mutex.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977
  1. /*
  2. * kernel/locking/mutex.c
  3. *
  4. * Mutexes: blocking mutual exclusion locks
  5. *
  6. * Started by Ingo Molnar:
  7. *
  8. * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  9. *
  10. * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11. * David Howells for suggestions and improvements.
  12. *
  13. * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14. * from the -rt tree, where it was originally implemented for rtmutexes
  15. * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16. * and Sven Dietrich.
  17. *
  18. * Also see Documentation/locking/mutex-design.txt.
  19. */
  20. #include <linux/mutex.h>
  21. #include <linux/ww_mutex.h>
  22. #include <linux/sched.h>
  23. #include <linux/sched/rt.h>
  24. #include <linux/export.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/debug_locks.h>
  28. #include <linux/osq_lock.h>
  29. /*
  30. * In the DEBUG case we are using the "NULL fastpath" for mutexes,
  31. * which forces all calls into the slowpath:
  32. */
  33. #ifdef CONFIG_DEBUG_MUTEXES
  34. # include "mutex-debug.h"
  35. # include <asm-generic/mutex-null.h>
  36. /*
  37. * Must be 0 for the debug case so we do not do the unlock outside of the
  38. * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
  39. * case.
  40. */
  41. # undef __mutex_slowpath_needs_to_unlock
  42. # define __mutex_slowpath_needs_to_unlock() 0
  43. #else
  44. # include "mutex.h"
  45. # include <asm/mutex.h>
  46. #endif
  47. void
  48. __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  49. {
  50. atomic_set(&lock->count, 1);
  51. spin_lock_init(&lock->wait_lock);
  52. INIT_LIST_HEAD(&lock->wait_list);
  53. mutex_clear_owner(lock);
  54. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  55. osq_lock_init(&lock->osq);
  56. #endif
  57. debug_mutex_init(lock, name, key);
  58. }
  59. EXPORT_SYMBOL(__mutex_init);
  60. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  61. /*
  62. * We split the mutex lock/unlock logic into separate fastpath and
  63. * slowpath functions, to reduce the register pressure on the fastpath.
  64. * We also put the fastpath first in the kernel image, to make sure the
  65. * branch is predicted by the CPU as default-untaken.
  66. */
  67. __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
  68. /**
  69. * mutex_lock - acquire the mutex
  70. * @lock: the mutex to be acquired
  71. *
  72. * Lock the mutex exclusively for this task. If the mutex is not
  73. * available right now, it will sleep until it can get it.
  74. *
  75. * The mutex must later on be released by the same task that
  76. * acquired it. Recursive locking is not allowed. The task
  77. * may not exit without first unlocking the mutex. Also, kernel
  78. * memory where the mutex resides must not be freed with
  79. * the mutex still locked. The mutex must first be initialized
  80. * (or statically defined) before it can be locked. memset()-ing
  81. * the mutex to 0 is not allowed.
  82. *
  83. * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
  84. * checks that will enforce the restrictions and will also do
  85. * deadlock debugging. )
  86. *
  87. * This function is similar to (but not equivalent to) down().
  88. */
  89. void __sched mutex_lock(struct mutex *lock)
  90. {
  91. might_sleep();
  92. /*
  93. * The locking fastpath is the 1->0 transition from
  94. * 'unlocked' into 'locked' state.
  95. */
  96. __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
  97. mutex_set_owner(lock);
  98. }
  99. EXPORT_SYMBOL(mutex_lock);
  100. #endif
  101. static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
  102. struct ww_acquire_ctx *ww_ctx)
  103. {
  104. #ifdef CONFIG_DEBUG_MUTEXES
  105. /*
  106. * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
  107. * but released with a normal mutex_unlock in this call.
  108. *
  109. * This should never happen, always use ww_mutex_unlock.
  110. */
  111. DEBUG_LOCKS_WARN_ON(ww->ctx);
  112. /*
  113. * Not quite done after calling ww_acquire_done() ?
  114. */
  115. DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
  116. if (ww_ctx->contending_lock) {
  117. /*
  118. * After -EDEADLK you tried to
  119. * acquire a different ww_mutex? Bad!
  120. */
  121. DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
  122. /*
  123. * You called ww_mutex_lock after receiving -EDEADLK,
  124. * but 'forgot' to unlock everything else first?
  125. */
  126. DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
  127. ww_ctx->contending_lock = NULL;
  128. }
  129. /*
  130. * Naughty, using a different class will lead to undefined behavior!
  131. */
  132. DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
  133. #endif
  134. ww_ctx->acquired++;
  135. }
  136. /*
  137. * After acquiring lock with fastpath or when we lost out in contested
  138. * slowpath, set ctx and wake up any waiters so they can recheck.
  139. *
  140. * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
  141. * as the fastpath and opportunistic spinning are disabled in that case.
  142. */
  143. static __always_inline void
  144. ww_mutex_set_context_fastpath(struct ww_mutex *lock,
  145. struct ww_acquire_ctx *ctx)
  146. {
  147. unsigned long flags;
  148. struct mutex_waiter *cur;
  149. ww_mutex_lock_acquired(lock, ctx);
  150. lock->ctx = ctx;
  151. /*
  152. * The lock->ctx update should be visible on all cores before
  153. * the atomic read is done, otherwise contended waiters might be
  154. * missed. The contended waiters will either see ww_ctx == NULL
  155. * and keep spinning, or it will acquire wait_lock, add itself
  156. * to waiter list and sleep.
  157. */
  158. smp_mb(); /* ^^^ */
  159. /*
  160. * Check if lock is contended, if not there is nobody to wake up
  161. */
  162. if (likely(atomic_read(&lock->base.count) == 0))
  163. return;
  164. /*
  165. * Uh oh, we raced in fastpath, wake up everyone in this case,
  166. * so they can see the new lock->ctx.
  167. */
  168. spin_lock_mutex(&lock->base.wait_lock, flags);
  169. list_for_each_entry(cur, &lock->base.wait_list, list) {
  170. debug_mutex_wake_waiter(&lock->base, cur);
  171. wake_up_process(cur->task);
  172. }
  173. spin_unlock_mutex(&lock->base.wait_lock, flags);
  174. }
  175. /*
  176. * After acquiring lock in the slowpath set ctx and wake up any
  177. * waiters so they can recheck.
  178. *
  179. * Callers must hold the mutex wait_lock.
  180. */
  181. static __always_inline void
  182. ww_mutex_set_context_slowpath(struct ww_mutex *lock,
  183. struct ww_acquire_ctx *ctx)
  184. {
  185. struct mutex_waiter *cur;
  186. ww_mutex_lock_acquired(lock, ctx);
  187. lock->ctx = ctx;
  188. /*
  189. * Give any possible sleeping processes the chance to wake up,
  190. * so they can recheck if they have to back off.
  191. */
  192. list_for_each_entry(cur, &lock->base.wait_list, list) {
  193. debug_mutex_wake_waiter(&lock->base, cur);
  194. wake_up_process(cur->task);
  195. }
  196. }
  197. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  198. /*
  199. * Look out! "owner" is an entirely speculative pointer
  200. * access and not reliable.
  201. */
  202. static noinline
  203. bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  204. {
  205. bool ret = true;
  206. rcu_read_lock();
  207. while (lock->owner == owner) {
  208. /*
  209. * Ensure we emit the owner->on_cpu, dereference _after_
  210. * checking lock->owner still matches owner. If that fails,
  211. * owner might point to freed memory. If it still matches,
  212. * the rcu_read_lock() ensures the memory stays valid.
  213. */
  214. barrier();
  215. if (!owner->on_cpu || need_resched()) {
  216. ret = false;
  217. break;
  218. }
  219. cpu_relax_lowlatency();
  220. }
  221. rcu_read_unlock();
  222. return ret;
  223. }
  224. /*
  225. * Initial check for entering the mutex spinning loop
  226. */
  227. static inline int mutex_can_spin_on_owner(struct mutex *lock)
  228. {
  229. struct task_struct *owner;
  230. int retval = 1;
  231. if (need_resched())
  232. return 0;
  233. rcu_read_lock();
  234. owner = READ_ONCE(lock->owner);
  235. if (owner)
  236. retval = owner->on_cpu;
  237. rcu_read_unlock();
  238. /*
  239. * if lock->owner is not set, the mutex owner may have just acquired
  240. * it and not set the owner yet or the mutex has been released.
  241. */
  242. return retval;
  243. }
  244. /*
  245. * Atomically try to take the lock when it is available
  246. */
  247. static inline bool mutex_try_to_acquire(struct mutex *lock)
  248. {
  249. return !mutex_is_locked(lock) &&
  250. (atomic_cmpxchg_acquire(&lock->count, 1, 0) == 1);
  251. }
  252. /*
  253. * Optimistic spinning.
  254. *
  255. * We try to spin for acquisition when we find that the lock owner
  256. * is currently running on a (different) CPU and while we don't
  257. * need to reschedule. The rationale is that if the lock owner is
  258. * running, it is likely to release the lock soon.
  259. *
  260. * Since this needs the lock owner, and this mutex implementation
  261. * doesn't track the owner atomically in the lock field, we need to
  262. * track it non-atomically.
  263. *
  264. * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
  265. * to serialize everything.
  266. *
  267. * The mutex spinners are queued up using MCS lock so that only one
  268. * spinner can compete for the mutex. However, if mutex spinning isn't
  269. * going to happen, there is no point in going through the lock/unlock
  270. * overhead.
  271. *
  272. * Returns true when the lock was taken, otherwise false, indicating
  273. * that we need to jump to the slowpath and sleep.
  274. */
  275. static bool mutex_optimistic_spin(struct mutex *lock,
  276. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  277. {
  278. struct task_struct *task = current;
  279. if (!mutex_can_spin_on_owner(lock))
  280. goto done;
  281. /*
  282. * In order to avoid a stampede of mutex spinners trying to
  283. * acquire the mutex all at once, the spinners need to take a
  284. * MCS (queued) lock first before spinning on the owner field.
  285. */
  286. if (!osq_lock(&lock->osq))
  287. goto done;
  288. while (true) {
  289. struct task_struct *owner;
  290. if (use_ww_ctx && ww_ctx->acquired > 0) {
  291. struct ww_mutex *ww;
  292. ww = container_of(lock, struct ww_mutex, base);
  293. /*
  294. * If ww->ctx is set the contents are undefined, only
  295. * by acquiring wait_lock there is a guarantee that
  296. * they are not invalid when reading.
  297. *
  298. * As such, when deadlock detection needs to be
  299. * performed the optimistic spinning cannot be done.
  300. */
  301. if (READ_ONCE(ww->ctx))
  302. break;
  303. }
  304. /*
  305. * If there's an owner, wait for it to either
  306. * release the lock or go to sleep.
  307. */
  308. owner = READ_ONCE(lock->owner);
  309. if (owner && !mutex_spin_on_owner(lock, owner))
  310. break;
  311. /* Try to acquire the mutex if it is unlocked. */
  312. if (mutex_try_to_acquire(lock)) {
  313. lock_acquired(&lock->dep_map, ip);
  314. if (use_ww_ctx) {
  315. struct ww_mutex *ww;
  316. ww = container_of(lock, struct ww_mutex, base);
  317. ww_mutex_set_context_fastpath(ww, ww_ctx);
  318. }
  319. mutex_set_owner(lock);
  320. osq_unlock(&lock->osq);
  321. return true;
  322. }
  323. /*
  324. * When there's no owner, we might have preempted between the
  325. * owner acquiring the lock and setting the owner field. If
  326. * we're an RT task that will live-lock because we won't let
  327. * the owner complete.
  328. */
  329. if (!owner && (need_resched() || rt_task(task)))
  330. break;
  331. /*
  332. * The cpu_relax() call is a compiler barrier which forces
  333. * everything in this loop to be re-loaded. We don't need
  334. * memory barriers as we'll eventually observe the right
  335. * values at the cost of a few extra spins.
  336. */
  337. cpu_relax_lowlatency();
  338. }
  339. osq_unlock(&lock->osq);
  340. done:
  341. /*
  342. * If we fell out of the spin path because of need_resched(),
  343. * reschedule now, before we try-lock the mutex. This avoids getting
  344. * scheduled out right after we obtained the mutex.
  345. */
  346. if (need_resched()) {
  347. /*
  348. * We _should_ have TASK_RUNNING here, but just in case
  349. * we do not, make it so, otherwise we might get stuck.
  350. */
  351. __set_current_state(TASK_RUNNING);
  352. schedule_preempt_disabled();
  353. }
  354. return false;
  355. }
  356. #else
  357. static bool mutex_optimistic_spin(struct mutex *lock,
  358. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  359. {
  360. return false;
  361. }
  362. #endif
  363. __visible __used noinline
  364. void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
  365. /**
  366. * mutex_unlock - release the mutex
  367. * @lock: the mutex to be released
  368. *
  369. * Unlock a mutex that has been locked by this task previously.
  370. *
  371. * This function must not be used in interrupt context. Unlocking
  372. * of a not locked mutex is not allowed.
  373. *
  374. * This function is similar to (but not equivalent to) up().
  375. */
  376. void __sched mutex_unlock(struct mutex *lock)
  377. {
  378. /*
  379. * The unlocking fastpath is the 0->1 transition from 'locked'
  380. * into 'unlocked' state:
  381. */
  382. #ifndef CONFIG_DEBUG_MUTEXES
  383. /*
  384. * When debugging is enabled we must not clear the owner before time,
  385. * the slow path will always be taken, and that clears the owner field
  386. * after verifying that it was indeed current.
  387. */
  388. mutex_clear_owner(lock);
  389. #endif
  390. __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
  391. }
  392. EXPORT_SYMBOL(mutex_unlock);
  393. /**
  394. * ww_mutex_unlock - release the w/w mutex
  395. * @lock: the mutex to be released
  396. *
  397. * Unlock a mutex that has been locked by this task previously with any of the
  398. * ww_mutex_lock* functions (with or without an acquire context). It is
  399. * forbidden to release the locks after releasing the acquire context.
  400. *
  401. * This function must not be used in interrupt context. Unlocking
  402. * of a unlocked mutex is not allowed.
  403. */
  404. void __sched ww_mutex_unlock(struct ww_mutex *lock)
  405. {
  406. /*
  407. * The unlocking fastpath is the 0->1 transition from 'locked'
  408. * into 'unlocked' state:
  409. */
  410. if (lock->ctx) {
  411. #ifdef CONFIG_DEBUG_MUTEXES
  412. DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
  413. #endif
  414. if (lock->ctx->acquired > 0)
  415. lock->ctx->acquired--;
  416. lock->ctx = NULL;
  417. }
  418. #ifndef CONFIG_DEBUG_MUTEXES
  419. /*
  420. * When debugging is enabled we must not clear the owner before time,
  421. * the slow path will always be taken, and that clears the owner field
  422. * after verifying that it was indeed current.
  423. */
  424. mutex_clear_owner(&lock->base);
  425. #endif
  426. __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
  427. }
  428. EXPORT_SYMBOL(ww_mutex_unlock);
  429. static inline int __sched
  430. __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
  431. {
  432. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  433. struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
  434. if (!hold_ctx)
  435. return 0;
  436. if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
  437. (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
  438. #ifdef CONFIG_DEBUG_MUTEXES
  439. DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
  440. ctx->contending_lock = ww;
  441. #endif
  442. return -EDEADLK;
  443. }
  444. return 0;
  445. }
  446. /*
  447. * Lock a mutex (possibly interruptible), slowpath:
  448. */
  449. static __always_inline int __sched
  450. __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
  451. struct lockdep_map *nest_lock, unsigned long ip,
  452. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  453. {
  454. struct task_struct *task = current;
  455. struct mutex_waiter waiter;
  456. unsigned long flags;
  457. int ret;
  458. if (use_ww_ctx) {
  459. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  460. if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
  461. return -EALREADY;
  462. }
  463. preempt_disable();
  464. mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
  465. if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
  466. /* got the lock, yay! */
  467. preempt_enable();
  468. return 0;
  469. }
  470. spin_lock_mutex(&lock->wait_lock, flags);
  471. /*
  472. * Once more, try to acquire the lock. Only try-lock the mutex if
  473. * it is unlocked to reduce unnecessary xchg() operations.
  474. */
  475. if (!mutex_is_locked(lock) &&
  476. (atomic_xchg_acquire(&lock->count, 0) == 1))
  477. goto skip_wait;
  478. debug_mutex_lock_common(lock, &waiter);
  479. debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
  480. /* add waiting tasks to the end of the waitqueue (FIFO): */
  481. list_add_tail(&waiter.list, &lock->wait_list);
  482. waiter.task = task;
  483. lock_contended(&lock->dep_map, ip);
  484. for (;;) {
  485. /*
  486. * Lets try to take the lock again - this is needed even if
  487. * we get here for the first time (shortly after failing to
  488. * acquire the lock), to make sure that we get a wakeup once
  489. * it's unlocked. Later on, if we sleep, this is the
  490. * operation that gives us the lock. We xchg it to -1, so
  491. * that when we release the lock, we properly wake up the
  492. * other waiters. We only attempt the xchg if the count is
  493. * non-negative in order to avoid unnecessary xchg operations:
  494. */
  495. if (atomic_read(&lock->count) >= 0 &&
  496. (atomic_xchg_acquire(&lock->count, -1) == 1))
  497. break;
  498. /*
  499. * got a signal? (This code gets eliminated in the
  500. * TASK_UNINTERRUPTIBLE case.)
  501. */
  502. if (unlikely(signal_pending_state(state, task))) {
  503. ret = -EINTR;
  504. goto err;
  505. }
  506. if (use_ww_ctx && ww_ctx->acquired > 0) {
  507. ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
  508. if (ret)
  509. goto err;
  510. }
  511. __set_task_state(task, state);
  512. /* didn't get the lock, go to sleep: */
  513. spin_unlock_mutex(&lock->wait_lock, flags);
  514. schedule_preempt_disabled();
  515. spin_lock_mutex(&lock->wait_lock, flags);
  516. }
  517. __set_task_state(task, TASK_RUNNING);
  518. mutex_remove_waiter(lock, &waiter, current_thread_info());
  519. /* set it to 0 if there are no waiters left: */
  520. if (likely(list_empty(&lock->wait_list)))
  521. atomic_set(&lock->count, 0);
  522. debug_mutex_free_waiter(&waiter);
  523. skip_wait:
  524. /* got the lock - cleanup and rejoice! */
  525. lock_acquired(&lock->dep_map, ip);
  526. mutex_set_owner(lock);
  527. if (use_ww_ctx) {
  528. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  529. ww_mutex_set_context_slowpath(ww, ww_ctx);
  530. }
  531. spin_unlock_mutex(&lock->wait_lock, flags);
  532. preempt_enable();
  533. return 0;
  534. err:
  535. mutex_remove_waiter(lock, &waiter, task_thread_info(task));
  536. spin_unlock_mutex(&lock->wait_lock, flags);
  537. debug_mutex_free_waiter(&waiter);
  538. mutex_release(&lock->dep_map, 1, ip);
  539. preempt_enable();
  540. return ret;
  541. }
  542. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  543. void __sched
  544. mutex_lock_nested(struct mutex *lock, unsigned int subclass)
  545. {
  546. might_sleep();
  547. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  548. subclass, NULL, _RET_IP_, NULL, 0);
  549. }
  550. EXPORT_SYMBOL_GPL(mutex_lock_nested);
  551. void __sched
  552. _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
  553. {
  554. might_sleep();
  555. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  556. 0, nest, _RET_IP_, NULL, 0);
  557. }
  558. EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
  559. int __sched
  560. mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
  561. {
  562. might_sleep();
  563. return __mutex_lock_common(lock, TASK_KILLABLE,
  564. subclass, NULL, _RET_IP_, NULL, 0);
  565. }
  566. EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
  567. int __sched
  568. mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
  569. {
  570. might_sleep();
  571. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
  572. subclass, NULL, _RET_IP_, NULL, 0);
  573. }
  574. EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
  575. static inline int
  576. ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  577. {
  578. #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
  579. unsigned tmp;
  580. if (ctx->deadlock_inject_countdown-- == 0) {
  581. tmp = ctx->deadlock_inject_interval;
  582. if (tmp > UINT_MAX/4)
  583. tmp = UINT_MAX;
  584. else
  585. tmp = tmp*2 + tmp + tmp/2;
  586. ctx->deadlock_inject_interval = tmp;
  587. ctx->deadlock_inject_countdown = tmp;
  588. ctx->contending_lock = lock;
  589. ww_mutex_unlock(lock);
  590. return -EDEADLK;
  591. }
  592. #endif
  593. return 0;
  594. }
  595. int __sched
  596. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  597. {
  598. int ret;
  599. might_sleep();
  600. ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
  601. 0, &ctx->dep_map, _RET_IP_, ctx, 1);
  602. if (!ret && ctx->acquired > 1)
  603. return ww_mutex_deadlock_injection(lock, ctx);
  604. return ret;
  605. }
  606. EXPORT_SYMBOL_GPL(__ww_mutex_lock);
  607. int __sched
  608. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  609. {
  610. int ret;
  611. might_sleep();
  612. ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
  613. 0, &ctx->dep_map, _RET_IP_, ctx, 1);
  614. if (!ret && ctx->acquired > 1)
  615. return ww_mutex_deadlock_injection(lock, ctx);
  616. return ret;
  617. }
  618. EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
  619. #endif
  620. /*
  621. * Release the lock, slowpath:
  622. */
  623. static inline void
  624. __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
  625. {
  626. unsigned long flags;
  627. WAKE_Q(wake_q);
  628. /*
  629. * As a performance measurement, release the lock before doing other
  630. * wakeup related duties to follow. This allows other tasks to acquire
  631. * the lock sooner, while still handling cleanups in past unlock calls.
  632. * This can be done as we do not enforce strict equivalence between the
  633. * mutex counter and wait_list.
  634. *
  635. *
  636. * Some architectures leave the lock unlocked in the fastpath failure
  637. * case, others need to leave it locked. In the later case we have to
  638. * unlock it here - as the lock counter is currently 0 or negative.
  639. */
  640. if (__mutex_slowpath_needs_to_unlock())
  641. atomic_set(&lock->count, 1);
  642. spin_lock_mutex(&lock->wait_lock, flags);
  643. mutex_release(&lock->dep_map, nested, _RET_IP_);
  644. debug_mutex_unlock(lock);
  645. if (!list_empty(&lock->wait_list)) {
  646. /* get the first entry from the wait-list: */
  647. struct mutex_waiter *waiter =
  648. list_entry(lock->wait_list.next,
  649. struct mutex_waiter, list);
  650. debug_mutex_wake_waiter(lock, waiter);
  651. wake_q_add(&wake_q, waiter->task);
  652. }
  653. spin_unlock_mutex(&lock->wait_lock, flags);
  654. wake_up_q(&wake_q);
  655. }
  656. /*
  657. * Release the lock, slowpath:
  658. */
  659. __visible void
  660. __mutex_unlock_slowpath(atomic_t *lock_count)
  661. {
  662. struct mutex *lock = container_of(lock_count, struct mutex, count);
  663. __mutex_unlock_common_slowpath(lock, 1);
  664. }
  665. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  666. /*
  667. * Here come the less common (and hence less performance-critical) APIs:
  668. * mutex_lock_interruptible() and mutex_trylock().
  669. */
  670. static noinline int __sched
  671. __mutex_lock_killable_slowpath(struct mutex *lock);
  672. static noinline int __sched
  673. __mutex_lock_interruptible_slowpath(struct mutex *lock);
  674. /**
  675. * mutex_lock_interruptible - acquire the mutex, interruptible
  676. * @lock: the mutex to be acquired
  677. *
  678. * Lock the mutex like mutex_lock(), and return 0 if the mutex has
  679. * been acquired or sleep until the mutex becomes available. If a
  680. * signal arrives while waiting for the lock then this function
  681. * returns -EINTR.
  682. *
  683. * This function is similar to (but not equivalent to) down_interruptible().
  684. */
  685. int __sched mutex_lock_interruptible(struct mutex *lock)
  686. {
  687. int ret;
  688. might_sleep();
  689. ret = __mutex_fastpath_lock_retval(&lock->count);
  690. if (likely(!ret)) {
  691. mutex_set_owner(lock);
  692. return 0;
  693. } else
  694. return __mutex_lock_interruptible_slowpath(lock);
  695. }
  696. EXPORT_SYMBOL(mutex_lock_interruptible);
  697. int __sched mutex_lock_killable(struct mutex *lock)
  698. {
  699. int ret;
  700. might_sleep();
  701. ret = __mutex_fastpath_lock_retval(&lock->count);
  702. if (likely(!ret)) {
  703. mutex_set_owner(lock);
  704. return 0;
  705. } else
  706. return __mutex_lock_killable_slowpath(lock);
  707. }
  708. EXPORT_SYMBOL(mutex_lock_killable);
  709. __visible void __sched
  710. __mutex_lock_slowpath(atomic_t *lock_count)
  711. {
  712. struct mutex *lock = container_of(lock_count, struct mutex, count);
  713. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
  714. NULL, _RET_IP_, NULL, 0);
  715. }
  716. static noinline int __sched
  717. __mutex_lock_killable_slowpath(struct mutex *lock)
  718. {
  719. return __mutex_lock_common(lock, TASK_KILLABLE, 0,
  720. NULL, _RET_IP_, NULL, 0);
  721. }
  722. static noinline int __sched
  723. __mutex_lock_interruptible_slowpath(struct mutex *lock)
  724. {
  725. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
  726. NULL, _RET_IP_, NULL, 0);
  727. }
  728. static noinline int __sched
  729. __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  730. {
  731. return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
  732. NULL, _RET_IP_, ctx, 1);
  733. }
  734. static noinline int __sched
  735. __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
  736. struct ww_acquire_ctx *ctx)
  737. {
  738. return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
  739. NULL, _RET_IP_, ctx, 1);
  740. }
  741. #endif
  742. /*
  743. * Spinlock based trylock, we take the spinlock and check whether we
  744. * can get the lock:
  745. */
  746. static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
  747. {
  748. struct mutex *lock = container_of(lock_count, struct mutex, count);
  749. unsigned long flags;
  750. int prev;
  751. /* No need to trylock if the mutex is locked. */
  752. if (mutex_is_locked(lock))
  753. return 0;
  754. spin_lock_mutex(&lock->wait_lock, flags);
  755. prev = atomic_xchg_acquire(&lock->count, -1);
  756. if (likely(prev == 1)) {
  757. mutex_set_owner(lock);
  758. mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
  759. }
  760. /* Set it back to 0 if there are no waiters: */
  761. if (likely(list_empty(&lock->wait_list)))
  762. atomic_set(&lock->count, 0);
  763. spin_unlock_mutex(&lock->wait_lock, flags);
  764. return prev == 1;
  765. }
  766. /**
  767. * mutex_trylock - try to acquire the mutex, without waiting
  768. * @lock: the mutex to be acquired
  769. *
  770. * Try to acquire the mutex atomically. Returns 1 if the mutex
  771. * has been acquired successfully, and 0 on contention.
  772. *
  773. * NOTE: this function follows the spin_trylock() convention, so
  774. * it is negated from the down_trylock() return values! Be careful
  775. * about this when converting semaphore users to mutexes.
  776. *
  777. * This function must not be used in interrupt context. The
  778. * mutex must be released by the same task that acquired it.
  779. */
  780. int __sched mutex_trylock(struct mutex *lock)
  781. {
  782. int ret;
  783. ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
  784. if (ret)
  785. mutex_set_owner(lock);
  786. return ret;
  787. }
  788. EXPORT_SYMBOL(mutex_trylock);
  789. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  790. int __sched
  791. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  792. {
  793. int ret;
  794. might_sleep();
  795. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  796. if (likely(!ret)) {
  797. ww_mutex_set_context_fastpath(lock, ctx);
  798. mutex_set_owner(&lock->base);
  799. } else
  800. ret = __ww_mutex_lock_slowpath(lock, ctx);
  801. return ret;
  802. }
  803. EXPORT_SYMBOL(__ww_mutex_lock);
  804. int __sched
  805. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  806. {
  807. int ret;
  808. might_sleep();
  809. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  810. if (likely(!ret)) {
  811. ww_mutex_set_context_fastpath(lock, ctx);
  812. mutex_set_owner(&lock->base);
  813. } else
  814. ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
  815. return ret;
  816. }
  817. EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
  818. #endif
  819. /**
  820. * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
  821. * @cnt: the atomic which we are to dec
  822. * @lock: the mutex to return holding if we dec to 0
  823. *
  824. * return true and hold lock if we dec to 0, return false otherwise
  825. */
  826. int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
  827. {
  828. /* dec if we can't possibly hit 0 */
  829. if (atomic_add_unless(cnt, -1, 1))
  830. return 0;
  831. /* we might hit 0, so take the lock */
  832. mutex_lock(lock);
  833. if (!atomic_dec_and_test(cnt)) {
  834. /* when we actually did the dec, we didn't hit 0 */
  835. mutex_unlock(lock);
  836. return 0;
  837. }
  838. /* we hit 0, and we hold the lock */
  839. return 1;
  840. }
  841. EXPORT_SYMBOL(atomic_dec_and_mutex_lock);