exit.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/freezer.h>
  23. #include <linux/binfmts.h>
  24. #include <linux/nsproxy.h>
  25. #include <linux/pid_namespace.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/profile.h>
  28. #include <linux/mount.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/kthread.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/taskstats_kern.h>
  33. #include <linux/delayacct.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <linux/oom.h>
  53. #include <linux/writeback.h>
  54. #include <linux/shm.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/unistd.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/mmu_context.h>
  59. static void exit_mm(struct task_struct *tsk);
  60. static void __unhash_process(struct task_struct *p, bool group_dead)
  61. {
  62. nr_threads--;
  63. detach_pid(p, PIDTYPE_PID);
  64. if (group_dead) {
  65. detach_pid(p, PIDTYPE_PGID);
  66. detach_pid(p, PIDTYPE_SID);
  67. list_del_rcu(&p->tasks);
  68. list_del_init(&p->sibling);
  69. __this_cpu_dec(process_counts);
  70. }
  71. list_del_rcu(&p->thread_group);
  72. list_del_rcu(&p->thread_node);
  73. }
  74. /*
  75. * This function expects the tasklist_lock write-locked.
  76. */
  77. static void __exit_signal(struct task_struct *tsk)
  78. {
  79. struct signal_struct *sig = tsk->signal;
  80. bool group_dead = thread_group_leader(tsk);
  81. struct sighand_struct *sighand;
  82. struct tty_struct *uninitialized_var(tty);
  83. cputime_t utime, stime;
  84. sighand = rcu_dereference_check(tsk->sighand,
  85. lockdep_tasklist_lock_is_held());
  86. spin_lock(&sighand->siglock);
  87. posix_cpu_timers_exit(tsk);
  88. if (group_dead) {
  89. posix_cpu_timers_exit_group(tsk);
  90. tty = sig->tty;
  91. sig->tty = NULL;
  92. } else {
  93. /*
  94. * This can only happen if the caller is de_thread().
  95. * FIXME: this is the temporary hack, we should teach
  96. * posix-cpu-timers to handle this case correctly.
  97. */
  98. if (unlikely(has_group_leader_pid(tsk)))
  99. posix_cpu_timers_exit_group(tsk);
  100. /*
  101. * If there is any task waiting for the group exit
  102. * then notify it:
  103. */
  104. if (sig->notify_count > 0 && !--sig->notify_count)
  105. wake_up_process(sig->group_exit_task);
  106. if (tsk == sig->curr_target)
  107. sig->curr_target = next_thread(tsk);
  108. }
  109. /*
  110. * Accumulate here the counters for all threads as they die. We could
  111. * skip the group leader because it is the last user of signal_struct,
  112. * but we want to avoid the race with thread_group_cputime() which can
  113. * see the empty ->thread_head list.
  114. */
  115. task_cputime(tsk, &utime, &stime);
  116. write_seqlock(&sig->stats_lock);
  117. sig->utime += utime;
  118. sig->stime += stime;
  119. sig->gtime += task_gtime(tsk);
  120. sig->min_flt += tsk->min_flt;
  121. sig->maj_flt += tsk->maj_flt;
  122. sig->nvcsw += tsk->nvcsw;
  123. sig->nivcsw += tsk->nivcsw;
  124. sig->inblock += task_io_get_inblock(tsk);
  125. sig->oublock += task_io_get_oublock(tsk);
  126. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  127. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  128. sig->nr_threads--;
  129. __unhash_process(tsk, group_dead);
  130. write_sequnlock(&sig->stats_lock);
  131. /*
  132. * Do this under ->siglock, we can race with another thread
  133. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  134. */
  135. flush_sigqueue(&tsk->pending);
  136. tsk->sighand = NULL;
  137. spin_unlock(&sighand->siglock);
  138. __cleanup_sighand(sighand);
  139. clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
  140. if (group_dead) {
  141. flush_sigqueue(&sig->shared_pending);
  142. tty_kref_put(tty);
  143. }
  144. }
  145. static void delayed_put_task_struct(struct rcu_head *rhp)
  146. {
  147. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  148. perf_event_delayed_put(tsk);
  149. trace_sched_process_free(tsk);
  150. put_task_struct(tsk);
  151. }
  152. void release_task(struct task_struct *p)
  153. {
  154. struct task_struct *leader;
  155. int zap_leader;
  156. repeat:
  157. /* don't need to get the RCU readlock here - the process is dead and
  158. * can't be modifying its own credentials. But shut RCU-lockdep up */
  159. rcu_read_lock();
  160. atomic_dec(&__task_cred(p)->user->processes);
  161. rcu_read_unlock();
  162. proc_flush_task(p);
  163. write_lock_irq(&tasklist_lock);
  164. ptrace_release_task(p);
  165. __exit_signal(p);
  166. /*
  167. * If we are the last non-leader member of the thread
  168. * group, and the leader is zombie, then notify the
  169. * group leader's parent process. (if it wants notification.)
  170. */
  171. zap_leader = 0;
  172. leader = p->group_leader;
  173. if (leader != p && thread_group_empty(leader)
  174. && leader->exit_state == EXIT_ZOMBIE) {
  175. /*
  176. * If we were the last child thread and the leader has
  177. * exited already, and the leader's parent ignores SIGCHLD,
  178. * then we are the one who should release the leader.
  179. */
  180. zap_leader = do_notify_parent(leader, leader->exit_signal);
  181. if (zap_leader)
  182. leader->exit_state = EXIT_DEAD;
  183. }
  184. write_unlock_irq(&tasklist_lock);
  185. release_thread(p);
  186. call_rcu(&p->rcu, delayed_put_task_struct);
  187. p = leader;
  188. if (unlikely(zap_leader))
  189. goto repeat;
  190. }
  191. /*
  192. * Determine if a process group is "orphaned", according to the POSIX
  193. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  194. * by terminal-generated stop signals. Newly orphaned process groups are
  195. * to receive a SIGHUP and a SIGCONT.
  196. *
  197. * "I ask you, have you ever known what it is to be an orphan?"
  198. */
  199. static int will_become_orphaned_pgrp(struct pid *pgrp,
  200. struct task_struct *ignored_task)
  201. {
  202. struct task_struct *p;
  203. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  204. if ((p == ignored_task) ||
  205. (p->exit_state && thread_group_empty(p)) ||
  206. is_global_init(p->real_parent))
  207. continue;
  208. if (task_pgrp(p->real_parent) != pgrp &&
  209. task_session(p->real_parent) == task_session(p))
  210. return 0;
  211. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  212. return 1;
  213. }
  214. int is_current_pgrp_orphaned(void)
  215. {
  216. int retval;
  217. read_lock(&tasklist_lock);
  218. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  219. read_unlock(&tasklist_lock);
  220. return retval;
  221. }
  222. static bool has_stopped_jobs(struct pid *pgrp)
  223. {
  224. struct task_struct *p;
  225. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  226. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  227. return true;
  228. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  229. return false;
  230. }
  231. /*
  232. * Check to see if any process groups have become orphaned as
  233. * a result of our exiting, and if they have any stopped jobs,
  234. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  235. */
  236. static void
  237. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  238. {
  239. struct pid *pgrp = task_pgrp(tsk);
  240. struct task_struct *ignored_task = tsk;
  241. if (!parent)
  242. /* exit: our father is in a different pgrp than
  243. * we are and we were the only connection outside.
  244. */
  245. parent = tsk->real_parent;
  246. else
  247. /* reparent: our child is in a different pgrp than
  248. * we are, and it was the only connection outside.
  249. */
  250. ignored_task = NULL;
  251. if (task_pgrp(parent) != pgrp &&
  252. task_session(parent) == task_session(tsk) &&
  253. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  254. has_stopped_jobs(pgrp)) {
  255. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  256. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  257. }
  258. }
  259. #ifdef CONFIG_MEMCG
  260. /*
  261. * A task is exiting. If it owned this mm, find a new owner for the mm.
  262. */
  263. void mm_update_next_owner(struct mm_struct *mm)
  264. {
  265. struct task_struct *c, *g, *p = current;
  266. retry:
  267. /*
  268. * If the exiting or execing task is not the owner, it's
  269. * someone else's problem.
  270. */
  271. if (mm->owner != p)
  272. return;
  273. /*
  274. * The current owner is exiting/execing and there are no other
  275. * candidates. Do not leave the mm pointing to a possibly
  276. * freed task structure.
  277. */
  278. if (atomic_read(&mm->mm_users) <= 1) {
  279. mm->owner = NULL;
  280. return;
  281. }
  282. read_lock(&tasklist_lock);
  283. /*
  284. * Search in the children
  285. */
  286. list_for_each_entry(c, &p->children, sibling) {
  287. if (c->mm == mm)
  288. goto assign_new_owner;
  289. }
  290. /*
  291. * Search in the siblings
  292. */
  293. list_for_each_entry(c, &p->real_parent->children, sibling) {
  294. if (c->mm == mm)
  295. goto assign_new_owner;
  296. }
  297. /*
  298. * Search through everything else, we should not get here often.
  299. */
  300. for_each_process(g) {
  301. if (g->flags & PF_KTHREAD)
  302. continue;
  303. for_each_thread(g, c) {
  304. if (c->mm == mm)
  305. goto assign_new_owner;
  306. if (c->mm)
  307. break;
  308. }
  309. }
  310. read_unlock(&tasklist_lock);
  311. /*
  312. * We found no owner yet mm_users > 1: this implies that we are
  313. * most likely racing with swapoff (try_to_unuse()) or /proc or
  314. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  315. */
  316. mm->owner = NULL;
  317. return;
  318. assign_new_owner:
  319. BUG_ON(c == p);
  320. get_task_struct(c);
  321. /*
  322. * The task_lock protects c->mm from changing.
  323. * We always want mm->owner->mm == mm
  324. */
  325. task_lock(c);
  326. /*
  327. * Delay read_unlock() till we have the task_lock()
  328. * to ensure that c does not slip away underneath us
  329. */
  330. read_unlock(&tasklist_lock);
  331. if (c->mm != mm) {
  332. task_unlock(c);
  333. put_task_struct(c);
  334. goto retry;
  335. }
  336. mm->owner = c;
  337. task_unlock(c);
  338. put_task_struct(c);
  339. }
  340. #endif /* CONFIG_MEMCG */
  341. /*
  342. * Turn us into a lazy TLB process if we
  343. * aren't already..
  344. */
  345. static void exit_mm(struct task_struct *tsk)
  346. {
  347. struct mm_struct *mm = tsk->mm;
  348. struct core_state *core_state;
  349. mm_release(tsk, mm);
  350. if (!mm)
  351. return;
  352. sync_mm_rss(mm);
  353. /*
  354. * Serialize with any possible pending coredump.
  355. * We must hold mmap_sem around checking core_state
  356. * and clearing tsk->mm. The core-inducing thread
  357. * will increment ->nr_threads for each thread in the
  358. * group with ->mm != NULL.
  359. */
  360. down_read(&mm->mmap_sem);
  361. core_state = mm->core_state;
  362. if (core_state) {
  363. struct core_thread self;
  364. up_read(&mm->mmap_sem);
  365. self.task = tsk;
  366. self.next = xchg(&core_state->dumper.next, &self);
  367. /*
  368. * Implies mb(), the result of xchg() must be visible
  369. * to core_state->dumper.
  370. */
  371. if (atomic_dec_and_test(&core_state->nr_threads))
  372. complete(&core_state->startup);
  373. for (;;) {
  374. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  375. if (!self.task) /* see coredump_finish() */
  376. break;
  377. freezable_schedule();
  378. }
  379. __set_task_state(tsk, TASK_RUNNING);
  380. down_read(&mm->mmap_sem);
  381. }
  382. atomic_inc(&mm->mm_count);
  383. BUG_ON(mm != tsk->active_mm);
  384. /* more a memory barrier than a real lock */
  385. task_lock(tsk);
  386. tsk->mm = NULL;
  387. up_read(&mm->mmap_sem);
  388. enter_lazy_tlb(mm, current);
  389. task_unlock(tsk);
  390. mm_update_next_owner(mm);
  391. mmput(mm);
  392. if (test_thread_flag(TIF_MEMDIE))
  393. exit_oom_victim();
  394. }
  395. static struct task_struct *find_alive_thread(struct task_struct *p)
  396. {
  397. struct task_struct *t;
  398. for_each_thread(p, t) {
  399. if (!(t->flags & PF_EXITING))
  400. return t;
  401. }
  402. return NULL;
  403. }
  404. static struct task_struct *find_child_reaper(struct task_struct *father,
  405. struct list_head *dead)
  406. __releases(&tasklist_lock)
  407. __acquires(&tasklist_lock)
  408. {
  409. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  410. struct task_struct *reaper = pid_ns->child_reaper;
  411. struct task_struct *p, *n;
  412. if (likely(reaper != father))
  413. return reaper;
  414. reaper = find_alive_thread(father);
  415. if (reaper) {
  416. pid_ns->child_reaper = reaper;
  417. return reaper;
  418. }
  419. write_unlock_irq(&tasklist_lock);
  420. if (unlikely(pid_ns == &init_pid_ns)) {
  421. panic("Attempted to kill init! exitcode=0x%08x\n",
  422. father->signal->group_exit_code ?: father->exit_code);
  423. }
  424. list_for_each_entry_safe(p, n, dead, ptrace_entry) {
  425. list_del_init(&p->ptrace_entry);
  426. release_task(p);
  427. }
  428. zap_pid_ns_processes(pid_ns);
  429. write_lock_irq(&tasklist_lock);
  430. return father;
  431. }
  432. /*
  433. * When we die, we re-parent all our children, and try to:
  434. * 1. give them to another thread in our thread group, if such a member exists
  435. * 2. give it to the first ancestor process which prctl'd itself as a
  436. * child_subreaper for its children (like a service manager)
  437. * 3. give it to the init process (PID 1) in our pid namespace
  438. */
  439. static struct task_struct *find_new_reaper(struct task_struct *father,
  440. struct task_struct *child_reaper)
  441. {
  442. struct task_struct *thread, *reaper;
  443. thread = find_alive_thread(father);
  444. if (thread)
  445. return thread;
  446. if (father->signal->has_child_subreaper) {
  447. /*
  448. * Find the first ->is_child_subreaper ancestor in our pid_ns.
  449. * We start from father to ensure we can not look into another
  450. * namespace, this is safe because all its threads are dead.
  451. */
  452. for (reaper = father;
  453. !same_thread_group(reaper, child_reaper);
  454. reaper = reaper->real_parent) {
  455. /* call_usermodehelper() descendants need this check */
  456. if (reaper == &init_task)
  457. break;
  458. if (!reaper->signal->is_child_subreaper)
  459. continue;
  460. thread = find_alive_thread(reaper);
  461. if (thread)
  462. return thread;
  463. }
  464. }
  465. return child_reaper;
  466. }
  467. /*
  468. * Any that need to be release_task'd are put on the @dead list.
  469. */
  470. static void reparent_leader(struct task_struct *father, struct task_struct *p,
  471. struct list_head *dead)
  472. {
  473. if (unlikely(p->exit_state == EXIT_DEAD))
  474. return;
  475. /* We don't want people slaying init. */
  476. p->exit_signal = SIGCHLD;
  477. /* If it has exited notify the new parent about this child's death. */
  478. if (!p->ptrace &&
  479. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  480. if (do_notify_parent(p, p->exit_signal)) {
  481. p->exit_state = EXIT_DEAD;
  482. list_add(&p->ptrace_entry, dead);
  483. }
  484. }
  485. kill_orphaned_pgrp(p, father);
  486. }
  487. /*
  488. * This does two things:
  489. *
  490. * A. Make init inherit all the child processes
  491. * B. Check to see if any process groups have become orphaned
  492. * as a result of our exiting, and if they have any stopped
  493. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  494. */
  495. static void forget_original_parent(struct task_struct *father,
  496. struct list_head *dead)
  497. {
  498. struct task_struct *p, *t, *reaper;
  499. if (unlikely(!list_empty(&father->ptraced)))
  500. exit_ptrace(father, dead);
  501. /* Can drop and reacquire tasklist_lock */
  502. reaper = find_child_reaper(father, dead);
  503. if (list_empty(&father->children))
  504. return;
  505. reaper = find_new_reaper(father, reaper);
  506. list_for_each_entry(p, &father->children, sibling) {
  507. for_each_thread(p, t) {
  508. t->real_parent = reaper;
  509. BUG_ON((!t->ptrace) != (t->parent == father));
  510. if (likely(!t->ptrace))
  511. t->parent = t->real_parent;
  512. if (t->pdeath_signal)
  513. group_send_sig_info(t->pdeath_signal,
  514. SEND_SIG_NOINFO, t);
  515. }
  516. /*
  517. * If this is a threaded reparent there is no need to
  518. * notify anyone anything has happened.
  519. */
  520. if (!same_thread_group(reaper, father))
  521. reparent_leader(father, p, dead);
  522. }
  523. list_splice_tail_init(&father->children, &reaper->children);
  524. }
  525. /*
  526. * Send signals to all our closest relatives so that they know
  527. * to properly mourn us..
  528. */
  529. static void exit_notify(struct task_struct *tsk, int group_dead)
  530. {
  531. bool autoreap;
  532. struct task_struct *p, *n;
  533. LIST_HEAD(dead);
  534. write_lock_irq(&tasklist_lock);
  535. forget_original_parent(tsk, &dead);
  536. if (group_dead)
  537. kill_orphaned_pgrp(tsk->group_leader, NULL);
  538. if (unlikely(tsk->ptrace)) {
  539. int sig = thread_group_leader(tsk) &&
  540. thread_group_empty(tsk) &&
  541. !ptrace_reparented(tsk) ?
  542. tsk->exit_signal : SIGCHLD;
  543. autoreap = do_notify_parent(tsk, sig);
  544. } else if (thread_group_leader(tsk)) {
  545. autoreap = thread_group_empty(tsk) &&
  546. do_notify_parent(tsk, tsk->exit_signal);
  547. } else {
  548. autoreap = true;
  549. }
  550. tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
  551. if (tsk->exit_state == EXIT_DEAD)
  552. list_add(&tsk->ptrace_entry, &dead);
  553. /* mt-exec, de_thread() is waiting for group leader */
  554. if (unlikely(tsk->signal->notify_count < 0))
  555. wake_up_process(tsk->signal->group_exit_task);
  556. write_unlock_irq(&tasklist_lock);
  557. list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
  558. list_del_init(&p->ptrace_entry);
  559. release_task(p);
  560. }
  561. }
  562. #ifdef CONFIG_DEBUG_STACK_USAGE
  563. static void check_stack_usage(void)
  564. {
  565. static DEFINE_SPINLOCK(low_water_lock);
  566. static int lowest_to_date = THREAD_SIZE;
  567. unsigned long free;
  568. free = stack_not_used(current);
  569. if (free >= lowest_to_date)
  570. return;
  571. spin_lock(&low_water_lock);
  572. if (free < lowest_to_date) {
  573. pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
  574. current->comm, task_pid_nr(current), free);
  575. lowest_to_date = free;
  576. }
  577. spin_unlock(&low_water_lock);
  578. }
  579. #else
  580. static inline void check_stack_usage(void) {}
  581. #endif
  582. void do_exit(long code)
  583. {
  584. struct task_struct *tsk = current;
  585. int group_dead;
  586. TASKS_RCU(int tasks_rcu_i);
  587. profile_task_exit(tsk);
  588. WARN_ON(blk_needs_flush_plug(tsk));
  589. if (unlikely(in_interrupt()))
  590. panic("Aiee, killing interrupt handler!");
  591. if (unlikely(!tsk->pid))
  592. panic("Attempted to kill the idle task!");
  593. /*
  594. * If do_exit is called because this processes oopsed, it's possible
  595. * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
  596. * continuing. Amongst other possible reasons, this is to prevent
  597. * mm_release()->clear_child_tid() from writing to a user-controlled
  598. * kernel address.
  599. */
  600. set_fs(USER_DS);
  601. ptrace_event(PTRACE_EVENT_EXIT, code);
  602. validate_creds_for_do_exit(tsk);
  603. /*
  604. * We're taking recursive faults here in do_exit. Safest is to just
  605. * leave this task alone and wait for reboot.
  606. */
  607. if (unlikely(tsk->flags & PF_EXITING)) {
  608. pr_alert("Fixing recursive fault but reboot is needed!\n");
  609. /*
  610. * We can do this unlocked here. The futex code uses
  611. * this flag just to verify whether the pi state
  612. * cleanup has been done or not. In the worst case it
  613. * loops once more. We pretend that the cleanup was
  614. * done as there is no way to return. Either the
  615. * OWNER_DIED bit is set by now or we push the blocked
  616. * task into the wait for ever nirwana as well.
  617. */
  618. tsk->flags |= PF_EXITPIDONE;
  619. set_current_state(TASK_UNINTERRUPTIBLE);
  620. schedule();
  621. }
  622. exit_signals(tsk); /* sets PF_EXITING */
  623. /*
  624. * tsk->flags are checked in the futex code to protect against
  625. * an exiting task cleaning up the robust pi futexes.
  626. */
  627. smp_mb();
  628. raw_spin_unlock_wait(&tsk->pi_lock);
  629. if (unlikely(in_atomic())) {
  630. pr_info("note: %s[%d] exited with preempt_count %d\n",
  631. current->comm, task_pid_nr(current),
  632. preempt_count());
  633. preempt_count_set(PREEMPT_ENABLED);
  634. }
  635. /* sync mm's RSS info before statistics gathering */
  636. if (tsk->mm)
  637. sync_mm_rss(tsk->mm);
  638. acct_update_integrals(tsk);
  639. group_dead = atomic_dec_and_test(&tsk->signal->live);
  640. if (group_dead) {
  641. hrtimer_cancel(&tsk->signal->real_timer);
  642. exit_itimers(tsk->signal);
  643. if (tsk->mm)
  644. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  645. }
  646. acct_collect(code, group_dead);
  647. if (group_dead)
  648. tty_audit_exit();
  649. audit_free(tsk);
  650. tsk->exit_code = code;
  651. taskstats_exit(tsk, group_dead);
  652. exit_mm(tsk);
  653. if (group_dead)
  654. acct_process();
  655. trace_sched_process_exit(tsk);
  656. exit_sem(tsk);
  657. exit_shm(tsk);
  658. exit_files(tsk);
  659. exit_fs(tsk);
  660. if (group_dead)
  661. disassociate_ctty(1);
  662. exit_task_namespaces(tsk);
  663. exit_task_work(tsk);
  664. exit_thread();
  665. /*
  666. * Flush inherited counters to the parent - before the parent
  667. * gets woken up by child-exit notifications.
  668. *
  669. * because of cgroup mode, must be called before cgroup_exit()
  670. */
  671. perf_event_exit_task(tsk);
  672. cgroup_exit(tsk);
  673. /*
  674. * FIXME: do that only when needed, using sched_exit tracepoint
  675. */
  676. flush_ptrace_hw_breakpoint(tsk);
  677. TASKS_RCU(preempt_disable());
  678. TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
  679. TASKS_RCU(preempt_enable());
  680. exit_notify(tsk, group_dead);
  681. proc_exit_connector(tsk);
  682. #ifdef CONFIG_NUMA
  683. task_lock(tsk);
  684. mpol_put(tsk->mempolicy);
  685. tsk->mempolicy = NULL;
  686. task_unlock(tsk);
  687. #endif
  688. #ifdef CONFIG_FUTEX
  689. if (unlikely(current->pi_state_cache))
  690. kfree(current->pi_state_cache);
  691. #endif
  692. /*
  693. * Make sure we are holding no locks:
  694. */
  695. debug_check_no_locks_held();
  696. /*
  697. * We can do this unlocked here. The futex code uses this flag
  698. * just to verify whether the pi state cleanup has been done
  699. * or not. In the worst case it loops once more.
  700. */
  701. tsk->flags |= PF_EXITPIDONE;
  702. if (tsk->io_context)
  703. exit_io_context(tsk);
  704. if (tsk->splice_pipe)
  705. free_pipe_info(tsk->splice_pipe);
  706. if (tsk->task_frag.page)
  707. put_page(tsk->task_frag.page);
  708. validate_creds_for_do_exit(tsk);
  709. check_stack_usage();
  710. preempt_disable();
  711. if (tsk->nr_dirtied)
  712. __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
  713. exit_rcu();
  714. TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
  715. /*
  716. * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
  717. * when the following two conditions become true.
  718. * - There is race condition of mmap_sem (It is acquired by
  719. * exit_mm()), and
  720. * - SMI occurs before setting TASK_RUNINNG.
  721. * (or hypervisor of virtual machine switches to other guest)
  722. * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
  723. *
  724. * To avoid it, we have to wait for releasing tsk->pi_lock which
  725. * is held by try_to_wake_up()
  726. */
  727. smp_mb();
  728. raw_spin_unlock_wait(&tsk->pi_lock);
  729. /* causes final put_task_struct in finish_task_switch(). */
  730. tsk->state = TASK_DEAD;
  731. tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
  732. schedule();
  733. BUG();
  734. /* Avoid "noreturn function does return". */
  735. for (;;)
  736. cpu_relax(); /* For when BUG is null */
  737. }
  738. EXPORT_SYMBOL_GPL(do_exit);
  739. void complete_and_exit(struct completion *comp, long code)
  740. {
  741. if (comp)
  742. complete(comp);
  743. do_exit(code);
  744. }
  745. EXPORT_SYMBOL(complete_and_exit);
  746. SYSCALL_DEFINE1(exit, int, error_code)
  747. {
  748. do_exit((error_code&0xff)<<8);
  749. }
  750. /*
  751. * Take down every thread in the group. This is called by fatal signals
  752. * as well as by sys_exit_group (below).
  753. */
  754. void
  755. do_group_exit(int exit_code)
  756. {
  757. struct signal_struct *sig = current->signal;
  758. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  759. if (signal_group_exit(sig))
  760. exit_code = sig->group_exit_code;
  761. else if (!thread_group_empty(current)) {
  762. struct sighand_struct *const sighand = current->sighand;
  763. spin_lock_irq(&sighand->siglock);
  764. if (signal_group_exit(sig))
  765. /* Another thread got here before we took the lock. */
  766. exit_code = sig->group_exit_code;
  767. else {
  768. sig->group_exit_code = exit_code;
  769. sig->flags = SIGNAL_GROUP_EXIT;
  770. zap_other_threads(current);
  771. }
  772. spin_unlock_irq(&sighand->siglock);
  773. }
  774. do_exit(exit_code);
  775. /* NOTREACHED */
  776. }
  777. /*
  778. * this kills every thread in the thread group. Note that any externally
  779. * wait4()-ing process will get the correct exit code - even if this
  780. * thread is not the thread group leader.
  781. */
  782. SYSCALL_DEFINE1(exit_group, int, error_code)
  783. {
  784. do_group_exit((error_code & 0xff) << 8);
  785. /* NOTREACHED */
  786. return 0;
  787. }
  788. struct wait_opts {
  789. enum pid_type wo_type;
  790. int wo_flags;
  791. struct pid *wo_pid;
  792. struct siginfo __user *wo_info;
  793. int __user *wo_stat;
  794. struct rusage __user *wo_rusage;
  795. wait_queue_t child_wait;
  796. int notask_error;
  797. };
  798. static inline
  799. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  800. {
  801. if (type != PIDTYPE_PID)
  802. task = task->group_leader;
  803. return task->pids[type].pid;
  804. }
  805. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  806. {
  807. return wo->wo_type == PIDTYPE_MAX ||
  808. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  809. }
  810. static int
  811. eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
  812. {
  813. if (!eligible_pid(wo, p))
  814. return 0;
  815. /*
  816. * Wait for all children (clone and not) if __WALL is set or
  817. * if it is traced by us.
  818. */
  819. if (ptrace || (wo->wo_flags & __WALL))
  820. return 1;
  821. /*
  822. * Otherwise, wait for clone children *only* if __WCLONE is set;
  823. * otherwise, wait for non-clone children *only*.
  824. *
  825. * Note: a "clone" child here is one that reports to its parent
  826. * using a signal other than SIGCHLD, or a non-leader thread which
  827. * we can only see if it is traced by us.
  828. */
  829. if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  830. return 0;
  831. return 1;
  832. }
  833. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  834. pid_t pid, uid_t uid, int why, int status)
  835. {
  836. struct siginfo __user *infop;
  837. int retval = wo->wo_rusage
  838. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  839. put_task_struct(p);
  840. infop = wo->wo_info;
  841. if (infop) {
  842. if (!retval)
  843. retval = put_user(SIGCHLD, &infop->si_signo);
  844. if (!retval)
  845. retval = put_user(0, &infop->si_errno);
  846. if (!retval)
  847. retval = put_user((short)why, &infop->si_code);
  848. if (!retval)
  849. retval = put_user(pid, &infop->si_pid);
  850. if (!retval)
  851. retval = put_user(uid, &infop->si_uid);
  852. if (!retval)
  853. retval = put_user(status, &infop->si_status);
  854. }
  855. if (!retval)
  856. retval = pid;
  857. return retval;
  858. }
  859. /*
  860. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  861. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  862. * the lock and this task is uninteresting. If we return nonzero, we have
  863. * released the lock and the system call should return.
  864. */
  865. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  866. {
  867. int state, retval, status;
  868. pid_t pid = task_pid_vnr(p);
  869. uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
  870. struct siginfo __user *infop;
  871. if (!likely(wo->wo_flags & WEXITED))
  872. return 0;
  873. if (unlikely(wo->wo_flags & WNOWAIT)) {
  874. int exit_code = p->exit_code;
  875. int why;
  876. get_task_struct(p);
  877. read_unlock(&tasklist_lock);
  878. sched_annotate_sleep();
  879. if ((exit_code & 0x7f) == 0) {
  880. why = CLD_EXITED;
  881. status = exit_code >> 8;
  882. } else {
  883. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  884. status = exit_code & 0x7f;
  885. }
  886. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  887. }
  888. /*
  889. * Move the task's state to DEAD/TRACE, only one thread can do this.
  890. */
  891. state = (ptrace_reparented(p) && thread_group_leader(p)) ?
  892. EXIT_TRACE : EXIT_DEAD;
  893. if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
  894. return 0;
  895. /*
  896. * We own this thread, nobody else can reap it.
  897. */
  898. read_unlock(&tasklist_lock);
  899. sched_annotate_sleep();
  900. /*
  901. * Check thread_group_leader() to exclude the traced sub-threads.
  902. */
  903. if (state == EXIT_DEAD && thread_group_leader(p)) {
  904. struct signal_struct *sig = p->signal;
  905. struct signal_struct *psig = current->signal;
  906. unsigned long maxrss;
  907. cputime_t tgutime, tgstime;
  908. /*
  909. * The resource counters for the group leader are in its
  910. * own task_struct. Those for dead threads in the group
  911. * are in its signal_struct, as are those for the child
  912. * processes it has previously reaped. All these
  913. * accumulate in the parent's signal_struct c* fields.
  914. *
  915. * We don't bother to take a lock here to protect these
  916. * p->signal fields because the whole thread group is dead
  917. * and nobody can change them.
  918. *
  919. * psig->stats_lock also protects us from our sub-theads
  920. * which can reap other children at the same time. Until
  921. * we change k_getrusage()-like users to rely on this lock
  922. * we have to take ->siglock as well.
  923. *
  924. * We use thread_group_cputime_adjusted() to get times for
  925. * the thread group, which consolidates times for all threads
  926. * in the group including the group leader.
  927. */
  928. thread_group_cputime_adjusted(p, &tgutime, &tgstime);
  929. spin_lock_irq(&current->sighand->siglock);
  930. write_seqlock(&psig->stats_lock);
  931. psig->cutime += tgutime + sig->cutime;
  932. psig->cstime += tgstime + sig->cstime;
  933. psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
  934. psig->cmin_flt +=
  935. p->min_flt + sig->min_flt + sig->cmin_flt;
  936. psig->cmaj_flt +=
  937. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  938. psig->cnvcsw +=
  939. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  940. psig->cnivcsw +=
  941. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  942. psig->cinblock +=
  943. task_io_get_inblock(p) +
  944. sig->inblock + sig->cinblock;
  945. psig->coublock +=
  946. task_io_get_oublock(p) +
  947. sig->oublock + sig->coublock;
  948. maxrss = max(sig->maxrss, sig->cmaxrss);
  949. if (psig->cmaxrss < maxrss)
  950. psig->cmaxrss = maxrss;
  951. task_io_accounting_add(&psig->ioac, &p->ioac);
  952. task_io_accounting_add(&psig->ioac, &sig->ioac);
  953. write_sequnlock(&psig->stats_lock);
  954. spin_unlock_irq(&current->sighand->siglock);
  955. }
  956. retval = wo->wo_rusage
  957. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  958. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  959. ? p->signal->group_exit_code : p->exit_code;
  960. if (!retval && wo->wo_stat)
  961. retval = put_user(status, wo->wo_stat);
  962. infop = wo->wo_info;
  963. if (!retval && infop)
  964. retval = put_user(SIGCHLD, &infop->si_signo);
  965. if (!retval && infop)
  966. retval = put_user(0, &infop->si_errno);
  967. if (!retval && infop) {
  968. int why;
  969. if ((status & 0x7f) == 0) {
  970. why = CLD_EXITED;
  971. status >>= 8;
  972. } else {
  973. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  974. status &= 0x7f;
  975. }
  976. retval = put_user((short)why, &infop->si_code);
  977. if (!retval)
  978. retval = put_user(status, &infop->si_status);
  979. }
  980. if (!retval && infop)
  981. retval = put_user(pid, &infop->si_pid);
  982. if (!retval && infop)
  983. retval = put_user(uid, &infop->si_uid);
  984. if (!retval)
  985. retval = pid;
  986. if (state == EXIT_TRACE) {
  987. write_lock_irq(&tasklist_lock);
  988. /* We dropped tasklist, ptracer could die and untrace */
  989. ptrace_unlink(p);
  990. /* If parent wants a zombie, don't release it now */
  991. state = EXIT_ZOMBIE;
  992. if (do_notify_parent(p, p->exit_signal))
  993. state = EXIT_DEAD;
  994. p->exit_state = state;
  995. write_unlock_irq(&tasklist_lock);
  996. }
  997. if (state == EXIT_DEAD)
  998. release_task(p);
  999. return retval;
  1000. }
  1001. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1002. {
  1003. if (ptrace) {
  1004. if (task_is_stopped_or_traced(p) &&
  1005. !(p->jobctl & JOBCTL_LISTENING))
  1006. return &p->exit_code;
  1007. } else {
  1008. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1009. return &p->signal->group_exit_code;
  1010. }
  1011. return NULL;
  1012. }
  1013. /**
  1014. * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
  1015. * @wo: wait options
  1016. * @ptrace: is the wait for ptrace
  1017. * @p: task to wait for
  1018. *
  1019. * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
  1020. *
  1021. * CONTEXT:
  1022. * read_lock(&tasklist_lock), which is released if return value is
  1023. * non-zero. Also, grabs and releases @p->sighand->siglock.
  1024. *
  1025. * RETURNS:
  1026. * 0 if wait condition didn't exist and search for other wait conditions
  1027. * should continue. Non-zero return, -errno on failure and @p's pid on
  1028. * success, implies that tasklist_lock is released and wait condition
  1029. * search should terminate.
  1030. */
  1031. static int wait_task_stopped(struct wait_opts *wo,
  1032. int ptrace, struct task_struct *p)
  1033. {
  1034. struct siginfo __user *infop;
  1035. int retval, exit_code, *p_code, why;
  1036. uid_t uid = 0; /* unneeded, required by compiler */
  1037. pid_t pid;
  1038. /*
  1039. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1040. */
  1041. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1042. return 0;
  1043. if (!task_stopped_code(p, ptrace))
  1044. return 0;
  1045. exit_code = 0;
  1046. spin_lock_irq(&p->sighand->siglock);
  1047. p_code = task_stopped_code(p, ptrace);
  1048. if (unlikely(!p_code))
  1049. goto unlock_sig;
  1050. exit_code = *p_code;
  1051. if (!exit_code)
  1052. goto unlock_sig;
  1053. if (!unlikely(wo->wo_flags & WNOWAIT))
  1054. *p_code = 0;
  1055. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1056. unlock_sig:
  1057. spin_unlock_irq(&p->sighand->siglock);
  1058. if (!exit_code)
  1059. return 0;
  1060. /*
  1061. * Now we are pretty sure this task is interesting.
  1062. * Make sure it doesn't get reaped out from under us while we
  1063. * give up the lock and then examine it below. We don't want to
  1064. * keep holding onto the tasklist_lock while we call getrusage and
  1065. * possibly take page faults for user memory.
  1066. */
  1067. get_task_struct(p);
  1068. pid = task_pid_vnr(p);
  1069. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1070. read_unlock(&tasklist_lock);
  1071. sched_annotate_sleep();
  1072. if (unlikely(wo->wo_flags & WNOWAIT))
  1073. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1074. retval = wo->wo_rusage
  1075. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1076. if (!retval && wo->wo_stat)
  1077. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1078. infop = wo->wo_info;
  1079. if (!retval && infop)
  1080. retval = put_user(SIGCHLD, &infop->si_signo);
  1081. if (!retval && infop)
  1082. retval = put_user(0, &infop->si_errno);
  1083. if (!retval && infop)
  1084. retval = put_user((short)why, &infop->si_code);
  1085. if (!retval && infop)
  1086. retval = put_user(exit_code, &infop->si_status);
  1087. if (!retval && infop)
  1088. retval = put_user(pid, &infop->si_pid);
  1089. if (!retval && infop)
  1090. retval = put_user(uid, &infop->si_uid);
  1091. if (!retval)
  1092. retval = pid;
  1093. put_task_struct(p);
  1094. BUG_ON(!retval);
  1095. return retval;
  1096. }
  1097. /*
  1098. * Handle do_wait work for one task in a live, non-stopped state.
  1099. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1100. * the lock and this task is uninteresting. If we return nonzero, we have
  1101. * released the lock and the system call should return.
  1102. */
  1103. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1104. {
  1105. int retval;
  1106. pid_t pid;
  1107. uid_t uid;
  1108. if (!unlikely(wo->wo_flags & WCONTINUED))
  1109. return 0;
  1110. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1111. return 0;
  1112. spin_lock_irq(&p->sighand->siglock);
  1113. /* Re-check with the lock held. */
  1114. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1115. spin_unlock_irq(&p->sighand->siglock);
  1116. return 0;
  1117. }
  1118. if (!unlikely(wo->wo_flags & WNOWAIT))
  1119. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1120. uid = from_kuid_munged(current_user_ns(), task_uid(p));
  1121. spin_unlock_irq(&p->sighand->siglock);
  1122. pid = task_pid_vnr(p);
  1123. get_task_struct(p);
  1124. read_unlock(&tasklist_lock);
  1125. sched_annotate_sleep();
  1126. if (!wo->wo_info) {
  1127. retval = wo->wo_rusage
  1128. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1129. put_task_struct(p);
  1130. if (!retval && wo->wo_stat)
  1131. retval = put_user(0xffff, wo->wo_stat);
  1132. if (!retval)
  1133. retval = pid;
  1134. } else {
  1135. retval = wait_noreap_copyout(wo, p, pid, uid,
  1136. CLD_CONTINUED, SIGCONT);
  1137. BUG_ON(retval == 0);
  1138. }
  1139. return retval;
  1140. }
  1141. /*
  1142. * Consider @p for a wait by @parent.
  1143. *
  1144. * -ECHILD should be in ->notask_error before the first call.
  1145. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1146. * Returns zero if the search for a child should continue;
  1147. * then ->notask_error is 0 if @p is an eligible child,
  1148. * or another error from security_task_wait(), or still -ECHILD.
  1149. */
  1150. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1151. struct task_struct *p)
  1152. {
  1153. /*
  1154. * We can race with wait_task_zombie() from another thread.
  1155. * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
  1156. * can't confuse the checks below.
  1157. */
  1158. int exit_state = ACCESS_ONCE(p->exit_state);
  1159. int ret;
  1160. if (unlikely(exit_state == EXIT_DEAD))
  1161. return 0;
  1162. ret = eligible_child(wo, ptrace, p);
  1163. if (!ret)
  1164. return ret;
  1165. ret = security_task_wait(p);
  1166. if (unlikely(ret < 0)) {
  1167. /*
  1168. * If we have not yet seen any eligible child,
  1169. * then let this error code replace -ECHILD.
  1170. * A permission error will give the user a clue
  1171. * to look for security policy problems, rather
  1172. * than for mysterious wait bugs.
  1173. */
  1174. if (wo->notask_error)
  1175. wo->notask_error = ret;
  1176. return 0;
  1177. }
  1178. if (unlikely(exit_state == EXIT_TRACE)) {
  1179. /*
  1180. * ptrace == 0 means we are the natural parent. In this case
  1181. * we should clear notask_error, debugger will notify us.
  1182. */
  1183. if (likely(!ptrace))
  1184. wo->notask_error = 0;
  1185. return 0;
  1186. }
  1187. if (likely(!ptrace) && unlikely(p->ptrace)) {
  1188. /*
  1189. * If it is traced by its real parent's group, just pretend
  1190. * the caller is ptrace_do_wait() and reap this child if it
  1191. * is zombie.
  1192. *
  1193. * This also hides group stop state from real parent; otherwise
  1194. * a single stop can be reported twice as group and ptrace stop.
  1195. * If a ptracer wants to distinguish these two events for its
  1196. * own children it should create a separate process which takes
  1197. * the role of real parent.
  1198. */
  1199. if (!ptrace_reparented(p))
  1200. ptrace = 1;
  1201. }
  1202. /* slay zombie? */
  1203. if (exit_state == EXIT_ZOMBIE) {
  1204. /* we don't reap group leaders with subthreads */
  1205. if (!delay_group_leader(p)) {
  1206. /*
  1207. * A zombie ptracee is only visible to its ptracer.
  1208. * Notification and reaping will be cascaded to the
  1209. * real parent when the ptracer detaches.
  1210. */
  1211. if (unlikely(ptrace) || likely(!p->ptrace))
  1212. return wait_task_zombie(wo, p);
  1213. }
  1214. /*
  1215. * Allow access to stopped/continued state via zombie by
  1216. * falling through. Clearing of notask_error is complex.
  1217. *
  1218. * When !@ptrace:
  1219. *
  1220. * If WEXITED is set, notask_error should naturally be
  1221. * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
  1222. * so, if there are live subthreads, there are events to
  1223. * wait for. If all subthreads are dead, it's still safe
  1224. * to clear - this function will be called again in finite
  1225. * amount time once all the subthreads are released and
  1226. * will then return without clearing.
  1227. *
  1228. * When @ptrace:
  1229. *
  1230. * Stopped state is per-task and thus can't change once the
  1231. * target task dies. Only continued and exited can happen.
  1232. * Clear notask_error if WCONTINUED | WEXITED.
  1233. */
  1234. if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
  1235. wo->notask_error = 0;
  1236. } else {
  1237. /*
  1238. * @p is alive and it's gonna stop, continue or exit, so
  1239. * there always is something to wait for.
  1240. */
  1241. wo->notask_error = 0;
  1242. }
  1243. /*
  1244. * Wait for stopped. Depending on @ptrace, different stopped state
  1245. * is used and the two don't interact with each other.
  1246. */
  1247. ret = wait_task_stopped(wo, ptrace, p);
  1248. if (ret)
  1249. return ret;
  1250. /*
  1251. * Wait for continued. There's only one continued state and the
  1252. * ptracer can consume it which can confuse the real parent. Don't
  1253. * use WCONTINUED from ptracer. You don't need or want it.
  1254. */
  1255. return wait_task_continued(wo, p);
  1256. }
  1257. /*
  1258. * Do the work of do_wait() for one thread in the group, @tsk.
  1259. *
  1260. * -ECHILD should be in ->notask_error before the first call.
  1261. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1262. * Returns zero if the search for a child should continue; then
  1263. * ->notask_error is 0 if there were any eligible children,
  1264. * or another error from security_task_wait(), or still -ECHILD.
  1265. */
  1266. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1267. {
  1268. struct task_struct *p;
  1269. list_for_each_entry(p, &tsk->children, sibling) {
  1270. int ret = wait_consider_task(wo, 0, p);
  1271. if (ret)
  1272. return ret;
  1273. }
  1274. return 0;
  1275. }
  1276. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1277. {
  1278. struct task_struct *p;
  1279. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1280. int ret = wait_consider_task(wo, 1, p);
  1281. if (ret)
  1282. return ret;
  1283. }
  1284. return 0;
  1285. }
  1286. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1287. int sync, void *key)
  1288. {
  1289. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1290. child_wait);
  1291. struct task_struct *p = key;
  1292. if (!eligible_pid(wo, p))
  1293. return 0;
  1294. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1295. return 0;
  1296. return default_wake_function(wait, mode, sync, key);
  1297. }
  1298. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1299. {
  1300. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1301. TASK_INTERRUPTIBLE, 1, p);
  1302. }
  1303. static long do_wait(struct wait_opts *wo)
  1304. {
  1305. struct task_struct *tsk;
  1306. int retval;
  1307. trace_sched_process_wait(wo->wo_pid);
  1308. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1309. wo->child_wait.private = current;
  1310. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1311. repeat:
  1312. /*
  1313. * If there is nothing that can match our criteria, just get out.
  1314. * We will clear ->notask_error to zero if we see any child that
  1315. * might later match our criteria, even if we are not able to reap
  1316. * it yet.
  1317. */
  1318. wo->notask_error = -ECHILD;
  1319. if ((wo->wo_type < PIDTYPE_MAX) &&
  1320. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1321. goto notask;
  1322. set_current_state(TASK_INTERRUPTIBLE);
  1323. read_lock(&tasklist_lock);
  1324. tsk = current;
  1325. do {
  1326. retval = do_wait_thread(wo, tsk);
  1327. if (retval)
  1328. goto end;
  1329. retval = ptrace_do_wait(wo, tsk);
  1330. if (retval)
  1331. goto end;
  1332. if (wo->wo_flags & __WNOTHREAD)
  1333. break;
  1334. } while_each_thread(current, tsk);
  1335. read_unlock(&tasklist_lock);
  1336. notask:
  1337. retval = wo->notask_error;
  1338. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1339. retval = -ERESTARTSYS;
  1340. if (!signal_pending(current)) {
  1341. schedule();
  1342. goto repeat;
  1343. }
  1344. }
  1345. end:
  1346. __set_current_state(TASK_RUNNING);
  1347. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1348. return retval;
  1349. }
  1350. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1351. infop, int, options, struct rusage __user *, ru)
  1352. {
  1353. struct wait_opts wo;
  1354. struct pid *pid = NULL;
  1355. enum pid_type type;
  1356. long ret;
  1357. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1358. return -EINVAL;
  1359. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1360. return -EINVAL;
  1361. switch (which) {
  1362. case P_ALL:
  1363. type = PIDTYPE_MAX;
  1364. break;
  1365. case P_PID:
  1366. type = PIDTYPE_PID;
  1367. if (upid <= 0)
  1368. return -EINVAL;
  1369. break;
  1370. case P_PGID:
  1371. type = PIDTYPE_PGID;
  1372. if (upid <= 0)
  1373. return -EINVAL;
  1374. break;
  1375. default:
  1376. return -EINVAL;
  1377. }
  1378. if (type < PIDTYPE_MAX)
  1379. pid = find_get_pid(upid);
  1380. wo.wo_type = type;
  1381. wo.wo_pid = pid;
  1382. wo.wo_flags = options;
  1383. wo.wo_info = infop;
  1384. wo.wo_stat = NULL;
  1385. wo.wo_rusage = ru;
  1386. ret = do_wait(&wo);
  1387. if (ret > 0) {
  1388. ret = 0;
  1389. } else if (infop) {
  1390. /*
  1391. * For a WNOHANG return, clear out all the fields
  1392. * we would set so the user can easily tell the
  1393. * difference.
  1394. */
  1395. if (!ret)
  1396. ret = put_user(0, &infop->si_signo);
  1397. if (!ret)
  1398. ret = put_user(0, &infop->si_errno);
  1399. if (!ret)
  1400. ret = put_user(0, &infop->si_code);
  1401. if (!ret)
  1402. ret = put_user(0, &infop->si_pid);
  1403. if (!ret)
  1404. ret = put_user(0, &infop->si_uid);
  1405. if (!ret)
  1406. ret = put_user(0, &infop->si_status);
  1407. }
  1408. put_pid(pid);
  1409. return ret;
  1410. }
  1411. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1412. int, options, struct rusage __user *, ru)
  1413. {
  1414. struct wait_opts wo;
  1415. struct pid *pid = NULL;
  1416. enum pid_type type;
  1417. long ret;
  1418. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1419. __WNOTHREAD|__WCLONE|__WALL))
  1420. return -EINVAL;
  1421. /* -INT_MIN is not defined */
  1422. if (upid == INT_MIN)
  1423. return -ESRCH;
  1424. if (upid == -1)
  1425. type = PIDTYPE_MAX;
  1426. else if (upid < 0) {
  1427. type = PIDTYPE_PGID;
  1428. pid = find_get_pid(-upid);
  1429. } else if (upid == 0) {
  1430. type = PIDTYPE_PGID;
  1431. pid = get_task_pid(current, PIDTYPE_PGID);
  1432. } else /* upid > 0 */ {
  1433. type = PIDTYPE_PID;
  1434. pid = find_get_pid(upid);
  1435. }
  1436. wo.wo_type = type;
  1437. wo.wo_pid = pid;
  1438. wo.wo_flags = options | WEXITED;
  1439. wo.wo_info = NULL;
  1440. wo.wo_stat = stat_addr;
  1441. wo.wo_rusage = ru;
  1442. ret = do_wait(&wo);
  1443. put_pid(pid);
  1444. return ret;
  1445. }
  1446. #ifdef __ARCH_WANT_SYS_WAITPID
  1447. /*
  1448. * sys_waitpid() remains for compatibility. waitpid() should be
  1449. * implemented by calling sys_wait4() from libc.a.
  1450. */
  1451. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1452. {
  1453. return sys_wait4(pid, stat_addr, options, NULL);
  1454. }
  1455. #endif