clock.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. /*
  2. * sched_clock for unstable cpu clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. *
  14. * What:
  15. *
  16. * cpu_clock(i) provides a fast (execution time) high resolution
  17. * clock with bounded drift between CPUs. The value of cpu_clock(i)
  18. * is monotonic for constant i. The timestamp returned is in nanoseconds.
  19. *
  20. * ######################### BIG FAT WARNING ##########################
  21. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  22. * # go backwards !! #
  23. * ####################################################################
  24. *
  25. * There is no strict promise about the base, although it tends to start
  26. * at 0 on boot (but people really shouldn't rely on that).
  27. *
  28. * cpu_clock(i) -- can be used from any context, including NMI.
  29. * local_clock() -- is cpu_clock() on the current cpu.
  30. *
  31. * sched_clock_cpu(i)
  32. *
  33. * How:
  34. *
  35. * The implementation either uses sched_clock() when
  36. * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  37. * sched_clock() is assumed to provide these properties (mostly it means
  38. * the architecture provides a globally synchronized highres time source).
  39. *
  40. * Otherwise it tries to create a semi stable clock from a mixture of other
  41. * clocks, including:
  42. *
  43. * - GTOD (clock monotomic)
  44. * - sched_clock()
  45. * - explicit idle events
  46. *
  47. * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  48. * deltas are filtered to provide monotonicity and keeping it within an
  49. * expected window.
  50. *
  51. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  52. * that is otherwise invisible (TSC gets stopped).
  53. *
  54. */
  55. #include <linux/spinlock.h>
  56. #include <linux/hardirq.h>
  57. #include <linux/export.h>
  58. #include <linux/percpu.h>
  59. #include <linux/ktime.h>
  60. #include <linux/sched.h>
  61. #include <linux/static_key.h>
  62. #include <linux/workqueue.h>
  63. #include <linux/compiler.h>
  64. /*
  65. * Scheduler clock - returns current time in nanosec units.
  66. * This is default implementation.
  67. * Architectures and sub-architectures can override this.
  68. */
  69. unsigned long long __weak sched_clock(void)
  70. {
  71. return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  72. * (NSEC_PER_SEC / HZ);
  73. }
  74. EXPORT_SYMBOL_GPL(sched_clock);
  75. __read_mostly int sched_clock_running;
  76. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  77. static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
  78. static int __sched_clock_stable_early;
  79. int sched_clock_stable(void)
  80. {
  81. return static_key_false(&__sched_clock_stable);
  82. }
  83. static void __set_sched_clock_stable(void)
  84. {
  85. if (!sched_clock_stable())
  86. static_key_slow_inc(&__sched_clock_stable);
  87. }
  88. void set_sched_clock_stable(void)
  89. {
  90. __sched_clock_stable_early = 1;
  91. smp_mb(); /* matches sched_clock_init() */
  92. if (!sched_clock_running)
  93. return;
  94. __set_sched_clock_stable();
  95. }
  96. static void __clear_sched_clock_stable(struct work_struct *work)
  97. {
  98. /* XXX worry about clock continuity */
  99. if (sched_clock_stable())
  100. static_key_slow_dec(&__sched_clock_stable);
  101. }
  102. static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
  103. void clear_sched_clock_stable(void)
  104. {
  105. __sched_clock_stable_early = 0;
  106. smp_mb(); /* matches sched_clock_init() */
  107. if (!sched_clock_running)
  108. return;
  109. schedule_work(&sched_clock_work);
  110. }
  111. struct sched_clock_data {
  112. u64 tick_raw;
  113. u64 tick_gtod;
  114. u64 clock;
  115. };
  116. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  117. static inline struct sched_clock_data *this_scd(void)
  118. {
  119. return this_cpu_ptr(&sched_clock_data);
  120. }
  121. static inline struct sched_clock_data *cpu_sdc(int cpu)
  122. {
  123. return &per_cpu(sched_clock_data, cpu);
  124. }
  125. void sched_clock_init(void)
  126. {
  127. u64 ktime_now = ktime_to_ns(ktime_get());
  128. int cpu;
  129. for_each_possible_cpu(cpu) {
  130. struct sched_clock_data *scd = cpu_sdc(cpu);
  131. scd->tick_raw = 0;
  132. scd->tick_gtod = ktime_now;
  133. scd->clock = ktime_now;
  134. }
  135. sched_clock_running = 1;
  136. /*
  137. * Ensure that it is impossible to not do a static_key update.
  138. *
  139. * Either {set,clear}_sched_clock_stable() must see sched_clock_running
  140. * and do the update, or we must see their __sched_clock_stable_early
  141. * and do the update, or both.
  142. */
  143. smp_mb(); /* matches {set,clear}_sched_clock_stable() */
  144. if (__sched_clock_stable_early)
  145. __set_sched_clock_stable();
  146. else
  147. __clear_sched_clock_stable(NULL);
  148. }
  149. /*
  150. * min, max except they take wrapping into account
  151. */
  152. static inline u64 wrap_min(u64 x, u64 y)
  153. {
  154. return (s64)(x - y) < 0 ? x : y;
  155. }
  156. static inline u64 wrap_max(u64 x, u64 y)
  157. {
  158. return (s64)(x - y) > 0 ? x : y;
  159. }
  160. /*
  161. * update the percpu scd from the raw @now value
  162. *
  163. * - filter out backward motion
  164. * - use the GTOD tick value to create a window to filter crazy TSC values
  165. */
  166. static u64 sched_clock_local(struct sched_clock_data *scd)
  167. {
  168. u64 now, clock, old_clock, min_clock, max_clock;
  169. s64 delta;
  170. again:
  171. now = sched_clock();
  172. delta = now - scd->tick_raw;
  173. if (unlikely(delta < 0))
  174. delta = 0;
  175. old_clock = scd->clock;
  176. /*
  177. * scd->clock = clamp(scd->tick_gtod + delta,
  178. * max(scd->tick_gtod, scd->clock),
  179. * scd->tick_gtod + TICK_NSEC);
  180. */
  181. clock = scd->tick_gtod + delta;
  182. min_clock = wrap_max(scd->tick_gtod, old_clock);
  183. max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
  184. clock = wrap_max(clock, min_clock);
  185. clock = wrap_min(clock, max_clock);
  186. if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
  187. goto again;
  188. return clock;
  189. }
  190. static u64 sched_clock_remote(struct sched_clock_data *scd)
  191. {
  192. struct sched_clock_data *my_scd = this_scd();
  193. u64 this_clock, remote_clock;
  194. u64 *ptr, old_val, val;
  195. #if BITS_PER_LONG != 64
  196. again:
  197. /*
  198. * Careful here: The local and the remote clock values need to
  199. * be read out atomic as we need to compare the values and
  200. * then update either the local or the remote side. So the
  201. * cmpxchg64 below only protects one readout.
  202. *
  203. * We must reread via sched_clock_local() in the retry case on
  204. * 32bit as an NMI could use sched_clock_local() via the
  205. * tracer and hit between the readout of
  206. * the low32bit and the high 32bit portion.
  207. */
  208. this_clock = sched_clock_local(my_scd);
  209. /*
  210. * We must enforce atomic readout on 32bit, otherwise the
  211. * update on the remote cpu can hit inbetween the readout of
  212. * the low32bit and the high 32bit portion.
  213. */
  214. remote_clock = cmpxchg64(&scd->clock, 0, 0);
  215. #else
  216. /*
  217. * On 64bit the read of [my]scd->clock is atomic versus the
  218. * update, so we can avoid the above 32bit dance.
  219. */
  220. sched_clock_local(my_scd);
  221. again:
  222. this_clock = my_scd->clock;
  223. remote_clock = scd->clock;
  224. #endif
  225. /*
  226. * Use the opportunity that we have both locks
  227. * taken to couple the two clocks: we take the
  228. * larger time as the latest time for both
  229. * runqueues. (this creates monotonic movement)
  230. */
  231. if (likely((s64)(remote_clock - this_clock) < 0)) {
  232. ptr = &scd->clock;
  233. old_val = remote_clock;
  234. val = this_clock;
  235. } else {
  236. /*
  237. * Should be rare, but possible:
  238. */
  239. ptr = &my_scd->clock;
  240. old_val = this_clock;
  241. val = remote_clock;
  242. }
  243. if (cmpxchg64(ptr, old_val, val) != old_val)
  244. goto again;
  245. return val;
  246. }
  247. /*
  248. * Similar to cpu_clock(), but requires local IRQs to be disabled.
  249. *
  250. * See cpu_clock().
  251. */
  252. u64 sched_clock_cpu(int cpu)
  253. {
  254. struct sched_clock_data *scd;
  255. u64 clock;
  256. if (sched_clock_stable())
  257. return sched_clock();
  258. if (unlikely(!sched_clock_running))
  259. return 0ull;
  260. preempt_disable_notrace();
  261. scd = cpu_sdc(cpu);
  262. if (cpu != smp_processor_id())
  263. clock = sched_clock_remote(scd);
  264. else
  265. clock = sched_clock_local(scd);
  266. preempt_enable_notrace();
  267. return clock;
  268. }
  269. void sched_clock_tick(void)
  270. {
  271. struct sched_clock_data *scd;
  272. u64 now, now_gtod;
  273. if (sched_clock_stable())
  274. return;
  275. if (unlikely(!sched_clock_running))
  276. return;
  277. WARN_ON_ONCE(!irqs_disabled());
  278. scd = this_scd();
  279. now_gtod = ktime_to_ns(ktime_get());
  280. now = sched_clock();
  281. scd->tick_raw = now;
  282. scd->tick_gtod = now_gtod;
  283. sched_clock_local(scd);
  284. }
  285. /*
  286. * We are going deep-idle (irqs are disabled):
  287. */
  288. void sched_clock_idle_sleep_event(void)
  289. {
  290. sched_clock_cpu(smp_processor_id());
  291. }
  292. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  293. /*
  294. * We just idled delta nanoseconds (called with irqs disabled):
  295. */
  296. void sched_clock_idle_wakeup_event(u64 delta_ns)
  297. {
  298. if (timekeeping_suspended)
  299. return;
  300. sched_clock_tick();
  301. touch_softlockup_watchdog();
  302. }
  303. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  304. /*
  305. * As outlined at the top, provides a fast, high resolution, nanosecond
  306. * time source that is monotonic per cpu argument and has bounded drift
  307. * between cpus.
  308. *
  309. * ######################### BIG FAT WARNING ##########################
  310. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  311. * # go backwards !! #
  312. * ####################################################################
  313. */
  314. u64 cpu_clock(int cpu)
  315. {
  316. if (!sched_clock_stable())
  317. return sched_clock_cpu(cpu);
  318. return sched_clock();
  319. }
  320. /*
  321. * Similar to cpu_clock() for the current cpu. Time will only be observed
  322. * to be monotonic if care is taken to only compare timestampt taken on the
  323. * same CPU.
  324. *
  325. * See cpu_clock().
  326. */
  327. u64 local_clock(void)
  328. {
  329. if (!sched_clock_stable())
  330. return sched_clock_cpu(raw_smp_processor_id());
  331. return sched_clock();
  332. }
  333. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  334. void sched_clock_init(void)
  335. {
  336. sched_clock_running = 1;
  337. }
  338. u64 sched_clock_cpu(int cpu)
  339. {
  340. if (unlikely(!sched_clock_running))
  341. return 0;
  342. return sched_clock();
  343. }
  344. u64 cpu_clock(int cpu)
  345. {
  346. return sched_clock();
  347. }
  348. u64 local_clock(void)
  349. {
  350. return sched_clock();
  351. }
  352. #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  353. EXPORT_SYMBOL_GPL(cpu_clock);
  354. EXPORT_SYMBOL_GPL(local_clock);
  355. /*
  356. * Running clock - returns the time that has elapsed while a guest has been
  357. * running.
  358. * On a guest this value should be local_clock minus the time the guest was
  359. * suspended by the hypervisor (for any reason).
  360. * On bare metal this function should return the same as local_clock.
  361. * Architectures and sub-architectures can override this.
  362. */
  363. u64 __weak running_clock(void)
  364. {
  365. return local_clock();
  366. }