123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- /*
- * Pid namespaces
- *
- * Authors:
- * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
- * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
- * Many thanks to Oleg Nesterov for comments and help
- *
- */
- #include <linux/pid.h>
- #include <linux/pid_namespace.h>
- #include <linux/user_namespace.h>
- #include <linux/syscalls.h>
- #include <linux/err.h>
- #include <linux/acct.h>
- #include <linux/slab.h>
- #include <linux/proc_ns.h>
- #include <linux/reboot.h>
- #include <linux/export.h>
- struct pid_cache {
- int nr_ids;
- char name[16];
- struct kmem_cache *cachep;
- struct list_head list;
- };
- static LIST_HEAD(pid_caches_lh);
- static DEFINE_MUTEX(pid_caches_mutex);
- static struct kmem_cache *pid_ns_cachep;
- /*
- * creates the kmem cache to allocate pids from.
- * @nr_ids: the number of numerical ids this pid will have to carry
- */
- static struct kmem_cache *create_pid_cachep(int nr_ids)
- {
- struct pid_cache *pcache;
- struct kmem_cache *cachep;
- mutex_lock(&pid_caches_mutex);
- list_for_each_entry(pcache, &pid_caches_lh, list)
- if (pcache->nr_ids == nr_ids)
- goto out;
- pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
- if (pcache == NULL)
- goto err_alloc;
- snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
- cachep = kmem_cache_create(pcache->name,
- sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
- 0, SLAB_HWCACHE_ALIGN, NULL);
- if (cachep == NULL)
- goto err_cachep;
- pcache->nr_ids = nr_ids;
- pcache->cachep = cachep;
- list_add(&pcache->list, &pid_caches_lh);
- out:
- mutex_unlock(&pid_caches_mutex);
- return pcache->cachep;
- err_cachep:
- kfree(pcache);
- err_alloc:
- mutex_unlock(&pid_caches_mutex);
- return NULL;
- }
- static void proc_cleanup_work(struct work_struct *work)
- {
- struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
- pid_ns_release_proc(ns);
- }
- /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
- #define MAX_PID_NS_LEVEL 32
- static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
- struct pid_namespace *parent_pid_ns)
- {
- struct pid_namespace *ns;
- unsigned int level = parent_pid_ns->level + 1;
- int i;
- int err;
- if (level > MAX_PID_NS_LEVEL) {
- err = -EINVAL;
- goto out;
- }
- err = -ENOMEM;
- ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
- if (ns == NULL)
- goto out;
- ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
- if (!ns->pidmap[0].page)
- goto out_free;
- ns->pid_cachep = create_pid_cachep(level + 1);
- if (ns->pid_cachep == NULL)
- goto out_free_map;
- err = ns_alloc_inum(&ns->ns);
- if (err)
- goto out_free_map;
- ns->ns.ops = &pidns_operations;
- kref_init(&ns->kref);
- ns->level = level;
- ns->parent = get_pid_ns(parent_pid_ns);
- ns->user_ns = get_user_ns(user_ns);
- ns->nr_hashed = PIDNS_HASH_ADDING;
- INIT_WORK(&ns->proc_work, proc_cleanup_work);
- set_bit(0, ns->pidmap[0].page);
- atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
- for (i = 1; i < PIDMAP_ENTRIES; i++)
- atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
- return ns;
- out_free_map:
- kfree(ns->pidmap[0].page);
- out_free:
- kmem_cache_free(pid_ns_cachep, ns);
- out:
- return ERR_PTR(err);
- }
- static void delayed_free_pidns(struct rcu_head *p)
- {
- kmem_cache_free(pid_ns_cachep,
- container_of(p, struct pid_namespace, rcu));
- }
- static void destroy_pid_namespace(struct pid_namespace *ns)
- {
- int i;
- ns_free_inum(&ns->ns);
- for (i = 0; i < PIDMAP_ENTRIES; i++)
- kfree(ns->pidmap[i].page);
- put_user_ns(ns->user_ns);
- call_rcu(&ns->rcu, delayed_free_pidns);
- }
- struct pid_namespace *copy_pid_ns(unsigned long flags,
- struct user_namespace *user_ns, struct pid_namespace *old_ns)
- {
- if (!(flags & CLONE_NEWPID))
- return get_pid_ns(old_ns);
- if (task_active_pid_ns(current) != old_ns)
- return ERR_PTR(-EINVAL);
- return create_pid_namespace(user_ns, old_ns);
- }
- static void free_pid_ns(struct kref *kref)
- {
- struct pid_namespace *ns;
- ns = container_of(kref, struct pid_namespace, kref);
- destroy_pid_namespace(ns);
- }
- void put_pid_ns(struct pid_namespace *ns)
- {
- struct pid_namespace *parent;
- while (ns != &init_pid_ns) {
- parent = ns->parent;
- if (!kref_put(&ns->kref, free_pid_ns))
- break;
- ns = parent;
- }
- }
- EXPORT_SYMBOL_GPL(put_pid_ns);
- void zap_pid_ns_processes(struct pid_namespace *pid_ns)
- {
- int nr;
- int rc;
- struct task_struct *task, *me = current;
- int init_pids = thread_group_leader(me) ? 1 : 2;
- /* Don't allow any more processes into the pid namespace */
- disable_pid_allocation(pid_ns);
- /*
- * Ignore SIGCHLD causing any terminated children to autoreap.
- * This speeds up the namespace shutdown, plus see the comment
- * below.
- */
- spin_lock_irq(&me->sighand->siglock);
- me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
- spin_unlock_irq(&me->sighand->siglock);
- /*
- * The last thread in the cgroup-init thread group is terminating.
- * Find remaining pid_ts in the namespace, signal and wait for them
- * to exit.
- *
- * Note: This signals each threads in the namespace - even those that
- * belong to the same thread group, To avoid this, we would have
- * to walk the entire tasklist looking a processes in this
- * namespace, but that could be unnecessarily expensive if the
- * pid namespace has just a few processes. Or we need to
- * maintain a tasklist for each pid namespace.
- *
- */
- read_lock(&tasklist_lock);
- nr = next_pidmap(pid_ns, 1);
- while (nr > 0) {
- rcu_read_lock();
- task = pid_task(find_vpid(nr), PIDTYPE_PID);
- if (task && !__fatal_signal_pending(task))
- send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
- rcu_read_unlock();
- nr = next_pidmap(pid_ns, nr);
- }
- read_unlock(&tasklist_lock);
- /*
- * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
- * sys_wait4() will also block until our children traced from the
- * parent namespace are detached and become EXIT_DEAD.
- */
- do {
- clear_thread_flag(TIF_SIGPENDING);
- rc = sys_wait4(-1, NULL, __WALL, NULL);
- } while (rc != -ECHILD);
- /*
- * sys_wait4() above can't reap the EXIT_DEAD children but we do not
- * really care, we could reparent them to the global init. We could
- * exit and reap ->child_reaper even if it is not the last thread in
- * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
- * pid_ns can not go away until proc_kill_sb() drops the reference.
- *
- * But this ns can also have other tasks injected by setns()+fork().
- * Again, ignoring the user visible semantics we do not really need
- * to wait until they are all reaped, but they can be reparented to
- * us and thus we need to ensure that pid->child_reaper stays valid
- * until they all go away. See free_pid()->wake_up_process().
- *
- * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
- * if reparented.
- */
- for (;;) {
- set_current_state(TASK_INTERRUPTIBLE);
- if (pid_ns->nr_hashed == init_pids)
- break;
- schedule();
- }
- __set_current_state(TASK_RUNNING);
- if (pid_ns->reboot)
- current->signal->group_exit_code = pid_ns->reboot;
- acct_exit_ns(pid_ns);
- return;
- }
- #ifdef CONFIG_CHECKPOINT_RESTORE
- static int pid_ns_ctl_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp, loff_t *ppos)
- {
- struct pid_namespace *pid_ns = task_active_pid_ns(current);
- struct ctl_table tmp = *table;
- if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
- return -EPERM;
- /*
- * Writing directly to ns' last_pid field is OK, since this field
- * is volatile in a living namespace anyway and a code writing to
- * it should synchronize its usage with external means.
- */
- tmp.data = &pid_ns->last_pid;
- return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
- }
- extern int pid_max;
- static int zero = 0;
- static struct ctl_table pid_ns_ctl_table[] = {
- {
- .procname = "ns_last_pid",
- .maxlen = sizeof(int),
- .mode = 0666, /* permissions are checked in the handler */
- .proc_handler = pid_ns_ctl_handler,
- .extra1 = &zero,
- .extra2 = &pid_max,
- },
- { }
- };
- static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
- #endif /* CONFIG_CHECKPOINT_RESTORE */
- int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
- {
- if (pid_ns == &init_pid_ns)
- return 0;
- switch (cmd) {
- case LINUX_REBOOT_CMD_RESTART2:
- case LINUX_REBOOT_CMD_RESTART:
- pid_ns->reboot = SIGHUP;
- break;
- case LINUX_REBOOT_CMD_POWER_OFF:
- case LINUX_REBOOT_CMD_HALT:
- pid_ns->reboot = SIGINT;
- break;
- default:
- return -EINVAL;
- }
- read_lock(&tasklist_lock);
- force_sig(SIGKILL, pid_ns->child_reaper);
- read_unlock(&tasklist_lock);
- do_exit(0);
- /* Not reached */
- return 0;
- }
- static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
- {
- return container_of(ns, struct pid_namespace, ns);
- }
- static struct ns_common *pidns_get(struct task_struct *task)
- {
- struct pid_namespace *ns;
- rcu_read_lock();
- ns = task_active_pid_ns(task);
- if (ns)
- get_pid_ns(ns);
- rcu_read_unlock();
- return ns ? &ns->ns : NULL;
- }
- static void pidns_put(struct ns_common *ns)
- {
- put_pid_ns(to_pid_ns(ns));
- }
- static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
- {
- struct pid_namespace *active = task_active_pid_ns(current);
- struct pid_namespace *ancestor, *new = to_pid_ns(ns);
- if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
- !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
- return -EPERM;
- /*
- * Only allow entering the current active pid namespace
- * or a child of the current active pid namespace.
- *
- * This is required for fork to return a usable pid value and
- * this maintains the property that processes and their
- * children can not escape their current pid namespace.
- */
- if (new->level < active->level)
- return -EINVAL;
- ancestor = new;
- while (ancestor->level > active->level)
- ancestor = ancestor->parent;
- if (ancestor != active)
- return -EINVAL;
- put_pid_ns(nsproxy->pid_ns_for_children);
- nsproxy->pid_ns_for_children = get_pid_ns(new);
- return 0;
- }
- const struct proc_ns_operations pidns_operations = {
- .name = "pid",
- .type = CLONE_NEWPID,
- .get = pidns_get,
- .put = pidns_put,
- .install = pidns_install,
- };
- static __init int pid_namespaces_init(void)
- {
- pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
- #ifdef CONFIG_CHECKPOINT_RESTORE
- register_sysctl_paths(kern_path, pid_ns_ctl_table);
- #endif
- return 0;
- }
- __initcall(pid_namespaces_init);
|