_pid)
  711. return AUDIT_DISABLED;
  712. rcu_read_lock();
  713. if (!list_empty(list)) {
  714. list_for_each_entry_rcu(e, list, list) {
  715. if (audit_in_mask(&e->rule, ctx->major) &&
  716. audit_filter_rules(tsk, &e->rule, ctx, NULL,
  717. &state, false)) {
  718. rcu_read_unlock();
  719. ctx->current_state = state;
  720. return state;
  721. }
  722. }
  723. }
  724. rcu_read_unlock();
  725. return AUDIT_BUILD_CONTEXT;
  726. }
  727. /*
  728. * Given an audit_name check the inode hash table to see if they match.
  729. * Called holding the rcu read lock to protect the use of audit_inode_hash
  730. */
  731. static int audit_filter_inode_name(struct task_struct *tsk,
  732. struct audit_names *n,
  733. struct audit_context *ctx) {
  734. int h = audit_hash_ino((u32)n->ino);
  735. struct list_head *list = &audit_inode_hash[h];
  736. struct audit_entry *e;
  737. enum audit_state state;
  738. if (list_empty(list))
  739. return 0;
  740. list_for_each_entry_rcu(e, list, list) {
  741. if (audit_in_mask(&e->rule, ctx->major) &&
  742. audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
  743. ctx->current_state = state;
  744. return 1;
  745. }
  746. }
  747. return 0;
  748. }
  749. /* At syscall exit time, this filter is called if any audit_names have been
  750. * collected during syscall processing. We only check rules in sublists at hash
  751. * buckets applicable to the inode numbers in audit_names.
  752. * Regarding audit_state, same rules apply as for audit_filter_syscall().
  753. */
  754. void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
  755. {
  756. struct audit_names *n;
  757. if (audit_pid && tsk->tgid == audit_pid)
  758. return;
  759. rcu_read_lock();
  760. list_for_each_entry(n, &ctx->names_list, list) {
  761. if (audit_filter_inode_name(tsk, n, ctx))
  762. break;
  763. }
  764. rcu_read_unlock();
  765. }
  766. /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
  767. static inline struct audit_context *audit_take_context(struct task_struct *tsk,
  768. int return_valid,
  769. long return_code)
  770. {
  771. struct audit_context *context = tsk->audit_context;
  772. if (!context)
  773. return NULL;
  774. context->return_valid = return_valid;
  775. /*
  776. * we need to fix up the return code in the audit logs if the actual
  777. * return codes are later going to be fixed up by the arch specific
  778. * signal handlers
  779. *
  780. * This is actually a test for:
  781. * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
  782. * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
  783. *
  784. * but is faster than a bunch of ||
  785. */
  786. if (unlikely(return_code <= -ERESTARTSYS) &&
  787. (return_code >= -ERESTART_RESTARTBLOCK) &&
  788. (return_code != -ENOIOCTLCMD))
  789. context->return_code = -EINTR;
  790. else
  791. context->return_code = return_code;
  792. if (context->in_syscall && !context->dummy) {
  793. audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
  794. audit_filter_inodes(tsk, context);
  795. }
  796. tsk->audit_context = NULL;
  797. return context;
  798. }
  799. static inline void audit_proctitle_free(struct audit_context *context)
  800. {
  801. kfree(context->proctitle.value);
  802. context->proctitle.value = NULL;
  803. context->proctitle.len = 0;
  804. }
  805. static inline void audit_free_names(struct audit_context *context)
  806. {
  807. struct audit_names *n, *next;
  808. list_for_each_entry_safe(n, next, &context->names_list, list) {
  809. list_del(&n->list);
  810. if (n->name)
  811. putname(n->name);
  812. if (n->should_free)
  813. kfree(n);
  814. }
  815. context->name_count = 0;
  816. path_put(&context->pwd);
  817. context->pwd.dentry = NULL;
  818. context->pwd.mnt = NULL;
  819. }
  820. static inline void audit_free_aux(struct audit_context *context)
  821. {
  822. struct audit_aux_data *aux;
  823. while ((aux = context->aux)) {
  824. context->aux = aux->next;
  825. kfree(aux);
  826. }
  827. while ((aux = context->aux_pids)) {
  828. context->aux_pids = aux->next;
  829. kfree(aux);
  830. }
  831. }
  832. static inline struct audit_context *audit_alloc_context(enum audit_state state)
  833. {
  834. struct audit_context *context;
  835. context = kzalloc(sizeof(*context), GFP_KERNEL);
  836. if (!context)
  837. return NULL;
  838. context->state = state;
  839. context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
  840. INIT_LIST_HEAD(&context->killed_trees);
  841. INIT_LIST_HEAD(&context->names_list);
  842. return context;
  843. }
  844. /**
  845. * audit_alloc - allocate an audit context block for a task
  846. * @tsk: task
  847. *
  848. * Filter on the task information and allocate a per-task audit context
  849. * if necessary. Doing so turns on system call auditing for the
  850. * specified task. This is called from copy_process, so no lock is
  851. * needed.
  852. */
  853. int audit_alloc(struct task_struct *tsk)
  854. {
  855. struct audit_context *context;
  856. enum audit_state state;
  857. char *key = NULL;
  858. if (likely(!audit_ever_enabled))
  859. return 0; /* Return if not auditing. */
  860. state = audit_filter_task(tsk, &key);
  861. if (state == AUDIT_DISABLED) {
  862. clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
  863. return 0;
  864. }
  865. if (!(context = audit_alloc_context(state))) {
  866. kfree(key);
  867. audit_log_lost("out of memory in audit_alloc");
  868. return -ENOMEM;
  869. }
  870. context->filterkey = key;
  871. tsk->audit_context = context;
  872. set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
  873. return 0;
  874. }
  875. static inline void audit_free_context(struct audit_context *context)
  876. {
  877. audit_free_names(context);
  878. unroll_tree_refs(context, NULL, 0);
  879. free_tree_refs(context);
  880. audit_free_aux(context);
  881. kfree(context->filterkey);
  882. kfree(context->sockaddr);
  883. audit_proctitle_free(context);
  884. kfree(context);
  885. }
  886. static int audit_log_pid_context(struct audit_context *context, pid_t pid,
  887. kuid_t auid, kuid_t uid, unsigned int sessionid,
  888. u32 sid, char *comm)
  889. {
  890. struct audit_buffer *ab;
  891. char *ctx = NULL;
  892. u32 len;
  893. int rc = 0;
  894. ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
  895. if (!ab)
  896. return rc;
  897. audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
  898. from_kuid(&init_user_ns, auid),
  899. from_kuid(&init_user_ns, uid), sessionid);
  900. if (sid) {
  901. if (security_secid_to_secctx(sid, &ctx, &len)) {
  902. audit_log_format(ab, " obj=(none)");
  903. rc = 1;
  904. } else {
  905. audit_log_format(ab, " obj=%s", ctx);
  906. security_release_secctx(ctx, len);
  907. }
  908. }
  909. audit_log_format(ab, " ocomm=");
  910. audit_log_untrustedstring(ab, comm);
  911. audit_log_end(ab);
  912. return rc;
  913. }
  914. static void audit_log_execve_info(struct audit_context *context,
  915. struct audit_buffer **ab)
  916. {
  917. long len_max;
  918. long len_rem;
  919. long len_full;
  920. long len_buf;
  921. long len_abuf;
  922. long len_tmp;
  923. bool require_data;
  924. bool encode;
  925. unsigned int iter;
  926. unsigned int arg;
  927. char *buf_head;
  928. char *buf;
  929. const char __user *p = (const char __user *)current->mm->arg_start;
  930. /* NOTE: this buffer needs to be large enough to hold all the non-arg
  931. * data we put in the audit record for this argument (see the
  932. * code below) ... at this point in time 96 is plenty */
  933. char abuf[96];
  934. /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
  935. * current value of 7500 is not as important as the fact that it
  936. * is less than 8k, a setting of 7500 gives us plenty of wiggle
  937. * room if we go over a little bit in the logging below */
  938. WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
  939. len_max = MAX_EXECVE_AUDIT_LEN;
  940. /* scratch buffer to hold the userspace args */
  941. buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
  942. if (!buf_head) {
  943. audit_panic("out of memory for argv string");
  944. return;
  945. }
  946. buf = buf_head;
  947. audit_log_format(*ab, "argc=%d", context->execve.argc);
  948. len_rem = len_max;
  949. len_buf = 0;
  950. len_full = 0;
  951. require_data = true;
  952. encode = false;
  953. iter = 0;
  954. arg = 0;
  955. do {
  956. /* NOTE: we don't ever want to trust this value for anything
  957. * serious, but the audit record format insists we
  958. * provide an argument length for really long arguments,
  959. * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
  960. * to use strncpy_from_user() to obtain this value for
  961. * recording in the log, although we don't use it
  962. * anywhere here to avoid a double-fetch problem */
  963. if (len_full == 0)
  964. len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
  965. /* read more data from userspace */
  966. if (require_data) {
  967. /* can we make more room in the buffer? */
  968. if (buf != buf_head) {
  969. memmove(buf_head, buf, len_buf);
  970. buf = buf_head;
  971. }
  972. /* fetch as much as we can of the argument */
  973. len_tmp = strncpy_from_user(&buf_head[len_buf], p,
  974. len_max - len_buf);
  975. if (len_tmp == -EFAULT) {
  976. /* unable to copy from userspace */
  977. send_sig(SIGKILL, current, 0);
  978. goto out;
  979. } else if (len_tmp == (len_max - len_buf)) {
  980. /* buffer is not large enough */
  981. require_data = true;
  982. /* NOTE: if we are going to span multiple
  983. * buffers force the encoding so we stand
  984. * a chance at a sane len_full value and
  985. * consistent record encoding */
  986. encode = true;
  987. len_full = len_full * 2;
  988. p += len_tmp;
  989. } else {
  990. require_data = false;
  991. if (!encode)
  992. encode = audit_string_contains_control(
  993. buf, len_tmp);
  994. /* try to use a trusted value for len_full */
  995. if (len_full < len_max)
  996. len_full = (encode ?
  997. len_tmp * 2 : len_tmp);
  998. p += len_tmp + 1;
  999. }
  1000. len_buf += len_tmp;
  1001. buf_head[len_buf] = '\0';
  1002. /* length of the buffer in the audit record? */
  1003. len_abuf = (encode ? len_buf * 2 : len_buf + 2);
  1004. }
  1005. /* write as much as we can to the audit log */
  1006. if (len_buf > 0) {
  1007. /* NOTE: some magic numbers here - basically if we
  1008. * can't fit a reasonable amount of data into the
  1009. * existing audit buffer, flush it and start with
  1010. * a new buffer */
  1011. if ((sizeof(abuf) + 8) > len_rem) {
  1012. len_rem = len_max;
  1013. audit_log_end(*ab);
  1014. *ab = audit_log_start(context,
  1015. GFP_KERNEL, AUDIT_EXECVE);
  1016. if (!*ab)
  1017. goto out;
  1018. }
  1019. /* create the non-arg portion of the arg record */
  1020. len_tmp = 0;
  1021. if (require_data || (iter > 0) ||
  1022. ((len_abuf + sizeof(abuf)) > len_rem)) {
  1023. if (iter == 0) {
  1024. len_tmp += snprintf(&abuf[len_tmp],
  1025. sizeof(abuf) - len_tmp,
  1026. " a%d_len=%lu",
  1027. arg, len_full);
  1028. }
  1029. len_tmp += snprintf(&abuf[len_tmp],
  1030. sizeof(abuf) - len_tmp,
  1031. " a%d[%d]=", arg, iter++);
  1032. } else
  1033. len_tmp += snprintf(&abuf[len_tmp],
  1034. sizeof(abuf) - len_tmp,
  1035. " a%d=", arg);
  1036. WARN_ON(len_tmp >= sizeof(abuf));
  1037. abuf[sizeof(abuf) - 1] = '\0';
  1038. /* log the arg in the audit record */
  1039. audit_log_format(*ab, "%s", abuf);
  1040. len_rem -= len_tmp;
  1041. len_tmp = len_buf;
  1042. if (encode) {
  1043. if (len_abuf > len_rem)
  1044. len_tmp = len_rem / 2; /* encoding */
  1045. audit_log_n_hex(*ab, buf, len_tmp);
  1046. len_rem -= len_tmp * 2;
  1047. len_abuf -= len_tmp * 2;
  1048. } else {
  1049. if (len_abuf > len_rem)
  1050. len_tmp = len_rem - 2; /* quotes */
  1051. audit_log_n_string(*ab, buf, len_tmp);
  1052. len_rem -= len_tmp + 2;
  1053. /* don't subtract the "2" because we still need
  1054. * to add quotes to the remaining string */
  1055. len_abuf -= len_tmp;
  1056. }
  1057. len_buf -= len_tmp;
  1058. buf += len_tmp;
  1059. }
  1060. /* ready to move to the next argument? */
  1061. if ((len_buf == 0) && !require_data) {
  1062. arg++;
  1063. iter = 0;
  1064. len_full = 0;
  1065. require_data = true;
  1066. encode = false;
  1067. }
  1068. } while (arg < context->execve.argc);
  1069. /* NOTE: the caller handles the final audit_log_end() call */
  1070. out:
  1071. kfree(buf_head);
  1072. }
  1073. static void show_special(struct audit_context *context, int *call_panic)
  1074. {
  1075. struct audit_buffer *ab;
  1076. int i;
  1077. ab = audit_log_start(context, GFP_KERNEL, context->type);
  1078. if (!ab)
  1079. return;
  1080. switch (context->type) {
  1081. case AUDIT_SOCKETCALL: {
  1082. int nargs = context->socketcall.nargs;
  1083. audit_log_format(ab, "nargs=%d", nargs);
  1084. for (i = 0; i < nargs; i++)
  1085. audit_log_format(ab, " a%d=%lx", i,
  1086. context->socketcall.args[i]);
  1087. break; }
  1088. case AUDIT_IPC: {
  1089. u32 osid = context->ipc.osid;
  1090. audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
  1091. from_kuid(&init_user_ns, context->ipc.uid),
  1092. from_kgid(&init_user_ns, context->ipc.gid),
  1093. context->ipc.mode);
  1094. if (osid) {
  1095. char *ctx = NULL;
  1096. u32 len;
  1097. if (security_secid_to_secctx(osid, &ctx, &len)) {
  1098. audit_log_format(ab, " osid=%u", osid);
  1099. *call_panic = 1;
  1100. } else {
  1101. audit_log_format(ab, " obj=%s", ctx);
  1102. security_release_secctx(ctx, len);
  1103. }
  1104. }
  1105. if (context->ipc.has_perm) {
  1106. audit_log_end(ab);
  1107. ab = audit_log_start(context, GFP_KERNEL,
  1108. AUDIT_IPC_SET_PERM);
  1109. if (unlikely(!ab))
  1110. return;
  1111. audit_log_format(ab,
  1112. "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
  1113. context->ipc.qbytes,
  1114. context->ipc.perm_uid,
  1115. context->ipc.perm_gid,
  1116. context->ipc.perm_mode);
  1117. }
  1118. break; }
  1119. case AUDIT_MQ_OPEN: {
  1120. audit_log_format(ab,
  1121. "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
  1122. "mq_msgsize=%ld mq_curmsgs=%ld",
  1123. context->mq_open.oflag, context->mq_open.mode,
  1124. context->mq_open.attr.mq_flags,
  1125. context->mq_open.attr.mq_maxmsg,
  1126. context->mq_open.attr.mq_msgsize,
  1127. context->mq_open.attr.mq_curmsgs);
  1128. break; }
  1129. case AUDIT_MQ_SENDRECV: {
  1130. audit_log_format(ab,
  1131. "mqdes=%d msg_len=%zd msg_prio=%u "
  1132. "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
  1133. context->mq_sendrecv.mqdes,
  1134. context->mq_sendrecv.msg_len,
  1135. context->mq_sendrecv.msg_prio,
  1136. context->mq_sendrecv.abs_timeout.tv_sec,
  1137. context->mq_sendrecv.abs_timeout.tv_nsec);
  1138. break; }
  1139. case AUDIT_MQ_NOTIFY: {
  1140. audit_log_format(ab, "mqdes=%d sigev_signo=%d",
  1141. context->mq_notify.mqdes,
  1142. context->mq_notify.sigev_signo);
  1143. break; }
  1144. case AUDIT_MQ_GETSETATTR: {
  1145. struct mq_attr *attr = &context->mq_getsetattr.mqstat;
  1146. audit_log_format(ab,
  1147. "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
  1148. "mq_curmsgs=%ld ",
  1149. context->mq_getsetattr.mqdes,
  1150. attr->mq_flags, attr->mq_maxmsg,
  1151. attr->mq_msgsize, attr->mq_curmsgs);
  1152. break; }
  1153. case AUDIT_CAPSET: {
  1154. audit_log_format(ab, "pid=%d", context->capset.pid);
  1155. audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
  1156. audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
  1157. audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
  1158. break; }
  1159. case AUDIT_MMAP: {
  1160. audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
  1161. context->mmap.flags);
  1162. break; }
  1163. case AUDIT_EXECVE: {
  1164. audit_log_execve_info(context, &ab);
  1165. break; }
  1166. }
  1167. audit_log_end(ab);
  1168. }
  1169. static inline int audit_proctitle_rtrim(char *proctitle, int len)
  1170. {
  1171. char *end = proctitle + len - 1;
  1172. while (end > proctitle && !isprint(*end))
  1173. end--;
  1174. /* catch the case where proctitle is only 1 non-print character */
  1175. len = end - proctitle + 1;
  1176. len -= isprint(proctitle[len-1]) == 0;
  1177. return len;
  1178. }
  1179. static void audit_log_proctitle(struct task_struct *tsk,
  1180. struct audit_context *context)
  1181. {
  1182. int res;
  1183. char *buf;
  1184. char *msg = "(null)";
  1185. int len = strlen(msg);
  1186. struct audit_buffer *ab;
  1187. ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
  1188. if (!ab)
  1189. return; /* audit_panic or being filtered */
  1190. audit_log_format(ab, "proctitle=");
  1191. /* Not cached */
  1192. if (!context->proctitle.value) {
  1193. buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
  1194. if (!buf)
  1195. goto out;
  1196. /* Historically called this from procfs naming */
  1197. res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
  1198. if (res == 0) {
  1199. kfree(buf);
  1200. goto out;
  1201. }
  1202. res = audit_proctitle_rtrim(buf, res);
  1203. if (res == 0) {
  1204. kfree(buf);
  1205. goto out;
  1206. }
  1207. context->proctitle.value = buf;
  1208. context->proctitle.len = res;
  1209. }
  1210. msg = context->proctitle.value;
  1211. len = context->proctitle.len;
  1212. out:
  1213. audit_log_n_untrustedstring(ab, msg, len);
  1214. audit_log_end(ab);
  1215. }
  1216. static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
  1217. {
  1218. int i, call_panic = 0;
  1219. struct audit_buffer *ab;
  1220. struct audit_aux_data *aux;
  1221. struct audit_names *n;
  1222. /* tsk == current */
  1223. context->personality = tsk->personality;
  1224. ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
  1225. if (!ab)
  1226. return; /* audit_panic has been called */
  1227. audit_log_format(ab, "arch=%x syscall=%d",
  1228. context->arch, context->major);
  1229. if (context->personality != PER_LINUX)
  1230. audit_log_format(ab, " per=%lx", context->personality);
  1231. if (context->return_valid)
  1232. audit_log_format(ab, " success=%s exit=%ld",
  1233. (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
  1234. context->return_code);
  1235. audit_log_format(ab,
  1236. " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
  1237. context->argv[0],
  1238. context->argv[1],
  1239. context->argv[2],
  1240. context->argv[3],
  1241. context->name_count);
  1242. audit_log_task_info(ab, tsk);
  1243. audit_log_key(ab, context->filterkey);
  1244. audit_log_end(ab);
  1245. for (aux = context->aux; aux; aux = aux->next) {
  1246. ab = audit_log_start(context, GFP_KERNEL, aux->type);
  1247. if (!ab)
  1248. continue; /* audit_panic has been called */
  1249. switch (aux->type) {
  1250. case AUDIT_BPRM_FCAPS: {
  1251. struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
  1252. audit_log_format(ab, "fver=%x", axs->fcap_ver);
  1253. audit_log_cap(ab, "fp", &axs->fcap.permitted);
  1254. audit_log_cap(ab, "fi", &axs->fcap.inheritable);
  1255. audit_log_format(ab, " fe=%d", axs->fcap.fE);
  1256. audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
  1257. audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
  1258. audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
  1259. audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
  1260. audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
  1261. audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
  1262. break; }
  1263. }
  1264. audit_log_end(ab);
  1265. }
  1266. if (context->type)
  1267. show_special(context, &call_panic);
  1268. if (context->fds[0] >= 0) {
  1269. ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
  1270. if (ab) {
  1271. audit_log_format(ab, "fd0=%d fd1=%d",
  1272. context->fds[0], context->fds[1]);
  1273. audit_log_end(ab);
  1274. }
  1275. }
  1276. if (context->sockaddr_len) {
  1277. ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
  1278. if (ab) {
  1279. audit_log_format(ab, "saddr=");
  1280. audit_log_n_hex(ab, (void *)context->sockaddr,
  1281. context->sockaddr_len);
  1282. audit_log_end(ab);
  1283. }
  1284. }
  1285. for (aux = context->aux_pids; aux; aux = aux->next) {
  1286. struct audit_aux_data_pids *axs = (void *)aux;
  1287. for (i = 0; i < axs->pid_count; i++)
  1288. if (audit_log_pid_context(context, axs->target_pid[i],
  1289. axs->target_auid[i],
  1290. axs->target_uid[i],
  1291. axs->target_sessionid[i],
  1292. axs->target_sid[i],
  1293. axs->target_comm[i]))
  1294. call_panic = 1;
  1295. }
  1296. if (context->target_pid &&
  1297. audit_log_pid_context(context, context->target_pid,
  1298. context->target_auid, context->target_uid,
  1299. context->target_sessionid,
  1300. context->target_sid, context->target_comm))
  1301. call_panic = 1;
  1302. if (context->pwd.dentry && context->pwd.mnt) {
  1303. ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
  1304. if (ab) {
  1305. audit_log_d_path(ab, " cwd=", &context->pwd);
  1306. audit_log_end(ab);
  1307. }
  1308. }
  1309. i = 0;
  1310. list_for_each_entry(n, &context->names_list, list) {
  1311. if (n->hidden)
  1312. continue;
  1313. audit_log_name(context, n, NULL, i++, &call_panic);
  1314. }
  1315. audit_log_proctitle(tsk, context);
  1316. /* Send end of event record to help user space know we are finished */
  1317. ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
  1318. if (ab)
  1319. audit_log_end(ab);
  1320. if (call_panic)
  1321. audit_panic("error converting sid to string");
  1322. }
  1323. /**
  1324. * audit_free - free a per-task audit context
  1325. * @tsk: task whose audit context block to free
  1326. *
  1327. * Called from copy_process and do_exit
  1328. */
  1329. void __audit_free(struct task_struct *tsk)
  1330. {
  1331. struct audit_context *context;
  1332. context = audit_take_context(tsk, 0, 0);
  1333. if (!context)
  1334. return;
  1335. /* Check for system calls that do not go through the exit
  1336. * function (e.g., exit_group), then free context block.
  1337. * We use GFP_ATOMIC here because we might be doing this
  1338. * in the context of the idle thread */
  1339. /* that can happen only if we are called from do_exit() */
  1340. if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
  1341. audit_log_exit(context, tsk);
  1342. if (!list_empty(&context->killed_trees))
  1343. audit_kill_trees(&context->killed_trees);
  1344. audit_free_context(context);
  1345. }
  1346. /**
  1347. * audit_syscall_entry - fill in an audit record at syscall entry
  1348. * @major: major syscall type (function)
  1349. * @a1: additional syscall register 1
  1350. * @a2: additional syscall register 2
  1351. * @a3: additional syscall register 3
  1352. * @a4: additional syscall register 4
  1353. *
  1354. * Fill in audit context at syscall entry. This only happens if the
  1355. * audit context was created when the task was created and the state or
  1356. * filters demand the audit context be built. If the state from the
  1357. * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
  1358. * then the record will be written at syscall exit time (otherwise, it
  1359. * will only be written if another part of the kernel requests that it
  1360. * be written).
  1361. */
  1362. void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
  1363. unsigned long a3, unsigned long a4)
  1364. {
  1365. struct task_struct *tsk = current;
  1366. struct audit_context *context = tsk->audit_context;
  1367. enum audit_state state;
  1368. if (!context)
  1369. return;
  1370. BUG_ON(context->in_syscall || context->name_count);
  1371. if (!audit_enabled)
  1372. return;
  1373. context->arch = syscall_get_arch();
  1374. context->major = major;
  1375. context->argv[0] = a1;
  1376. context->argv[1] = a2;
  1377. context->argv[2] = a3;
  1378. context->argv[3] = a4;
  1379. state = context->state;
  1380. context->dummy = !audit_n_rules;
  1381. if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
  1382. context->prio = 0;
  1383. state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
  1384. }
  1385. if (state == AUDIT_DISABLED)
  1386. return;
  1387. context->serial = 0;
  1388. context->ctime = CURRENT_TIME;
  1389. context->in_syscall = 1;
  1390. context->current_state = state;
  1391. context->ppid = 0;
  1392. }
  1393. /**
  1394. * audit_syscall_exit - deallocate audit context after a system call
  1395. * @success: success value of the syscall
  1396. * @return_code: return value of the syscall
  1397. *
  1398. * Tear down after system call. If the audit context has been marked as
  1399. * auditable (either because of the AUDIT_RECORD_CONTEXT state from
  1400. * filtering, or because some other part of the kernel wrote an audit
  1401. * message), then write out the syscall information. In call cases,
  1402. * free the names stored from getname().
  1403. */
  1404. void __audit_syscall_exit(int success, long return_code)
  1405. {
  1406. struct task_struct *tsk = current;
  1407. struct audit_context *context;
  1408. if (success)
  1409. success = AUDITSC_SUCCESS;
  1410. else
  1411. success = AUDITSC_FAILURE;
  1412. context = audit_take_context(tsk, success, return_code);
  1413. if (!context)
  1414. return;
  1415. if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
  1416. audit_log_exit(context, tsk);
  1417. context->in_syscall = 0;
  1418. context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
  1419. if (!list_empty(&context->killed_trees))
  1420. audit_kill_trees(&context->killed_trees);
  1421. audit_free_names(context);
  1422. unroll_tree_refs(context, NULL, 0);
  1423. audit_free_aux(context);
  1424. context->aux = NULL;
  1425. context->aux_pids = NULL;
  1426. context->target_pid = 0;
  1427. context->target_sid = 0;
  1428. context->sockaddr_len = 0;
  1429. context->type = 0;
  1430. context->fds[0] = -1;
  1431. if (context->state != AUDIT_RECORD_CONTEXT) {
  1432. kfree(context->filterkey);
  1433. context->filterkey = NULL;
  1434. }
  1435. tsk->audit_context = context;
  1436. }
  1437. static inline void handle_one(const struct inode *inode)
  1438. {
  1439. #ifdef CONFIG_AUDIT_TREE
  1440. struct audit_context *context;
  1441. struct audit_tree_refs *p;
  1442. struct audit_chunk *chunk;
  1443. int count;
  1444. if (likely(hlist_empty(&inode->i_fsnotify_marks)))
  1445. return;
  1446. context = current->audit_context;
  1447. p = context->trees;
  1448. count = context->tree_count;
  1449. rcu_read_lock();
  1450. chunk = audit_tree_lookup(inode);
  1451. rcu_read_unlock();
  1452. if (!chunk)
  1453. return;
  1454. if (likely(put_tree_ref(context, chunk)))
  1455. return;
  1456. if (unlikely(!grow_tree_refs(context))) {
  1457. pr_warn("out of memory, audit has lost a tree reference\n");
  1458. audit_set_auditable(context);
  1459. audit_put_chunk(chunk);
  1460. unroll_tree_refs(context, p, count);
  1461. return;
  1462. }
  1463. put_tree_ref(context, chunk);
  1464. #endif
  1465. }
  1466. static void handle_path(const struct dentry *dentry)
  1467. {
  1468. #ifdef CONFIG_AUDIT_TREE
  1469. struct audit_context *context;
  1470. struct audit_tree_refs *p;
  1471. const struct dentry *d, *parent;
  1472. struct audit_chunk *drop;
  1473. unsigned long seq;
  1474. int count;
  1475. context = current->audit_context;
  1476. p = context->trees;
  1477. count = context->tree_count;
  1478. retry:
  1479. drop = NULL;
  1480. d = dentry;
  1481. rcu_read_lock();
  1482. seq = read_seqbegin(&rename_lock);
  1483. for(;;) {
  1484. struct inode *inode = d_backing_inode(d);
  1485. if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
  1486. struct audit_chunk *chunk;
  1487. chunk = audit_tree_lookup(inode);
  1488. if (chunk) {
  1489. if (unlikely(!put_tree_ref(context, chunk))) {
  1490. drop = chunk;
  1491. break;
  1492. }
  1493. }
  1494. }
  1495. parent = d->d_parent;
  1496. if (parent == d)
  1497. break;
  1498. d = parent;
  1499. }
  1500. if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
  1501. rcu_read_unlock();
  1502. if (!drop) {
  1503. /* just a race with rename */
  1504. unroll_tree_refs(context, p, count);
  1505. goto retry;
  1506. }
  1507. audit_put_chunk(drop);
  1508. if (grow_tree_refs(context)) {
  1509. /* OK, got more space */
  1510. unroll_tree_refs(context, p, count);
  1511. goto retry;
  1512. }
  1513. /* too bad */
  1514. pr_warn("out of memory, audit has lost a tree reference\n");
  1515. unroll_tree_refs(context, p, count);
  1516. audit_set_auditable(context);
  1517. return;
  1518. }
  1519. rcu_read_unlock();
  1520. #endif
  1521. }
  1522. static struct audit_names *audit_alloc_name(struct audit_context *context,
  1523. unsigned char type)
  1524. {
  1525. struct audit_names *aname;
  1526. if (context->name_count < AUDIT_NAMES) {
  1527. aname = &context->preallocated_names[context->name_count];
  1528. memset(aname, 0, sizeof(*aname));
  1529. } else {
  1530. aname = kzalloc(sizeof(*aname), GFP_NOFS);
  1531. if (!aname)
  1532. return NULL;
  1533. aname->should_free = true;
  1534. }
  1535. aname->ino = AUDIT_INO_UNSET;
  1536. aname->type = type;
  1537. list_add_tail(&aname->list, &context->names_list);
  1538. context->name_count++;
  1539. return aname;
  1540. }
  1541. /**
  1542. * audit_reusename - fill out filename with info from existing entry
  1543. * @uptr: userland ptr to pathname
  1544. *
  1545. * Search the audit_names list for the current audit context. If there is an
  1546. * existing entry with a matching "uptr" then return the filename
  1547. * associated with that audit_name. If not, return NULL.
  1548. */
  1549. struct filename *
  1550. __audit_reusename(const __user char *uptr)
  1551. {
  1552. struct audit_context *context = current->audit_context;
  1553. struct audit_names *n;
  1554. list_for_each_entry(n, &context->names_list, list) {
  1555. if (!n->name)
  1556. continue;
  1557. if (n->name->uptr == uptr) {
  1558. n->name->refcnt++;
  1559. return n->name;
  1560. }
  1561. }
  1562. return NULL;
  1563. }
  1564. /**
  1565. * audit_getname - add a name to the list
  1566. * @name: name to add
  1567. *
  1568. * Add a name to the list of audit names for this context.
  1569. * Called from fs/namei.c:getname().
  1570. */
  1571. void __audit_getname(struct filename *name)
  1572. {
  1573. struct audit_context *context = current->audit_context;
  1574. struct audit_names *n;
  1575. if (!context->in_syscall)
  1576. return;
  1577. n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
  1578. if (!n)
  1579. return;
  1580. n->name = name;
  1581. n->name_len = AUDIT_NAME_FULL;
  1582. name->aname = n;
  1583. name->refcnt++;
  1584. if (!context->pwd.dentry)
  1585. get_fs_pwd(current->fs, &context->pwd);
  1586. }
  1587. /**
  1588. * __audit_inode - store the inode and device from a lookup
  1589. * @name: name being audited
  1590. * @dentry: dentry being audited
  1591. * @flags: attributes for this particular entry
  1592. */
  1593. void __audit_inode(struct filename *name, const struct dentry *dentry,
  1594. unsigned int flags)
  1595. {
  1596. struct audit_context *context = current->audit_context;
  1597. const struct inode *inode = d_backing_inode(dentry);
  1598. struct audit_names *n;
  1599. bool parent = flags & AUDIT_INODE_PARENT;
  1600. if (!context->in_syscall)
  1601. return;
  1602. if (!name)
  1603. goto out_alloc;
  1604. /*
  1605. * If we have a pointer to an audit_names entry already, then we can
  1606. * just use it directly if the type is correct.
  1607. */
  1608. n = name->aname;
  1609. if (n) {
  1610. if (parent) {
  1611. if (n->type == AUDIT_TYPE_PARENT ||
  1612. n->type == AUDIT_TYPE_UNKNOWN)
  1613. goto out;
  1614. } else {
  1615. if (n->type != AUDIT_TYPE_PARENT)
  1616. goto out;
  1617. }
  1618. }
  1619. list_for_each_entry_reverse(n, &context->names_list, list) {
  1620. if (n->ino) {
  1621. /* valid inode number, use that for the comparison */
  1622. if (n->ino != inode->i_ino ||
  1623. n->dev != inode->i_sb->s_dev)
  1624. continue;
  1625. } else if (n->name) {
  1626. /* inode number has not been set, check the name */
  1627. if (strcmp(n->name->name, name->name))
  1628. continue;
  1629. } else
  1630. /* no inode and no name (?!) ... this is odd ... */
  1631. continue;
  1632. /* match the correct record type */
  1633. if (parent) {
  1634. if (n->type == AUDIT_TYPE_PARENT ||
  1635. n->type == AUDIT_TYPE_UNKNOWN)
  1636. goto out;
  1637. } else {
  1638. if (n->type != AUDIT_TYPE_PARENT)
  1639. goto out;
  1640. }
  1641. }
  1642. out_alloc:
  1643. /* unable to find an entry with both a matching name and type */
  1644. n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
  1645. if (!n)
  1646. return;
  1647. if (name) {
  1648. n->name = name;
  1649. name->refcnt++;
  1650. }
  1651. out:
  1652. if (parent) {
  1653. n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
  1654. n->type = AUDIT_TYPE_PARENT;
  1655. if (flags & AUDIT_INODE_HIDDEN)
  1656. n->hidden = true;
  1657. } else {
  1658. n->name_len = AUDIT_NAME_FULL;
  1659. n->type = AUDIT_TYPE_NORMAL;
  1660. }
  1661. handle_path(dentry);
  1662. audit_copy_inode(n, dentry, inode);
  1663. }
  1664. void __audit_file(const struct file *file)
  1665. {
  1666. __audit_inode(NULL, file->f_path.dentry, 0);
  1667. }
  1668. /**
  1669. * __audit_inode_child - collect inode info for created/removed objects
  1670. * @parent: inode of dentry parent
  1671. * @dentry: dentry being audited
  1672. * @type: AUDIT_TYPE_* value that we're looking for
  1673. *
  1674. * For syscalls that create or remove filesystem objects, audit_inode
  1675. * can only collect information for the filesystem object's parent.
  1676. * This call updates the audit context with the child's information.
  1677. * Syscalls that create a new filesystem object must be hooked after
  1678. * the object is created. Syscalls that remove a filesystem object
  1679. * must be hooked prior, in order to capture the target inode during
  1680. * unsuccessful attempts.
  1681. */
  1682. void __audit_inode_child(const struct inode *parent,
  1683. const struct dentry *dentry,
  1684. const unsigned char type)
  1685. {
  1686. struct audit_context *context = current->audit_context;
  1687. const struct inode *inode = d_backing_inode(dentry);
  1688. const char *dname = dentry->d_name.name;
  1689. struct audit_names *n, *found_parent = NULL, *found_child = NULL;
  1690. if (!context->in_syscall)
  1691. return;
  1692. if (inode)
  1693. handle_one(inode);
  1694. /* look for a parent entry first */
  1695. list_for_each_entry(n, &context->names_list, list) {
  1696. if (!n->name ||
  1697. (n->type != AUDIT_TYPE_PARENT &&
  1698. n->type != AUDIT_TYPE_UNKNOWN))
  1699. continue;
  1700. if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
  1701. !audit_compare_dname_path(dname,
  1702. n->name->name, n->name_len)) {
  1703. if (n->type == AUDIT_TYPE_UNKNOWN)
  1704. n->type = AUDIT_TYPE_PARENT;
  1705. found_parent = n;
  1706. break;
  1707. }
  1708. }
  1709. /* is there a matching child entry? */
  1710. list_for_each_entry(n, &context->names_list, list) {
  1711. /* can only match entries that have a name */
  1712. if (!n->name ||
  1713. (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
  1714. continue;
  1715. if (!strcmp(dname, n->name->name) ||
  1716. !audit_compare_dname_path(dname, n->name->name,
  1717. found_parent ?
  1718. found_parent->name_len :
  1719. AUDIT_NAME_FULL)) {
  1720. if (n->type == AUDIT_TYPE_UNKNOWN)
  1721. n->type = type;
  1722. found_child = n;
  1723. break;
  1724. }
  1725. }
  1726. if (!found_parent) {
  1727. /* create a new, "anonymous" parent record */
  1728. n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
  1729. if (!n)
  1730. return;
  1731. audit_copy_inode(n, NULL, parent);
  1732. }
  1733. if (!found_child) {
  1734. found_child = audit_alloc_name(context, type);
  1735. if (!found_child)
  1736. return;
  1737. /* Re-use the name belonging to the slot for a matching parent
  1738. * directory. All names for this context are relinquished in
  1739. * audit_free_names() */
  1740. if (found_parent) {
  1741. found_child->name = found_parent->name;
  1742. found_child->name_len = AUDIT_NAME_FULL;
  1743. found_child->name->refcnt++;
  1744. }
  1745. }
  1746. if (inode)
  1747. audit_copy_inode(found_child, dentry, inode);
  1748. else
  1749. found_child->ino = AUDIT_INO_UNSET;
  1750. }
  1751. EXPORT_SYMBOL_GPL(__audit_inode_child);
  1752. /**
  1753. * auditsc_get_stamp - get local copies of audit_context values
  1754. * @ctx: audit_context for the task
  1755. * @t: timespec to store time recorded in the audit_context
  1756. * @serial: serial value that is recorded in the audit_context
  1757. *
  1758. * Also sets the context as auditable.
  1759. */
  1760. int auditsc_get_stamp(struct audit_context *ctx,
  1761. struct timespec *t, unsigned int *serial)
  1762. {
  1763. if (!ctx->in_syscall)
  1764. return 0;
  1765. if (!ctx->serial)
  1766. ctx->serial = audit_serial();
  1767. t->tv_sec = ctx->ctime.tv_sec;
  1768. t->tv_nsec = ctx->ctime.tv_nsec;
  1769. *serial = ctx->serial;
  1770. if (!ctx->prio) {
  1771. ctx->prio = 1;
  1772. ctx->current_state = AUDIT_RECORD_CONTEXT;
  1773. }
  1774. return 1;
  1775. }
  1776. /* global counter which is incremented every time something logs in */
  1777. static atomic_t session_id = ATOMIC_INIT(0);
  1778. static int audit_set_loginuid_perm(kuid_t loginuid)
  1779. {
  1780. /* if we are unset, we don't need privs */
  1781. if (!audit_loginuid_set(current))
  1782. return 0;
  1783. /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
  1784. if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
  1785. return -EPERM;
  1786. /* it is set, you need permission */
  1787. if (!capable(CAP_AUDIT_CONTROL))
  1788. return -EPERM;
  1789. /* reject if this is not an unset and we don't allow that */
  1790. if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
  1791. return -EPERM;
  1792. return 0;
  1793. }
  1794. static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
  1795. unsigned int oldsessionid, unsigned int sessionid,
  1796. int rc)
  1797. {
  1798. struct audit_buffer *ab;
  1799. uid_t uid, oldloginuid, loginuid;
  1800. struct tty_struct *tty;
  1801. if (!audit_enabled)
  1802. return;
  1803. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
  1804. if (!ab)
  1805. return;
  1806. uid = from_kuid(&init_user_ns, task_uid(current));
  1807. oldloginuid = from_kuid(&init_user_ns, koldloginuid);
  1808. loginuid = from_kuid(&init_user_ns, kloginuid),
  1809. tty = audit_get_tty(current);
  1810. audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
  1811. audit_log_task_context(ab);
  1812. audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
  1813. oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
  1814. oldsessionid, sessionid, !rc);
  1815. audit_put_tty(tty);
  1816. audit_log_end(ab);
  1817. }
  1818. /**
  1819. * audit_set_loginuid - set current task's audit_context loginuid
  1820. * @loginuid: loginuid value
  1821. *
  1822. * Returns 0.
  1823. *
  1824. * Called (set) from fs/proc/base.c::proc_loginuid_write().
  1825. */
  1826. int audit_set_loginuid(kuid_t loginuid)
  1827. {
  1828. struct task_struct *task = current;
  1829. unsigned int oldsessionid, sessionid = (unsigned int)-1;
  1830. kuid_t oldloginuid;
  1831. int rc;
  1832. oldloginuid = audit_get_loginuid(current);
  1833. oldsessionid = audit_get_sessionid(current);
  1834. rc = audit_set_loginuid_perm(loginuid);
  1835. if (rc)
  1836. goto out;
  1837. /* are we setting or clearing? */
  1838. if (uid_valid(loginuid))
  1839. sessionid = (unsigned int)atomic_inc_return(&session_id);
  1840. task->sessionid = sessionid;
  1841. task->loginuid = loginuid;
  1842. out:
  1843. audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
  1844. return rc;
  1845. }
  1846. /**
  1847. * __audit_mq_open - record audit data for a POSIX MQ open
  1848. * @oflag: open flag
  1849. * @mode: mode bits
  1850. * @attr: queue attributes
  1851. *
  1852. */
  1853. void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
  1854. {
  1855. struct audit_context *context = current->audit_context;
  1856. if (attr)
  1857. memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
  1858. else
  1859. memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
  1860. context->mq_open.oflag = oflag;
  1861. context->mq_open.mode = mode;
  1862. context->type = AUDIT_MQ_OPEN;
  1863. }
  1864. /**
  1865. * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
  1866. * @mqdes: MQ descriptor
  1867. * @msg_len: Message length
  1868. * @msg_prio: Message priority
  1869. * @abs_timeout: Message timeout in absolute time
  1870. *
  1871. */
  1872. void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
  1873. const struct timespec *abs_timeout)
  1874. {
  1875. struct audit_context *context = current->audit_context;
  1876. struct timespec *p = &context->mq_sendrecv.abs_timeout;
  1877. if (abs_timeout)
  1878. memcpy(p, abs_timeout, sizeof(struct timespec));
  1879. else
  1880. memset(p, 0, sizeof(struct timespec));
  1881. context->mq_sendrecv.mqdes = mqdes;
  1882. context->mq_sendrecv.msg_len = msg_len;
  1883. context->mq_sendrecv.msg_prio = msg_prio;
  1884. context->type = AUDIT_MQ_SENDRECV;
  1885. }
  1886. /**
  1887. * __audit_mq_notify - record audit data for a POSIX MQ notify
  1888. * @mqdes: MQ descriptor
  1889. * @notification: Notification event
  1890. *
  1891. */
  1892. void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
  1893. {
  1894. struct audit_context *context = current->audit_context;
  1895. if (notification)
  1896. context->mq_notify.sigev_signo = notification->sigev_signo;
  1897. else
  1898. context->mq_notify.sigev_signo = 0;
  1899. context->mq_notify.mqdes = mqdes;
  1900. context->type = AUDIT_MQ_NOTIFY;
  1901. }
  1902. /**
  1903. * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
  1904. * @mqdes: MQ descriptor
  1905. * @mqstat: MQ flags
  1906. *
  1907. */
  1908. void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
  1909. {
  1910. struct audit_context *context = current->audit_context;
  1911. context->mq_getsetattr.mqdes = mqdes;
  1912. context->mq_getsetattr.mqstat = *mqstat;
  1913. context->type = AUDIT_MQ_GETSETATTR;
  1914. }
  1915. /**
  1916. * audit_ipc_obj - record audit data for ipc object
  1917. * @ipcp: ipc permissions
  1918. *
  1919. */
  1920. void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
  1921. {
  1922. struct audit_context *context = current->audit_context;
  1923. context->ipc.uid = ipcp->uid;
  1924. context->ipc.gid = ipcp->gid;
  1925. context->ipc.mode = ipcp->mode;
  1926. context->ipc.has_perm = 0;
  1927. security_ipc_getsecid(ipcp, &context->ipc.osid);
  1928. context->type = AUDIT_IPC;
  1929. }
  1930. /**
  1931. * audit_ipc_set_perm - record audit data for new ipc permissions
  1932. * @qbytes: msgq bytes
  1933. * @uid: msgq user id
  1934. * @gid: msgq group id
  1935. * @mode: msgq mode (permissions)
  1936. *
  1937. * Called only after audit_ipc_obj().
  1938. */
  1939. void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
  1940. {
  1941. struct audit_context *context = current->audit_context;
  1942. context->ipc.qbytes = qbytes;
  1943. context->ipc.perm_uid = uid;
  1944. context->ipc.perm_gid = gid;
  1945. context->ipc.perm_mode = mode;
  1946. context->ipc.has_perm = 1;
  1947. }
  1948. void __audit_bprm(struct linux_binprm *bprm)
  1949. {
  1950. struct audit_context *context = current->audit_context;
  1951. context->type = AUDIT_EXECVE;
  1952. context->execve.argc = bprm->argc;
  1953. }
  1954. /**
  1955. * audit_socketcall - record audit data for sys_socketcall
  1956. * @nargs: number of args, which should not be more than AUDITSC_ARGS.
  1957. * @args: args array
  1958. *
  1959. */
  1960. int __audit_socketcall(int nargs, unsigned long *args)
  1961. {
  1962. struct audit_context *context = current->audit_context;
  1963. if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
  1964. return -EINVAL;
  1965. context->type = AUDIT_SOCKETCALL;
  1966. context->socketcall.nargs = nargs;
  1967. memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
  1968. return 0;
  1969. }
  1970. /**
  1971. * __audit_fd_pair - record audit data for pipe and socketpair
  1972. * @fd1: the first file descriptor
  1973. * @fd2: the second file descriptor
  1974. *
  1975. */
  1976. void __audit_fd_pair(int fd1, int fd2)
  1977. {
  1978. struct audit_context *context = current->audit_context;
  1979. context->fds[0] = fd1;
  1980. context->fds[1] = fd2;
  1981. }
  1982. /**
  1983. * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
  1984. * @len: data length in user space
  1985. * @a: data address in kernel space
  1986. *
  1987. * Returns 0 for success or NULL context or < 0 on error.
  1988. */
  1989. int __audit_sockaddr(int len, void *a)
  1990. {
  1991. struct audit_context *context = current->audit_context;
  1992. if (!context->sockaddr) {
  1993. void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
  1994. if (!p)
  1995. return -ENOMEM;
  1996. context->sockaddr = p;
  1997. }
  1998. context->sockaddr_len = len;
  1999. memcpy(context->sockaddr, a, len);
  2000. return 0;
  2001. }
  2002. void __audit_ptrace(struct task_struct *t)
  2003. {
  2004. struct audit_context *context = current->audit_context;
  2005. context->target_pid = task_pid_nr(t);
  2006. context->target_auid = audit_get_loginuid(t);
  2007. context->target_uid = task_uid(t);
  2008. context->target_sessionid = audit_get_sessionid(t);
  2009. security_task_getsecid(t, &context->target_sid);
  2010. memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
  2011. }
  2012. /**
  2013. * audit_signal_info - record signal info for shutting down audit subsystem
  2014. * @sig: signal value
  2015. * @t: task being signaled
  2016. *
  2017. * If the audit subsystem is being terminated, record the task (pid)
  2018. * and uid that is doing that.
  2019. */
  2020. int __audit_signal_info(int sig, struct task_struct *t)
  2021. {
  2022. struct audit_aux_data_pids *axp;
  2023. struct task_struct *tsk = current;
  2024. struct audit_context *ctx = tsk->audit_context;
  2025. kuid_t uid = current_uid(), t_uid = task_uid(t);
  2026. if (audit_pid && t->tgid == audit_pid) {
  2027. if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
  2028. audit_sig_pid = task_pid_nr(tsk);
  2029. if (uid_valid(tsk->loginuid))
  2030. audit_sig_uid = tsk->loginuid;
  2031. else
  2032. audit_sig_uid = uid;
  2033. security_task_getsecid(tsk, &audit_sig_sid);
  2034. }
  2035. if (!audit_signals || audit_dummy_context())
  2036. return 0;
  2037. }
  2038. /* optimize the common case by putting first signal recipient directly
  2039. * in audit_context */
  2040. if (!ctx->target_pid) {
  2041. ctx->target_pid = task_tgid_nr(t);
  2042. ctx->target_auid = audit_get_loginuid(t);
  2043. ctx->target_uid = t_uid;
  2044. ctx->target_sessionid = audit_get_sessionid(t);
  2045. security_task_getsecid(t, &ctx->target_sid);
  2046. memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
  2047. return 0;
  2048. }
  2049. axp = (void *)ctx->aux_pids;
  2050. if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
  2051. axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
  2052. if (!axp)
  2053. return -ENOMEM;
  2054. axp->d.type = AUDIT_OBJ_PID;
  2055. axp->d.next = ctx->aux_pids;
  2056. ctx->aux_pids = (void *)axp;
  2057. }
  2058. BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
  2059. axp->target_pid[axp->pid_count] = task_tgid_nr(t);
  2060. axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
  2061. axp->target_uid[axp->pid_count] = t_uid;
  2062. axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
  2063. security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
  2064. memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
  2065. axp->pid_count++;
  2066. return 0;
  2067. }
  2068. /**
  2069. * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
  2070. * @bprm: pointer to the bprm being processed
  2071. * @new: the proposed new credentials
  2072. * @old: the old credentials
  2073. *
  2074. * Simply check if the proc already has the caps given by the file and if not
  2075. * store the priv escalation info for later auditing at the end of the syscall
  2076. *
  2077. * -Eric
  2078. */
  2079. int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
  2080. const struct cred *new, const struct cred *old)
  2081. {
  2082. struct audit_aux_data_bprm_fcaps *ax;
  2083. struct audit_context *context = current->audit_context;
  2084. struct cpu_vfs_cap_data vcaps;
  2085. ax = kmalloc(sizeof(*ax), GFP_KERNEL);
  2086. if (!ax)
  2087. return -ENOMEM;
  2088. ax->d.type = AUDIT_BPRM_FCAPS;
  2089. ax->d.next = context->aux;
  2090. context->aux = (void *)ax;
  2091. get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
  2092. ax->fcap.permitted = vcaps.permitted;
  2093. ax->fcap.inheritable = vcaps.inheritable;
  2094. ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
  2095. ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
  2096. ax->old_pcap.permitted = old->cap_permitted;
  2097. ax->old_pcap.inheritable = old->cap_inheritable;
  2098. ax->old_pcap.effective = old->cap_effective;
  2099. ax->new_pcap.permitted = new->cap_permitted;
  2100. ax->new_pcap.inheritable = new->cap_inheritable;
  2101. ax->new_pcap.effective = new->cap_effective;
  2102. return 0;
  2103. }
  2104. /**
  2105. * __audit_log_capset - store information about the arguments to the capset syscall
  2106. * @new: the new credentials
  2107. * @old: the old (current) credentials
  2108. *
  2109. * Record the arguments userspace sent to sys_capset for later printing by the
  2110. * audit system if applicable
  2111. */
  2112. void __audit_log_capset(const struct cred *new, const struct cred *old)
  2113. {
  2114. struct audit_context *context = current->audit_context;
  2115. context->capset.pid = task_pid_nr(current);
  2116. context->capset.cap.effective = new->cap_effective;
  2117. context->capset.cap.inheritable = new->cap_effective;
  2118. context->capset.cap.permitted = new->cap_permitted;
  2119. context->type = AUDIT_CAPSET;
  2120. }
  2121. void __audit_mmap_fd(int fd, int flags)
  2122. {
  2123. struct audit_context *context = current->audit_context;
  2124. context->mmap.fd = fd;
  2125. context->mmap.flags = flags;
  2126. context->type = AUDIT_MMAP;
  2127. }
  2128. static void audit_log_task(struct audit_buffer *ab)
  2129. {
  2130. kuid_t auid, uid;
  2131. kgid_t gid;
  2132. unsigned int sessionid;
  2133. char comm[sizeof(current->comm)];
  2134. auid = audit_get_loginuid(current);
  2135. sessionid = audit_get_sessionid(current);
  2136. current_uid_gid(&uid, &gid);
  2137. audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
  2138. from_kuid(&init_user_ns, auid),
  2139. from_kuid(&init_user_ns, uid),
  2140. from_kgid(&init_user_ns, gid),
  2141. sessionid);
  2142. audit_log_task_context(ab);
  2143. audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
  2144. audit_log_untrustedstring(ab, get_task_comm(comm, current));
  2145. audit_log_d_path_exe(ab, current->mm);
  2146. }
  2147. /**
  2148. * audit_core_dumps - record information about processes that end abnormally
  2149. * @signr: signal value
  2150. *
  2151. * If a process ends with a core dump, something fishy is going on and we
  2152. * should record the event for investigation.
  2153. */
  2154. void audit_core_dumps(long signr)
  2155. {
  2156. struct audit_buffer *ab;
  2157. if (!audit_enabled)
  2158. return;
  2159. if (signr == SIGQUIT) /* don't care for those */
  2160. return;
  2161. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
  2162. if (unlikely(!ab))
  2163. return;
  2164. audit_log_task(ab);
  2165. audit_log_format(ab, " sig=%ld", signr);
  2166. audit_log_end(ab);
  2167. }
  2168. void __audit_seccomp(unsigned long syscall, long signr, int code)
  2169. {
  2170. struct audit_buffer *ab;
  2171. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
  2172. if (unlikely(!ab))
  2173. return;
  2174. audit_log_task(ab);
  2175. audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
  2176. signr, syscall_get_arch(), syscall, is_compat_task(),
  2177. KSTK_EIP(current), code);
  2178. audit_log_end(ab);
  2179. }
  2180. struct list_head *audit_killed_trees(void)
  2181. {
  2182. struct audit_context *ctx = current->audit_context;
  2183. if (likely(!ctx || !ctx->in_syscall))
  2184. return NULL;
  2185. return &ctx->killed_trees;
  2186. }