123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435 |
- /*
- * sched_clock for unstable cpu clocks
- *
- * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
- *
- * Updates and enhancements:
- * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
- *
- * Based on code by:
- * Ingo Molnar <mingo@redhat.com>
- * Guillaume Chazarain <guichaz@gmail.com>
- *
- *
- * What:
- *
- * cpu_clock(i) provides a fast (execution time) high resolution
- * clock with bounded drift between CPUs. The value of cpu_clock(i)
- * is monotonic for constant i. The timestamp returned is in nanoseconds.
- *
- * ######################### BIG FAT WARNING ##########################
- * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
- * # go backwards !! #
- * ####################################################################
- *
- * There is no strict promise about the base, although it tends to start
- * at 0 on boot (but people really shouldn't rely on that).
- *
- * cpu_clock(i) -- can be used from any context, including NMI.
- * local_clock() -- is cpu_clock() on the current cpu.
- *
- * sched_clock_cpu(i)
- *
- * How:
- *
- * The implementation either uses sched_clock() when
- * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
- * sched_clock() is assumed to provide these properties (mostly it means
- * the architecture provides a globally synchronized highres time source).
- *
- * Otherwise it tries to create a semi stable clock from a mixture of other
- * clocks, including:
- *
- * - GTOD (clock monotomic)
- * - sched_clock()
- * - explicit idle events
- *
- * We use GTOD as base and use sched_clock() deltas to improve resolution. The
- * deltas are filtered to provide monotonicity and keeping it within an
- * expected window.
- *
- * Furthermore, explicit sleep and wakeup hooks allow us to account for time
- * that is otherwise invisible (TSC gets stopped).
- *
- */
- #include <linux/spinlock.h>
- #include <linux/hardirq.h>
- #include <linux/export.h>
- #include <linux/percpu.h>
- #include <linux/ktime.h>
- #include <linux/sched.h>
- #include <linux/static_key.h>
- #include <linux/workqueue.h>
- #include <linux/compiler.h>
- /*
- * Scheduler clock - returns current time in nanosec units.
- * This is default implementation.
- * Architectures and sub-architectures can override this.
- */
- unsigned long long __weak sched_clock(void)
- {
- return (unsigned long long)(jiffies - INITIAL_JIFFIES)
- * (NSEC_PER_SEC / HZ);
- }
- EXPORT_SYMBOL_GPL(sched_clock);
- __read_mostly int sched_clock_running;
- #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
- static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
- static int __sched_clock_stable_early;
- int sched_clock_stable(void)
- {
- return static_key_false(&__sched_clock_stable);
- }
- static void __set_sched_clock_stable(void)
- {
- if (!sched_clock_stable())
- static_key_slow_inc(&__sched_clock_stable);
- }
- void set_sched_clock_stable(void)
- {
- __sched_clock_stable_early = 1;
- smp_mb(); /* matches sched_clock_init() */
- if (!sched_clock_running)
- return;
- __set_sched_clock_stable();
- }
- static void __clear_sched_clock_stable(struct work_struct *work)
- {
- /* XXX worry about clock continuity */
- if (sched_clock_stable())
- static_key_slow_dec(&__sched_clock_stable);
- }
- static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
- void clear_sched_clock_stable(void)
- {
- __sched_clock_stable_early = 0;
- smp_mb(); /* matches sched_clock_init() */
- if (!sched_clock_running)
- return;
- schedule_work(&sched_clock_work);
- }
- struct sched_clock_data {
- u64 tick_raw;
- u64 tick_gtod;
- u64 clock;
- };
- static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
- static inline struct sched_clock_data *this_scd(void)
- {
- return this_cpu_ptr(&sched_clock_data);
- }
- static inline struct sched_clock_data *cpu_sdc(int cpu)
- {
- return &per_cpu(sched_clock_data, cpu);
- }
- void sched_clock_init(void)
- {
- u64 ktime_now = ktime_to_ns(ktime_get());
- int cpu;
- for_each_possible_cpu(cpu) {
- struct sched_clock_data *scd = cpu_sdc(cpu);
- scd->tick_raw = 0;
- scd->tick_gtod = ktime_now;
- scd->clock = ktime_now;
- }
- sched_clock_running = 1;
- /*
- * Ensure that it is impossible to not do a static_key update.
- *
- * Either {set,clear}_sched_clock_stable() must see sched_clock_running
- * and do the update, or we must see their __sched_clock_stable_early
- * and do the update, or both.
- */
- smp_mb(); /* matches {set,clear}_sched_clock_stable() */
- if (__sched_clock_stable_early)
- __set_sched_clock_stable();
- else
- __clear_sched_clock_stable(NULL);
- }
- /*
- * min, max except they take wrapping into account
- */
- static inline u64 wrap_min(u64 x, u64 y)
- {
- return (s64)(x - y) < 0 ? x : y;
- }
- static inline u64 wrap_max(u64 x, u64 y)
- {
- return (s64)(x - y) > 0 ? x : y;
- }
- /*
- * update the percpu scd from the raw @now value
- *
- * - filter out backward motion
- * - use the GTOD tick value to create a window to filter crazy TSC values
- */
- static u64 sched_clock_local(struct sched_clock_data *scd)
- {
- u64 now, clock, old_clock, min_clock, max_clock;
- s64 delta;
- again:
- now = sched_clock();
- delta = now - scd->tick_raw;
- if (unlikely(delta < 0))
- delta = 0;
- old_clock = scd->clock;
- /*
- * scd->clock = clamp(scd->tick_gtod + delta,
- * max(scd->tick_gtod, scd->clock),
- * scd->tick_gtod + TICK_NSEC);
- */
- clock = scd->tick_gtod + delta;
- min_clock = wrap_max(scd->tick_gtod, old_clock);
- max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
- clock = wrap_max(clock, min_clock);
- clock = wrap_min(clock, max_clock);
- if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
- goto again;
- return clock;
- }
- static u64 sched_clock_remote(struct sched_clock_data *scd)
- {
- struct sched_clock_data *my_scd = this_scd();
- u64 this_clock, remote_clock;
- u64 *ptr, old_val, val;
- #if BITS_PER_LONG != 64
- again:
- /*
- * Careful here: The local and the remote clock values need to
- * be read out atomic as we need to compare the values and
- * then update either the local or the remote side. So the
- * cmpxchg64 below only protects one readout.
- *
- * We must reread via sched_clock_local() in the retry case on
- * 32bit as an NMI could use sched_clock_local() via the
- * tracer and hit between the readout of
- * the low32bit and the high 32bit portion.
- */
- this_clock = sched_clock_local(my_scd);
- /*
- * We must enforce atomic readout on 32bit, otherwise the
- * update on the remote cpu can hit inbetween the readout of
- * the low32bit and the high 32bit portion.
- */
- remote_clock = cmpxchg64(&scd->clock, 0, 0);
- #else
- /*
- * On 64bit the read of [my]scd->clock is atomic versus the
- * update, so we can avoid the above 32bit dance.
- */
- sched_clock_local(my_scd);
- again:
- this_clock = my_scd->clock;
- remote_clock = scd->clock;
- #endif
- /*
- * Use the opportunity that we have both locks
- * taken to couple the two clocks: we take the
- * larger time as the latest time for both
- * runqueues. (this creates monotonic movement)
- */
- if (likely((s64)(remote_clock - this_clock) < 0)) {
- ptr = &scd->clock;
- old_val = remote_clock;
- val = this_clock;
- } else {
- /*
- * Should be rare, but possible:
- */
- ptr = &my_scd->clock;
- old_val = this_clock;
- val = remote_clock;
- }
- if (cmpxchg64(ptr, old_val, val) != old_val)
- goto again;
- return val;
- }
- /*
- * Similar to cpu_clock(), but requires local IRQs to be disabled.
- *
- * See cpu_clock().
- */
- u64 sched_clock_cpu(int cpu)
- {
- struct sched_clock_data *scd;
- u64 clock;
- if (sched_clock_stable())
- return sched_clock();
- if (unlikely(!sched_clock_running))
- return 0ull;
- preempt_disable_notrace();
- scd = cpu_sdc(cpu);
- if (cpu != smp_processor_id())
- clock = sched_clock_remote(scd);
- else
- clock = sched_clock_local(scd);
- preempt_enable_notrace();
- return clock;
- }
- void sched_clock_tick(void)
- {
- struct sched_clock_data *scd;
- u64 now, now_gtod;
- if (sched_clock_stable())
- return;
- if (unlikely(!sched_clock_running))
- return;
- WARN_ON_ONCE(!irqs_disabled());
- scd = this_scd();
- now_gtod = ktime_to_ns(ktime_get());
- now = sched_clock();
- scd->tick_raw = now;
- scd->tick_gtod = now_gtod;
- sched_clock_local(scd);
- }
- /*
- * We are going deep-idle (irqs are disabled):
- */
- void sched_clock_idle_sleep_event(void)
- {
- sched_clock_cpu(smp_processor_id());
- }
- EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
- /*
- * We just idled delta nanoseconds (called with irqs disabled):
- */
- void sched_clock_idle_wakeup_event(u64 delta_ns)
- {
- if (timekeeping_suspended)
- return;
- sched_clock_tick();
- touch_softlockup_watchdog();
- }
- EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
- /*
- * As outlined at the top, provides a fast, high resolution, nanosecond
- * time source that is monotonic per cpu argument and has bounded drift
- * between cpus.
- *
- * ######################### BIG FAT WARNING ##########################
- * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
- * # go backwards !! #
- * ####################################################################
- */
- u64 cpu_clock(int cpu)
- {
- if (!sched_clock_stable())
- return sched_clock_cpu(cpu);
- return sched_clock();
- }
- /*
- * Similar to cpu_clock() for the current cpu. Time will only be observed
- * to be monotonic if care is taken to only compare timestampt taken on the
- * same CPU.
- *
- * See cpu_clock().
- */
- u64 local_clock(void)
- {
- if (!sched_clock_stable())
- return sched_clock_cpu(raw_smp_processor_id());
- return sched_clock();
- }
- #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
- void sched_clock_init(void)
- {
- sched_clock_running = 1;
- }
- u64 sched_clock_cpu(int cpu)
- {
- if (unlikely(!sched_clock_running))
- return 0;
- return sched_clock();
- }
- u64 cpu_clock(int cpu)
- {
- return sched_clock();
- }
- u64 local_clock(void)
- {
- return sched_clock();
- }
- #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
- EXPORT_SYMBOL_GPL(cpu_clock);
- EXPORT_SYMBOL_GPL(local_clock);
- /*
- * Running clock - returns the time that has elapsed while a guest has been
- * running.
- * On a guest this value should be local_clock minus the time the guest was
- * suspended by the hypervisor (for any reason).
- * On bare metal this function should return the same as local_clock.
- * Architectures and sub-architectures can override this.
- */
- u64 __weak running_clock(void)
- {
- return local_clock();
- }
|