mlock.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/pagevec.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/syscalls.h>
  16. #include <linux/sched.h>
  17. #include <linux/export.h>
  18. #include <linux/rmap.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/hugetlb.h>
  21. #include <linux/memcontrol.h>
  22. #include <linux/mm_inline.h>
  23. #include "internal.h"
  24. int can_do_mlock(void)
  25. {
  26. if (rlimit(RLIMIT_MEMLOCK) != 0)
  27. return 1;
  28. if (capable(CAP_IPC_LOCK))
  29. return 1;
  30. return 0;
  31. }
  32. EXPORT_SYMBOL(can_do_mlock);
  33. /*
  34. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  35. * in vmscan and, possibly, the fault path; and to support semi-accurate
  36. * statistics.
  37. *
  38. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  39. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  40. * The unevictable list is an LRU sibling list to the [in]active lists.
  41. * PageUnevictable is set to indicate the unevictable state.
  42. *
  43. * When lazy mlocking via vmscan, it is important to ensure that the
  44. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  45. * may have mlocked a page that is being munlocked. So lazy mlock must take
  46. * the mmap_sem for read, and verify that the vma really is locked
  47. * (see mm/rmap.c).
  48. */
  49. /*
  50. * LRU accounting for clear_page_mlock()
  51. */
  52. void clear_page_mlock(struct page *page)
  53. {
  54. if (!TestClearPageMlocked(page))
  55. return;
  56. mod_zone_page_state(page_zone(page), NR_MLOCK,
  57. -hpage_nr_pages(page));
  58. count_vm_event(UNEVICTABLE_PGCLEARED);
  59. if (!isolate_lru_page(page)) {
  60. putback_lru_page(page);
  61. } else {
  62. /*
  63. * We lost the race. the page already moved to evictable list.
  64. */
  65. if (PageUnevictable(page))
  66. count_vm_event(UNEVICTABLE_PGSTRANDED);
  67. }
  68. }
  69. /*
  70. * Mark page as mlocked if not already.
  71. * If page on LRU, isolate and putback to move to unevictable list.
  72. */
  73. void mlock_vma_page(struct page *page)
  74. {
  75. /* Serialize with page migration */
  76. BUG_ON(!PageLocked(page));
  77. if (!TestSetPageMlocked(page)) {
  78. mod_zone_page_state(page_zone(page), NR_MLOCK,
  79. hpage_nr_pages(page));
  80. count_vm_event(UNEVICTABLE_PGMLOCKED);
  81. if (!isolate_lru_page(page))
  82. putback_lru_page(page);
  83. }
  84. }
  85. /*
  86. * Isolate a page from LRU with optional get_page() pin.
  87. * Assumes lru_lock already held and page already pinned.
  88. */
  89. static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
  90. {
  91. if (PageLRU(page)) {
  92. struct lruvec *lruvec;
  93. lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
  94. if (getpage)
  95. get_page(page);
  96. ClearPageLRU(page);
  97. del_page_from_lru_list(page, lruvec, page_lru(page));
  98. return true;
  99. }
  100. return false;
  101. }
  102. /*
  103. * Finish munlock after successful page isolation
  104. *
  105. * Page must be locked. This is a wrapper for try_to_munlock()
  106. * and putback_lru_page() with munlock accounting.
  107. */
  108. static void __munlock_isolated_page(struct page *page)
  109. {
  110. int ret = SWAP_AGAIN;
  111. /*
  112. * Optimization: if the page was mapped just once, that's our mapping
  113. * and we don't need to check all the other vmas.
  114. */
  115. if (page_mapcount(page) > 1)
  116. ret = try_to_munlock(page);
  117. /* Did try_to_unlock() succeed or punt? */
  118. if (ret != SWAP_MLOCK)
  119. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  120. putback_lru_page(page);
  121. }
  122. /*
  123. * Accounting for page isolation fail during munlock
  124. *
  125. * Performs accounting when page isolation fails in munlock. There is nothing
  126. * else to do because it means some other task has already removed the page
  127. * from the LRU. putback_lru_page() will take care of removing the page from
  128. * the unevictable list, if necessary. vmscan [page_referenced()] will move
  129. * the page back to the unevictable list if some other vma has it mlocked.
  130. */
  131. static void __munlock_isolation_failed(struct page *page)
  132. {
  133. if (PageUnevictable(page))
  134. __count_vm_event(UNEVICTABLE_PGSTRANDED);
  135. else
  136. __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  137. }
  138. /**
  139. * munlock_vma_page - munlock a vma page
  140. * @page - page to be unlocked, either a normal page or THP page head
  141. *
  142. * returns the size of the page as a page mask (0 for normal page,
  143. * HPAGE_PMD_NR - 1 for THP head page)
  144. *
  145. * called from munlock()/munmap() path with page supposedly on the LRU.
  146. * When we munlock a page, because the vma where we found the page is being
  147. * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  148. * page locked so that we can leave it on the unevictable lru list and not
  149. * bother vmscan with it. However, to walk the page's rmap list in
  150. * try_to_munlock() we must isolate the page from the LRU. If some other
  151. * task has removed the page from the LRU, we won't be able to do that.
  152. * So we clear the PageMlocked as we might not get another chance. If we
  153. * can't isolate the page, we leave it for putback_lru_page() and vmscan
  154. * [page_referenced()/try_to_unmap()] to deal with.
  155. */
  156. unsigned int munlock_vma_page(struct page *page)
  157. {
  158. int nr_pages;
  159. struct zone *zone = page_zone(page);
  160. /* For try_to_munlock() and to serialize with page migration */
  161. BUG_ON(!PageLocked(page));
  162. /*
  163. * Serialize with any parallel __split_huge_page_refcount() which
  164. * might otherwise copy PageMlocked to part of the tail pages before
  165. * we clear it in the head page. It also stabilizes hpage_nr_pages().
  166. */
  167. spin_lock_irq(&zone->lru_lock);
  168. nr_pages = hpage_nr_pages(page);
  169. if (!TestClearPageMlocked(page))
  170. goto unlock_out;
  171. __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
  172. if (__munlock_isolate_lru_page(page, true)) {
  173. spin_unlock_irq(&zone->lru_lock);
  174. __munlock_isolated_page(page);
  175. goto out;
  176. }
  177. __munlock_isolation_failed(page);
  178. unlock_out:
  179. spin_unlock_irq(&zone->lru_lock);
  180. out:
  181. return nr_pages - 1;
  182. }
  183. /*
  184. * convert get_user_pages() return value to posix mlock() error
  185. */
  186. static int __mlock_posix_error_return(long retval)
  187. {
  188. if (retval == -EFAULT)
  189. retval = -ENOMEM;
  190. else if (retval == -ENOMEM)
  191. retval = -EAGAIN;
  192. return retval;
  193. }
  194. /*
  195. * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
  196. *
  197. * The fast path is available only for evictable pages with single mapping.
  198. * Then we can bypass the per-cpu pvec and get better performance.
  199. * when mapcount > 1 we need try_to_munlock() which can fail.
  200. * when !page_evictable(), we need the full redo logic of putback_lru_page to
  201. * avoid leaving evictable page in unevictable list.
  202. *
  203. * In case of success, @page is added to @pvec and @pgrescued is incremented
  204. * in case that the page was previously unevictable. @page is also unlocked.
  205. */
  206. static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
  207. int *pgrescued)
  208. {
  209. VM_BUG_ON_PAGE(PageLRU(page), page);
  210. VM_BUG_ON_PAGE(!PageLocked(page), page);
  211. if (page_mapcount(page) <= 1 && page_evictable(page)) {
  212. pagevec_add(pvec, page);
  213. if (TestClearPageUnevictable(page))
  214. (*pgrescued)++;
  215. unlock_page(page);
  216. return true;
  217. }
  218. return false;
  219. }
  220. /*
  221. * Putback multiple evictable pages to the LRU
  222. *
  223. * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
  224. * the pages might have meanwhile become unevictable but that is OK.
  225. */
  226. static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
  227. {
  228. count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
  229. /*
  230. *__pagevec_lru_add() calls release_pages() so we don't call
  231. * put_page() explicitly
  232. */
  233. __pagevec_lru_add(pvec);
  234. count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  235. }
  236. /*
  237. * Munlock a batch of pages from the same zone
  238. *
  239. * The work is split to two main phases. First phase clears the Mlocked flag
  240. * and attempts to isolate the pages, all under a single zone lru lock.
  241. * The second phase finishes the munlock only for pages where isolation
  242. * succeeded.
  243. *
  244. * Note that the pagevec may be modified during the process.
  245. */
  246. static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
  247. {
  248. int i;
  249. int nr = pagevec_count(pvec);
  250. int delta_munlocked = -nr;
  251. struct pagevec pvec_putback;
  252. int pgrescued = 0;
  253. pagevec_init(&pvec_putback, 0);
  254. /* Phase 1: page isolation */
  255. spin_lock_irq(&zone->lru_lock);
  256. for (i = 0; i < nr; i++) {
  257. struct page *page = pvec->pages[i];
  258. if (TestClearPageMlocked(page)) {
  259. /*
  260. * We already have pin from follow_page_mask()
  261. * so we can spare the get_page() here.
  262. */
  263. if (__munlock_isolate_lru_page(page, false))
  264. continue;
  265. else
  266. __munlock_isolation_failed(page);
  267. } else {
  268. delta_munlocked++;
  269. }
  270. /*
  271. * We won't be munlocking this page in the next phase
  272. * but we still need to release the follow_page_mask()
  273. * pin. We cannot do it under lru_lock however. If it's
  274. * the last pin, __page_cache_release() would deadlock.
  275. */
  276. pagevec_add(&pvec_putback, pvec->pages[i]);
  277. pvec->pages[i] = NULL;
  278. }
  279. __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
  280. spin_unlock_irq(&zone->lru_lock);
  281. /* Now we can release pins of pages that we are not munlocking */
  282. pagevec_release(&pvec_putback);
  283. /* Phase 2: page munlock */
  284. for (i = 0; i < nr; i++) {
  285. struct page *page = pvec->pages[i];
  286. if (page) {
  287. lock_page(page);
  288. if (!__putback_lru_fast_prepare(page, &pvec_putback,
  289. &pgrescued)) {
  290. /*
  291. * Slow path. We don't want to lose the last
  292. * pin before unlock_page()
  293. */
  294. get_page(page); /* for putback_lru_page() */
  295. __munlock_isolated_page(page);
  296. unlock_page(page);
  297. put_page(page); /* from follow_page_mask() */
  298. }
  299. }
  300. }
  301. /*
  302. * Phase 3: page putback for pages that qualified for the fast path
  303. * This will also call put_page() to return pin from follow_page_mask()
  304. */
  305. if (pagevec_count(&pvec_putback))
  306. __putback_lru_fast(&pvec_putback, pgrescued);
  307. }
  308. /*
  309. * Fill up pagevec for __munlock_pagevec using pte walk
  310. *
  311. * The function expects that the struct page corresponding to @start address is
  312. * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
  313. *
  314. * The rest of @pvec is filled by subsequent pages within the same pmd and same
  315. * zone, as long as the pte's are present and vm_normal_page() succeeds. These
  316. * pages also get pinned.
  317. *
  318. * Returns the address of the next page that should be scanned. This equals
  319. * @start + PAGE_SIZE when no page could be added by the pte walk.
  320. */
  321. static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
  322. struct vm_area_struct *vma, int zoneid, unsigned long start,
  323. unsigned long end)
  324. {
  325. pte_t *pte;
  326. spinlock_t *ptl;
  327. /*
  328. * Initialize pte walk starting at the already pinned page where we
  329. * are sure that there is a pte, as it was pinned under the same
  330. * mmap_sem write op.
  331. */
  332. pte = get_locked_pte(vma->vm_mm, start, &ptl);
  333. /* Make sure we do not cross the page table boundary */
  334. end = pgd_addr_end(start, end);
  335. end = pud_addr_end(start, end);
  336. end = pmd_addr_end(start, end);
  337. /* The page next to the pinned page is the first we will try to get */
  338. start += PAGE_SIZE;
  339. while (start < end) {
  340. struct page *page = NULL;
  341. pte++;
  342. if (pte_present(*pte))
  343. page = vm_normal_page(vma, start, *pte);
  344. /*
  345. * Break if page could not be obtained or the page's node+zone does not
  346. * match
  347. */
  348. if (!page || page_zone_id(page) != zoneid)
  349. break;
  350. get_page(page);
  351. /*
  352. * Increase the address that will be returned *before* the
  353. * eventual break due to pvec becoming full by adding the page
  354. */
  355. start += PAGE_SIZE;
  356. if (pagevec_add(pvec, page) == 0)
  357. break;
  358. }
  359. pte_unmap_unlock(pte, ptl);
  360. return start;
  361. }
  362. /*
  363. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  364. * @vma - vma containing range to be munlock()ed.
  365. * @start - start address in @vma of the range
  366. * @end - end of range in @vma.
  367. *
  368. * For mremap(), munmap() and exit().
  369. *
  370. * Called with @vma VM_LOCKED.
  371. *
  372. * Returns with VM_LOCKED cleared. Callers must be prepared to
  373. * deal with this.
  374. *
  375. * We don't save and restore VM_LOCKED here because pages are
  376. * still on lru. In unmap path, pages might be scanned by reclaim
  377. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  378. * free them. This will result in freeing mlocked pages.
  379. */
  380. void munlock_vma_pages_range(struct vm_area_struct *vma,
  381. unsigned long start, unsigned long end)
  382. {
  383. vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
  384. while (start < end) {
  385. struct page *page = NULL;
  386. unsigned int page_mask;
  387. unsigned long page_increm;
  388. struct pagevec pvec;
  389. struct zone *zone;
  390. int zoneid;
  391. pagevec_init(&pvec, 0);
  392. /*
  393. * Although FOLL_DUMP is intended for get_dump_page(),
  394. * it just so happens that its special treatment of the
  395. * ZERO_PAGE (returning an error instead of doing get_page)
  396. * suits munlock very well (and if somehow an abnormal page
  397. * has sneaked into the range, we won't oops here: great).
  398. */
  399. page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
  400. &page_mask);
  401. if (page && !IS_ERR(page)) {
  402. if (PageTransHuge(page)) {
  403. lock_page(page);
  404. /*
  405. * Any THP page found by follow_page_mask() may
  406. * have gotten split before reaching
  407. * munlock_vma_page(), so we need to recompute
  408. * the page_mask here.
  409. */
  410. page_mask = munlock_vma_page(page);
  411. unlock_page(page);
  412. put_page(page); /* follow_page_mask() */
  413. } else {
  414. /*
  415. * Non-huge pages are handled in batches via
  416. * pagevec. The pin from follow_page_mask()
  417. * prevents them from collapsing by THP.
  418. */
  419. pagevec_add(&pvec, page);
  420. zone = page_zone(page);
  421. zoneid = page_zone_id(page);
  422. /*
  423. * Try to fill the rest of pagevec using fast
  424. * pte walk. This will also update start to
  425. * the next page to process. Then munlock the
  426. * pagevec.
  427. */
  428. start = __munlock_pagevec_fill(&pvec, vma,
  429. zoneid, start, end);
  430. __munlock_pagevec(&pvec, zone);
  431. goto next;
  432. }
  433. }
  434. /* It's a bug to munlock in the middle of a THP page */
  435. VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
  436. page_increm = 1 + page_mask;
  437. start += page_increm * PAGE_SIZE;
  438. next:
  439. cond_resched();
  440. }
  441. }
  442. /*
  443. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  444. *
  445. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  446. * munlock is a no-op. However, for some special vmas, we go ahead and
  447. * populate the ptes.
  448. *
  449. * For vmas that pass the filters, merge/split as appropriate.
  450. */
  451. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  452. unsigned long start, unsigned long end, vm_flags_t newflags)
  453. {
  454. struct mm_struct *mm = vma->vm_mm;
  455. pgoff_t pgoff;
  456. int nr_pages;
  457. int ret = 0;
  458. int lock = !!(newflags & VM_LOCKED);
  459. vm_flags_t old_flags = vma->vm_flags;
  460. if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  461. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
  462. /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
  463. goto out;
  464. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  465. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  466. vma->vm_file, pgoff, vma_policy(vma),
  467. vma->vm_userfaultfd_ctx);
  468. if (*prev) {
  469. vma = *prev;
  470. goto success;
  471. }
  472. if (start != vma->vm_start) {
  473. ret = split_vma(mm, vma, start, 1);
  474. if (ret)
  475. goto out;
  476. }
  477. if (end != vma->vm_end) {
  478. ret = split_vma(mm, vma, end, 0);
  479. if (ret)
  480. goto out;
  481. }
  482. success:
  483. /*
  484. * Keep track of amount of locked VM.
  485. */
  486. nr_pages = (end - start) >> PAGE_SHIFT;
  487. if (!lock)
  488. nr_pages = -nr_pages;
  489. else if (old_flags & VM_LOCKED)
  490. nr_pages = 0;
  491. mm->locked_vm += nr_pages;
  492. /*
  493. * vm_flags is protected by the mmap_sem held in write mode.
  494. * It's okay if try_to_unmap_one unmaps a page just after we
  495. * set VM_LOCKED, populate_vma_page_range will bring it back.
  496. */
  497. if (lock)
  498. vma->vm_flags = newflags;
  499. else
  500. munlock_vma_pages_range(vma, start, end);
  501. out:
  502. *prev = vma;
  503. return ret;
  504. }
  505. static int apply_vma_lock_flags(unsigned long start, size_t len,
  506. vm_flags_t flags)
  507. {
  508. unsigned long nstart, end, tmp;
  509. struct vm_area_struct * vma, * prev;
  510. int error;
  511. VM_BUG_ON(offset_in_page(start));
  512. VM_BUG_ON(len != PAGE_ALIGN(len));
  513. end = start + len;
  514. if (end < start)
  515. return -EINVAL;
  516. if (end == start)
  517. return 0;
  518. vma = find_vma(current->mm, start);
  519. if (!vma || vma->vm_start > start)
  520. return -ENOMEM;
  521. prev = vma->vm_prev;
  522. if (start > vma->vm_start)
  523. prev = vma;
  524. for (nstart = start ; ; ) {
  525. vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
  526. newflags |= flags;
  527. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  528. tmp = vma->vm_end;
  529. if (tmp > end)
  530. tmp = end;
  531. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  532. if (error)
  533. break;
  534. nstart = tmp;
  535. if (nstart < prev->vm_end)
  536. nstart = prev->vm_end;
  537. if (nstart >= end)
  538. break;
  539. vma = prev->vm_next;
  540. if (!vma || vma->vm_start != nstart) {
  541. error = -ENOMEM;
  542. break;
  543. }
  544. }
  545. return error;
  546. }
  547. static int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
  548. {
  549. unsigned long locked;
  550. unsigned long lock_limit;
  551. int error = -ENOMEM;
  552. if (!can_do_mlock())
  553. return -EPERM;
  554. lru_add_drain_all(); /* flush pagevec */
  555. len = PAGE_ALIGN(len + (offset_in_page(start)));
  556. start &= PAGE_MASK;
  557. lock_limit = rlimit(RLIMIT_MEMLOCK);
  558. lock_limit >>= PAGE_SHIFT;
  559. locked = len >> PAGE_SHIFT;
  560. down_write(&current->mm->mmap_sem);
  561. locked += current->mm->locked_vm;
  562. /* check against resource limits */
  563. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  564. error = apply_vma_lock_flags(start, len, flags);
  565. up_write(&current->mm->mmap_sem);
  566. if (error)
  567. return error;
  568. error = __mm_populate(start, len, 0);
  569. if (error)
  570. return __mlock_posix_error_return(error);
  571. return 0;
  572. }
  573. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  574. {
  575. return do_mlock(start, len, VM_LOCKED);
  576. }
  577. SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
  578. {
  579. vm_flags_t vm_flags = VM_LOCKED;
  580. if (flags & ~MLOCK_ONFAULT)
  581. return -EINVAL;
  582. if (flags & MLOCK_ONFAULT)
  583. vm_flags |= VM_LOCKONFAULT;
  584. return do_mlock(start, len, vm_flags);
  585. }
  586. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  587. {
  588. int ret;
  589. len = PAGE_ALIGN(len + (offset_in_page(start)));
  590. start &= PAGE_MASK;
  591. down_write(&current->mm->mmap_sem);
  592. ret = apply_vma_lock_flags(start, len, 0);
  593. up_write(&current->mm->mmap_sem);
  594. return ret;
  595. }
  596. /*
  597. * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
  598. * and translate into the appropriate modifications to mm->def_flags and/or the
  599. * flags for all current VMAs.
  600. *
  601. * There are a couple of subtleties with this. If mlockall() is called multiple
  602. * times with different flags, the values do not necessarily stack. If mlockall
  603. * is called once including the MCL_FUTURE flag and then a second time without
  604. * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
  605. */
  606. static int apply_mlockall_flags(int flags)
  607. {
  608. struct vm_area_struct * vma, * prev = NULL;
  609. vm_flags_t to_add = 0;
  610. current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
  611. if (flags & MCL_FUTURE) {
  612. current->mm->def_flags |= VM_LOCKED;
  613. if (flags & MCL_ONFAULT)
  614. current->mm->def_flags |= VM_LOCKONFAULT;
  615. if (!(flags & MCL_CURRENT))
  616. goto out;
  617. }
  618. if (flags & MCL_CURRENT) {
  619. to_add |= VM_LOCKED;
  620. if (flags & MCL_ONFAULT)
  621. to_add |= VM_LOCKONFAULT;
  622. }
  623. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  624. vm_flags_t newflags;
  625. newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
  626. newflags |= to_add;
  627. /* Ignore errors */
  628. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  629. cond_resched_rcu_qs();
  630. }
  631. out:
  632. return 0;
  633. }
  634. SYSCALL_DEFINE1(mlockall, int, flags)
  635. {
  636. unsigned long lock_limit;
  637. int ret;
  638. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
  639. return -EINVAL;
  640. if (!can_do_mlock())
  641. return -EPERM;
  642. if (flags & MCL_CURRENT)
  643. lru_add_drain_all(); /* flush pagevec */
  644. lock_limit = rlimit(RLIMIT_MEMLOCK);
  645. lock_limit >>= PAGE_SHIFT;
  646. ret = -ENOMEM;
  647. down_write(&current->mm->mmap_sem);
  648. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  649. capable(CAP_IPC_LOCK))
  650. ret = apply_mlockall_flags(flags);
  651. up_write(&current->mm->mmap_sem);
  652. if (!ret && (flags & MCL_CURRENT))
  653. mm_populate(0, TASK_SIZE);
  654. return ret;
  655. }
  656. SYSCALL_DEFINE0(munlockall)
  657. {
  658. int ret;
  659. down_write(&current->mm->mmap_sem);
  660. ret = apply_mlockall_flags(0);
  661. up_write(&current->mm->mmap_sem);
  662. return ret;
  663. }
  664. /*
  665. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  666. * shm segments) get accounted against the user_struct instead.
  667. */
  668. static DEFINE_SPINLOCK(shmlock_user_lock);
  669. int user_shm_lock(size_t size, struct user_struct *user)
  670. {
  671. unsigned long lock_limit, locked;
  672. int allowed = 0;
  673. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  674. lock_limit = rlimit(RLIMIT_MEMLOCK);
  675. if (lock_limit == RLIM_INFINITY)
  676. allowed = 1;
  677. lock_limit >>= PAGE_SHIFT;
  678. spin_lock(&shmlock_user_lock);
  679. if (!allowed &&
  680. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  681. goto out;
  682. get_uid(user);
  683. user->locked_shm += locked;
  684. allowed = 1;
  685. out:
  686. spin_unlock(&shmlock_user_lock);
  687. return allowed;
  688. }
  689. void user_shm_unlock(size_t size, struct user_struct *user)
  690. {
  691. spin_lock(&shmlock_user_lock);
  692. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  693. spin_unlock(&shmlock_user_lock);
  694. free_uid(user);
  695. }