mremap.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597
  1. /*
  2. * mm/mremap.c
  3. *
  4. * (C) Copyright 1996 Linus Torvalds
  5. *
  6. * Address space accounting code <alan@lxorguk.ukuu.org.uk>
  7. * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
  8. */
  9. #include <linux/mm.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/shm.h>
  12. #include <linux/ksm.h>
  13. #include <linux/mman.h>
  14. #include <linux/swap.h>
  15. #include <linux/capability.h>
  16. #include <linux/fs.h>
  17. #include <linux/swapops.h>
  18. #include <linux/highmem.h>
  19. #include <linux/security.h>
  20. #include <linux/syscalls.h>
  21. #include <linux/mmu_notifier.h>
  22. #include <linux/sched/sysctl.h>
  23. #include <linux/uaccess.h>
  24. #include <linux/mm-arch-hooks.h>
  25. #include <asm/cacheflush.h>
  26. #include <asm/tlbflush.h>
  27. #include "internal.h"
  28. static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
  29. {
  30. pgd_t *pgd;
  31. pud_t *pud;
  32. pmd_t *pmd;
  33. pgd = pgd_offset(mm, addr);
  34. if (pgd_none_or_clear_bad(pgd))
  35. return NULL;
  36. pud = pud_offset(pgd, addr);
  37. if (pud_none_or_clear_bad(pud))
  38. return NULL;
  39. pmd = pmd_offset(pud, addr);
  40. if (pmd_none(*pmd))
  41. return NULL;
  42. return pmd;
  43. }
  44. static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
  45. unsigned long addr)
  46. {
  47. pgd_t *pgd;
  48. pud_t *pud;
  49. pmd_t *pmd;
  50. pgd = pgd_offset(mm, addr);
  51. pud = pud_alloc(mm, pgd, addr);
  52. if (!pud)
  53. return NULL;
  54. pmd = pmd_alloc(mm, pud, addr);
  55. if (!pmd)
  56. return NULL;
  57. VM_BUG_ON(pmd_trans_huge(*pmd));
  58. return pmd;
  59. }
  60. static pte_t move_soft_dirty_pte(pte_t pte)
  61. {
  62. /*
  63. * Set soft dirty bit so we can notice
  64. * in userspace the ptes were moved.
  65. */
  66. #ifdef CONFIG_MEM_SOFT_DIRTY
  67. if (pte_present(pte))
  68. pte = pte_mksoft_dirty(pte);
  69. else if (is_swap_pte(pte))
  70. pte = pte_swp_mksoft_dirty(pte);
  71. #endif
  72. return pte;
  73. }
  74. static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
  75. unsigned long old_addr, unsigned long old_end,
  76. struct vm_area_struct *new_vma, pmd_t *new_pmd,
  77. unsigned long new_addr, bool need_rmap_locks)
  78. {
  79. struct address_space *mapping = NULL;
  80. struct anon_vma *anon_vma = NULL;
  81. struct mm_struct *mm = vma->vm_mm;
  82. pte_t *old_pte, *new_pte, pte;
  83. spinlock_t *old_ptl, *new_ptl;
  84. bool force_flush = false;
  85. unsigned long len = old_end - old_addr;
  86. /*
  87. * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
  88. * locks to ensure that rmap will always observe either the old or the
  89. * new ptes. This is the easiest way to avoid races with
  90. * truncate_pagecache(), page migration, etc...
  91. *
  92. * When need_rmap_locks is false, we use other ways to avoid
  93. * such races:
  94. *
  95. * - During exec() shift_arg_pages(), we use a specially tagged vma
  96. * which rmap call sites look for using is_vma_temporary_stack().
  97. *
  98. * - During mremap(), new_vma is often known to be placed after vma
  99. * in rmap traversal order. This ensures rmap will always observe
  100. * either the old pte, or the new pte, or both (the page table locks
  101. * serialize access to individual ptes, but only rmap traversal
  102. * order guarantees that we won't miss both the old and new ptes).
  103. */
  104. if (need_rmap_locks) {
  105. if (vma->vm_file) {
  106. mapping = vma->vm_file->f_mapping;
  107. i_mmap_lock_write(mapping);
  108. }
  109. if (vma->anon_vma) {
  110. anon_vma = vma->anon_vma;
  111. anon_vma_lock_write(anon_vma);
  112. }
  113. }
  114. /*
  115. * We don't have to worry about the ordering of src and dst
  116. * pte locks because exclusive mmap_sem prevents deadlock.
  117. */
  118. old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
  119. new_pte = pte_offset_map(new_pmd, new_addr);
  120. new_ptl = pte_lockptr(mm, new_pmd);
  121. if (new_ptl != old_ptl)
  122. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  123. flush_tlb_batched_pending(vma->vm_mm);
  124. arch_enter_lazy_mmu_mode();
  125. for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
  126. new_pte++, new_addr += PAGE_SIZE) {
  127. if (pte_none(*old_pte))
  128. continue;
  129. pte = ptep_get_and_clear(mm, old_addr, old_pte);
  130. /*
  131. * If we are remapping a valid PTE, make sure
  132. * to flush TLB before we drop the PTL for the PTE.
  133. *
  134. * NOTE! Both old and new PTL matter: the old one
  135. * for racing with page_mkclean(), the new one to
  136. * make sure the physical page stays valid until
  137. * the TLB entry for the old mapping has been
  138. * flushed.
  139. */
  140. if (pte_present(pte))
  141. force_flush = true;
  142. pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
  143. pte = move_soft_dirty_pte(pte);
  144. set_pte_at(mm, new_addr, new_pte, pte);
  145. }
  146. arch_leave_lazy_mmu_mode();
  147. if (force_flush)
  148. flush_tlb_range(vma, old_end - len, old_end);
  149. if (new_ptl != old_ptl)
  150. spin_unlock(new_ptl);
  151. pte_unmap(new_pte - 1);
  152. pte_unmap_unlock(old_pte - 1, old_ptl);
  153. if (anon_vma)
  154. anon_vma_unlock_write(anon_vma);
  155. if (mapping)
  156. i_mmap_unlock_write(mapping);
  157. }
  158. #define LATENCY_LIMIT (64 * PAGE_SIZE)
  159. unsigned long move_page_tables(struct vm_area_struct *vma,
  160. unsigned long old_addr, struct vm_area_struct *new_vma,
  161. unsigned long new_addr, unsigned long len,
  162. bool need_rmap_locks)
  163. {
  164. unsigned long extent, next, old_end;
  165. pmd_t *old_pmd, *new_pmd;
  166. unsigned long mmun_start; /* For mmu_notifiers */
  167. unsigned long mmun_end; /* For mmu_notifiers */
  168. old_end = old_addr + len;
  169. flush_cache_range(vma, old_addr, old_end);
  170. mmun_start = old_addr;
  171. mmun_end = old_end;
  172. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  173. for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
  174. cond_resched();
  175. next = (old_addr + PMD_SIZE) & PMD_MASK;
  176. /* even if next overflowed, extent below will be ok */
  177. extent = next - old_addr;
  178. if (extent > old_end - old_addr)
  179. extent = old_end - old_addr;
  180. old_pmd = get_old_pmd(vma->vm_mm, old_addr);
  181. if (!old_pmd)
  182. continue;
  183. new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
  184. if (!new_pmd)
  185. break;
  186. if (pmd_trans_huge(*old_pmd)) {
  187. int err = 0;
  188. if (extent == HPAGE_PMD_SIZE) {
  189. VM_BUG_ON_VMA(vma->vm_file || !vma->anon_vma,
  190. vma);
  191. /* See comment in move_ptes() */
  192. if (need_rmap_locks)
  193. anon_vma_lock_write(vma->anon_vma);
  194. err = move_huge_pmd(vma, new_vma, old_addr,
  195. new_addr, old_end,
  196. old_pmd, new_pmd);
  197. if (need_rmap_locks)
  198. anon_vma_unlock_write(vma->anon_vma);
  199. }
  200. if (err > 0) {
  201. continue;
  202. } else if (!err) {
  203. split_huge_page_pmd(vma, old_addr, old_pmd);
  204. }
  205. VM_BUG_ON(pmd_trans_huge(*old_pmd));
  206. }
  207. if (pmd_none(*new_pmd) && __pte_alloc(new_vma->vm_mm, new_vma,
  208. new_pmd, new_addr))
  209. break;
  210. next = (new_addr + PMD_SIZE) & PMD_MASK;
  211. if (extent > next - new_addr)
  212. extent = next - new_addr;
  213. if (extent > LATENCY_LIMIT)
  214. extent = LATENCY_LIMIT;
  215. move_ptes(vma, old_pmd, old_addr, old_addr + extent,
  216. new_vma, new_pmd, new_addr, need_rmap_locks);
  217. }
  218. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  219. return len + old_addr - old_end; /* how much done */
  220. }
  221. static unsigned long move_vma(struct vm_area_struct *vma,
  222. unsigned long old_addr, unsigned long old_len,
  223. unsigned long new_len, unsigned long new_addr, bool *locked)
  224. {
  225. struct mm_struct *mm = vma->vm_mm;
  226. struct vm_area_struct *new_vma;
  227. unsigned long vm_flags = vma->vm_flags;
  228. unsigned long new_pgoff;
  229. unsigned long moved_len;
  230. unsigned long excess = 0;
  231. unsigned long hiwater_vm;
  232. int split = 0;
  233. int err;
  234. bool need_rmap_locks;
  235. /*
  236. * We'd prefer to avoid failure later on in do_munmap:
  237. * which may split one vma into three before unmapping.
  238. */
  239. if (mm->map_count >= sysctl_max_map_count - 3)
  240. return -ENOMEM;
  241. /*
  242. * Advise KSM to break any KSM pages in the area to be moved:
  243. * it would be confusing if they were to turn up at the new
  244. * location, where they happen to coincide with different KSM
  245. * pages recently unmapped. But leave vma->vm_flags as it was,
  246. * so KSM can come around to merge on vma and new_vma afterwards.
  247. */
  248. err = ksm_madvise(vma, old_addr, old_addr + old_len,
  249. MADV_UNMERGEABLE, &vm_flags);
  250. if (err)
  251. return err;
  252. new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
  253. new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
  254. &need_rmap_locks);
  255. if (!new_vma)
  256. return -ENOMEM;
  257. moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
  258. need_rmap_locks);
  259. if (moved_len < old_len) {
  260. err = -ENOMEM;
  261. } else if (vma->vm_ops && vma->vm_ops->mremap) {
  262. err = vma->vm_ops->mremap(new_vma);
  263. }
  264. if (unlikely(err)) {
  265. /*
  266. * On error, move entries back from new area to old,
  267. * which will succeed since page tables still there,
  268. * and then proceed to unmap new area instead of old.
  269. */
  270. move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
  271. true);
  272. vma = new_vma;
  273. old_len = new_len;
  274. old_addr = new_addr;
  275. new_addr = err;
  276. } else {
  277. arch_remap(mm, old_addr, old_addr + old_len,
  278. new_addr, new_addr + new_len);
  279. }
  280. /* Conceal VM_ACCOUNT so old reservation is not undone */
  281. if (vm_flags & VM_ACCOUNT) {
  282. vma->vm_flags &= ~VM_ACCOUNT;
  283. excess = vma->vm_end - vma->vm_start - old_len;
  284. if (old_addr > vma->vm_start &&
  285. old_addr + old_len < vma->vm_end)
  286. split = 1;
  287. }
  288. /*
  289. * If we failed to move page tables we still do total_vm increment
  290. * since do_munmap() will decrement it by old_len == new_len.
  291. *
  292. * Since total_vm is about to be raised artificially high for a
  293. * moment, we need to restore high watermark afterwards: if stats
  294. * are taken meanwhile, total_vm and hiwater_vm appear too high.
  295. * If this were a serious issue, we'd add a flag to do_munmap().
  296. */
  297. hiwater_vm = mm->hiwater_vm;
  298. vm_stat_account(mm, vma->vm_flags, vma->vm_file, new_len>>PAGE_SHIFT);
  299. if (do_munmap(mm, old_addr, old_len) < 0) {
  300. /* OOM: unable to split vma, just get accounts right */
  301. vm_unacct_memory(excess >> PAGE_SHIFT);
  302. excess = 0;
  303. }
  304. mm->hiwater_vm = hiwater_vm;
  305. /* Restore VM_ACCOUNT if one or two pieces of vma left */
  306. if (excess) {
  307. vma->vm_flags |= VM_ACCOUNT;
  308. if (split)
  309. vma->vm_next->vm_flags |= VM_ACCOUNT;
  310. }
  311. if (vm_flags & VM_LOCKED) {
  312. mm->locked_vm += new_len >> PAGE_SHIFT;
  313. *locked = true;
  314. }
  315. return new_addr;
  316. }
  317. static struct vm_area_struct *vma_to_resize(unsigned long addr,
  318. unsigned long old_len, unsigned long new_len, unsigned long *p)
  319. {
  320. struct mm_struct *mm = current->mm;
  321. struct vm_area_struct *vma = find_vma(mm, addr);
  322. unsigned long pgoff;
  323. if (!vma || vma->vm_start > addr)
  324. return ERR_PTR(-EFAULT);
  325. if (is_vm_hugetlb_page(vma))
  326. return ERR_PTR(-EINVAL);
  327. /* We can't remap across vm area boundaries */
  328. if (old_len > vma->vm_end - addr)
  329. return ERR_PTR(-EFAULT);
  330. if (new_len == old_len)
  331. return vma;
  332. /* Need to be careful about a growing mapping */
  333. pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
  334. pgoff += vma->vm_pgoff;
  335. if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
  336. return ERR_PTR(-EINVAL);
  337. if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
  338. return ERR_PTR(-EFAULT);
  339. if (vma->vm_flags & VM_LOCKED) {
  340. unsigned long locked, lock_limit;
  341. locked = mm->locked_vm << PAGE_SHIFT;
  342. lock_limit = rlimit(RLIMIT_MEMLOCK);
  343. locked += new_len - old_len;
  344. if (locked > lock_limit && !capable(CAP_IPC_LOCK))
  345. return ERR_PTR(-EAGAIN);
  346. }
  347. if (!may_expand_vm(mm, (new_len - old_len) >> PAGE_SHIFT))
  348. return ERR_PTR(-ENOMEM);
  349. if (vma->vm_flags & VM_ACCOUNT) {
  350. unsigned long charged = (new_len - old_len) >> PAGE_SHIFT;
  351. if (security_vm_enough_memory_mm(mm, charged))
  352. return ERR_PTR(-ENOMEM);
  353. *p = charged;
  354. }
  355. return vma;
  356. }
  357. static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
  358. unsigned long new_addr, unsigned long new_len, bool *locked)
  359. {
  360. struct mm_struct *mm = current->mm;
  361. struct vm_area_struct *vma;
  362. unsigned long ret = -EINVAL;
  363. unsigned long charged = 0;
  364. unsigned long map_flags;
  365. if (offset_in_page(new_addr))
  366. goto out;
  367. if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
  368. goto out;
  369. /* Ensure the old/new locations do not overlap */
  370. if (addr + old_len > new_addr && new_addr + new_len > addr)
  371. goto out;
  372. ret = do_munmap(mm, new_addr, new_len);
  373. if (ret)
  374. goto out;
  375. if (old_len >= new_len) {
  376. ret = do_munmap(mm, addr+new_len, old_len - new_len);
  377. if (ret && old_len != new_len)
  378. goto out;
  379. old_len = new_len;
  380. }
  381. vma = vma_to_resize(addr, old_len, new_len, &charged);
  382. if (IS_ERR(vma)) {
  383. ret = PTR_ERR(vma);
  384. goto out;
  385. }
  386. map_flags = MAP_FIXED;
  387. if (vma->vm_flags & VM_MAYSHARE)
  388. map_flags |= MAP_SHARED;
  389. ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
  390. ((addr - vma->vm_start) >> PAGE_SHIFT),
  391. map_flags);
  392. if (offset_in_page(ret))
  393. goto out1;
  394. ret = move_vma(vma, addr, old_len, new_len, new_addr, locked);
  395. if (!(offset_in_page(ret)))
  396. goto out;
  397. out1:
  398. vm_unacct_memory(charged);
  399. out:
  400. return ret;
  401. }
  402. static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
  403. {
  404. unsigned long end = vma->vm_end + delta;
  405. if (end < vma->vm_end) /* overflow */
  406. return 0;
  407. if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */
  408. return 0;
  409. if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
  410. 0, MAP_FIXED) & ~PAGE_MASK)
  411. return 0;
  412. return 1;
  413. }
  414. /*
  415. * Expand (or shrink) an existing mapping, potentially moving it at the
  416. * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
  417. *
  418. * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
  419. * This option implies MREMAP_MAYMOVE.
  420. */
  421. SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
  422. unsigned long, new_len, unsigned long, flags,
  423. unsigned long, new_addr)
  424. {
  425. struct mm_struct *mm = current->mm;
  426. struct vm_area_struct *vma;
  427. unsigned long ret = -EINVAL;
  428. unsigned long charged = 0;
  429. bool locked = false;
  430. if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE))
  431. return ret;
  432. if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
  433. return ret;
  434. if (offset_in_page(addr))
  435. return ret;
  436. old_len = PAGE_ALIGN(old_len);
  437. new_len = PAGE_ALIGN(new_len);
  438. /*
  439. * We allow a zero old-len as a special case
  440. * for DOS-emu "duplicate shm area" thing. But
  441. * a zero new-len is nonsensical.
  442. */
  443. if (!new_len)
  444. return ret;
  445. down_write(&current->mm->mmap_sem);
  446. if (flags & MREMAP_FIXED) {
  447. ret = mremap_to(addr, old_len, new_addr, new_len,
  448. &locked);
  449. goto out;
  450. }
  451. /*
  452. * Always allow a shrinking remap: that just unmaps
  453. * the unnecessary pages..
  454. * do_munmap does all the needed commit accounting
  455. */
  456. if (old_len >= new_len) {
  457. ret = do_munmap(mm, addr+new_len, old_len - new_len);
  458. if (ret && old_len != new_len)
  459. goto out;
  460. ret = addr;
  461. goto out;
  462. }
  463. /*
  464. * Ok, we need to grow..
  465. */
  466. vma = vma_to_resize(addr, old_len, new_len, &charged);
  467. if (IS_ERR(vma)) {
  468. ret = PTR_ERR(vma);
  469. goto out;
  470. }
  471. /* old_len exactly to the end of the area..
  472. */
  473. if (old_len == vma->vm_end - addr) {
  474. /* can we just expand the current mapping? */
  475. if (vma_expandable(vma, new_len - old_len)) {
  476. int pages = (new_len - old_len) >> PAGE_SHIFT;
  477. if (vma_adjust(vma, vma->vm_start, addr + new_len,
  478. vma->vm_pgoff, NULL)) {
  479. ret = -ENOMEM;
  480. goto out;
  481. }
  482. vm_stat_account(mm, vma->vm_flags, vma->vm_file, pages);
  483. if (vma->vm_flags & VM_LOCKED) {
  484. mm->locked_vm += pages;
  485. locked = true;
  486. new_addr = addr;
  487. }
  488. ret = addr;
  489. goto out;
  490. }
  491. }
  492. /*
  493. * We weren't able to just expand or shrink the area,
  494. * we need to create a new one and move it..
  495. */
  496. ret = -ENOMEM;
  497. if (flags & MREMAP_MAYMOVE) {
  498. unsigned long map_flags = 0;
  499. if (vma->vm_flags & VM_MAYSHARE)
  500. map_flags |= MAP_SHARED;
  501. new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
  502. vma->vm_pgoff +
  503. ((addr - vma->vm_start) >> PAGE_SHIFT),
  504. map_flags);
  505. if (offset_in_page(new_addr)) {
  506. ret = new_addr;
  507. goto out;
  508. }
  509. ret = move_vma(vma, addr, old_len, new_len, new_addr, &locked);
  510. }
  511. out:
  512. if (offset_in_page(ret)) {
  513. vm_unacct_memory(charged);
  514. locked = 0;
  515. }
  516. up_write(&current->mm->mmap_sem);
  517. if (locked && new_len > old_len)
  518. mm_populate(new_addr + old_len, new_len - old_len);
  519. return ret;
  520. }