page_alloc.c 191 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/stop_machine.h>
  46. #include <linux/sort.h>
  47. #include <linux/pfn.h>
  48. #include <linux/backing-dev.h>
  49. #include <linux/fault-inject.h>
  50. #include <linux/page-isolation.h>
  51. #include <linux/page_ext.h>
  52. #include <linux/debugobjects.h>
  53. #include <linux/kmemleak.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <linux/prefetch.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/migrate.h>
  59. #include <linux/page_ext.h>
  60. #include <linux/hugetlb.h>
  61. #include <linux/sched/rt.h>
  62. #include <linux/page_owner.h>
  63. #include <linux/kthread.h>
  64. #include <asm/sections.h>
  65. #include <asm/tlbflush.h>
  66. #include <asm/div64.h>
  67. #include "internal.h"
  68. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  69. static DEFINE_MUTEX(pcp_batch_high_lock);
  70. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  71. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  72. DEFINE_PER_CPU(int, numa_node);
  73. EXPORT_PER_CPU_SYMBOL(numa_node);
  74. #endif
  75. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  76. /*
  77. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  78. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  79. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  80. * defined in <linux/topology.h>.
  81. */
  82. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  83. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  84. int _node_numa_mem_[MAX_NUMNODES];
  85. #endif
  86. /*
  87. * Array of node states.
  88. */
  89. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  90. [N_POSSIBLE] = NODE_MASK_ALL,
  91. [N_ONLINE] = { { [0] = 1UL } },
  92. #ifndef CONFIG_NUMA
  93. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  94. #ifdef CONFIG_HIGHMEM
  95. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  96. #endif
  97. #ifdef CONFIG_MOVABLE_NODE
  98. [N_MEMORY] = { { [0] = 1UL } },
  99. #endif
  100. [N_CPU] = { { [0] = 1UL } },
  101. #endif /* NUMA */
  102. };
  103. EXPORT_SYMBOL(node_states);
  104. /* Protect totalram_pages and zone->managed_pages */
  105. static DEFINE_SPINLOCK(managed_page_count_lock);
  106. unsigned long totalram_pages __read_mostly;
  107. unsigned long totalreserve_pages __read_mostly;
  108. unsigned long totalcma_pages __read_mostly;
  109. /*
  110. * When calculating the number of globally allowed dirty pages, there
  111. * is a certain number of per-zone reserves that should not be
  112. * considered dirtyable memory. This is the sum of those reserves
  113. * over all existing zones that contribute dirtyable memory.
  114. */
  115. unsigned long dirty_balance_reserve __read_mostly;
  116. int percpu_pagelist_fraction;
  117. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  118. /*
  119. * A cached value of the page's pageblock's migratetype, used when the page is
  120. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  121. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  122. * Also the migratetype set in the page does not necessarily match the pcplist
  123. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  124. * other index - this ensures that it will be put on the correct CMA freelist.
  125. */
  126. static inline int get_pcppage_migratetype(struct page *page)
  127. {
  128. return page->index;
  129. }
  130. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  131. {
  132. page->index = migratetype;
  133. }
  134. #ifdef CONFIG_PM_SLEEP
  135. /*
  136. * The following functions are used by the suspend/hibernate code to temporarily
  137. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  138. * while devices are suspended. To avoid races with the suspend/hibernate code,
  139. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  140. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  141. * guaranteed not to run in parallel with that modification).
  142. */
  143. static gfp_t saved_gfp_mask;
  144. void pm_restore_gfp_mask(void)
  145. {
  146. WARN_ON(!mutex_is_locked(&pm_mutex));
  147. if (saved_gfp_mask) {
  148. gfp_allowed_mask = saved_gfp_mask;
  149. saved_gfp_mask = 0;
  150. }
  151. }
  152. void pm_restrict_gfp_mask(void)
  153. {
  154. WARN_ON(!mutex_is_locked(&pm_mutex));
  155. WARN_ON(saved_gfp_mask);
  156. saved_gfp_mask = gfp_allowed_mask;
  157. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  158. }
  159. bool pm_suspended_storage(void)
  160. {
  161. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  162. return false;
  163. return true;
  164. }
  165. #endif /* CONFIG_PM_SLEEP */
  166. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  167. unsigned int pageblock_order __read_mostly;
  168. #endif
  169. static void __free_pages_ok(struct page *page, unsigned int order);
  170. /*
  171. * results with 256, 32 in the lowmem_reserve sysctl:
  172. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  173. * 1G machine -> (16M dma, 784M normal, 224M high)
  174. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  175. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  176. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  177. *
  178. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  179. * don't need any ZONE_NORMAL reservation
  180. */
  181. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  182. #ifdef CONFIG_ZONE_DMA
  183. 256,
  184. #endif
  185. #ifdef CONFIG_ZONE_DMA32
  186. 256,
  187. #endif
  188. #ifdef CONFIG_HIGHMEM
  189. 32,
  190. #endif
  191. 32,
  192. };
  193. EXPORT_SYMBOL(totalram_pages);
  194. static char * const zone_names[MAX_NR_ZONES] = {
  195. #ifdef CONFIG_ZONE_DMA
  196. "DMA",
  197. #endif
  198. #ifdef CONFIG_ZONE_DMA32
  199. "DMA32",
  200. #endif
  201. "Normal",
  202. #ifdef CONFIG_HIGHMEM
  203. "HighMem",
  204. #endif
  205. "Movable",
  206. #ifdef CONFIG_ZONE_DEVICE
  207. "Device",
  208. #endif
  209. };
  210. static void free_compound_page(struct page *page);
  211. compound_page_dtor * const compound_page_dtors[] = {
  212. NULL,
  213. free_compound_page,
  214. #ifdef CONFIG_HUGETLB_PAGE
  215. free_huge_page,
  216. #endif
  217. };
  218. int min_free_kbytes = 1024;
  219. int user_min_free_kbytes = -1;
  220. static unsigned long __meminitdata nr_kernel_pages;
  221. static unsigned long __meminitdata nr_all_pages;
  222. static unsigned long __meminitdata dma_reserve;
  223. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  224. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  225. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  226. static unsigned long __initdata required_kernelcore;
  227. static unsigned long __initdata required_movablecore;
  228. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  229. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  230. int movable_zone;
  231. EXPORT_SYMBOL(movable_zone);
  232. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  233. #if MAX_NUMNODES > 1
  234. int nr_node_ids __read_mostly = MAX_NUMNODES;
  235. int nr_online_nodes __read_mostly = 1;
  236. EXPORT_SYMBOL(nr_node_ids);
  237. EXPORT_SYMBOL(nr_online_nodes);
  238. #endif
  239. int page_group_by_mobility_disabled __read_mostly;
  240. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  241. /*
  242. * Determine how many pages need to be initialized durig early boot
  243. * (non-deferred initialization).
  244. * The value of first_deferred_pfn will be set later, once non-deferred pages
  245. * are initialized, but for now set it ULONG_MAX.
  246. */
  247. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  248. {
  249. phys_addr_t start_addr, end_addr;
  250. unsigned long max_pgcnt;
  251. unsigned long reserved;
  252. /*
  253. * Initialise at least 2G of a node but also take into account that
  254. * two large system hashes that can take up 1GB for 0.25TB/node.
  255. */
  256. max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
  257. (pgdat->node_spanned_pages >> 8));
  258. /*
  259. * Compensate the all the memblock reservations (e.g. crash kernel)
  260. * from the initial estimation to make sure we will initialize enough
  261. * memory to boot.
  262. */
  263. start_addr = PFN_PHYS(pgdat->node_start_pfn);
  264. end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
  265. reserved = memblock_reserved_memory_within(start_addr, end_addr);
  266. max_pgcnt += PHYS_PFN(reserved);
  267. pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
  268. pgdat->first_deferred_pfn = ULONG_MAX;
  269. }
  270. /* Returns true if the struct page for the pfn is uninitialised */
  271. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  272. {
  273. int nid = early_pfn_to_nid(pfn);
  274. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  275. return true;
  276. return false;
  277. }
  278. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  279. {
  280. if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
  281. return true;
  282. return false;
  283. }
  284. /*
  285. * Returns false when the remaining initialisation should be deferred until
  286. * later in the boot cycle when it can be parallelised.
  287. */
  288. static inline bool update_defer_init(pg_data_t *pgdat,
  289. unsigned long pfn, unsigned long zone_end,
  290. unsigned long *nr_initialised)
  291. {
  292. /* Always populate low zones for address-contrained allocations */
  293. if (zone_end < pgdat_end_pfn(pgdat))
  294. return true;
  295. /* Initialise at least 2G of the highest zone */
  296. (*nr_initialised)++;
  297. if ((*nr_initialised > pgdat->static_init_pgcnt) &&
  298. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  299. pgdat->first_deferred_pfn = pfn;
  300. return false;
  301. }
  302. return true;
  303. }
  304. #else
  305. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  306. {
  307. }
  308. static inline bool early_page_uninitialised(unsigned long pfn)
  309. {
  310. return false;
  311. }
  312. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  313. {
  314. return false;
  315. }
  316. static inline bool update_defer_init(pg_data_t *pgdat,
  317. unsigned long pfn, unsigned long zone_end,
  318. unsigned long *nr_initialised)
  319. {
  320. return true;
  321. }
  322. #endif
  323. void set_pageblock_migratetype(struct page *page, int migratetype)
  324. {
  325. if (unlikely(page_group_by_mobility_disabled &&
  326. migratetype < MIGRATE_PCPTYPES))
  327. migratetype = MIGRATE_UNMOVABLE;
  328. set_pageblock_flags_group(page, (unsigned long)migratetype,
  329. PB_migrate, PB_migrate_end);
  330. }
  331. #ifdef CONFIG_DEBUG_VM
  332. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  333. {
  334. int ret = 0;
  335. unsigned seq;
  336. unsigned long pfn = page_to_pfn(page);
  337. unsigned long sp, start_pfn;
  338. do {
  339. seq = zone_span_seqbegin(zone);
  340. start_pfn = zone->zone_start_pfn;
  341. sp = zone->spanned_pages;
  342. if (!zone_spans_pfn(zone, pfn))
  343. ret = 1;
  344. } while (zone_span_seqretry(zone, seq));
  345. if (ret)
  346. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  347. pfn, zone_to_nid(zone), zone->name,
  348. start_pfn, start_pfn + sp);
  349. return ret;
  350. }
  351. static int page_is_consistent(struct zone *zone, struct page *page)
  352. {
  353. if (!pfn_valid_within(page_to_pfn(page)))
  354. return 0;
  355. if (zone != page_zone(page))
  356. return 0;
  357. return 1;
  358. }
  359. /*
  360. * Temporary debugging check for pages not lying within a given zone.
  361. */
  362. static int bad_range(struct zone *zone, struct page *page)
  363. {
  364. if (page_outside_zone_boundaries(zone, page))
  365. return 1;
  366. if (!page_is_consistent(zone, page))
  367. return 1;
  368. return 0;
  369. }
  370. #else
  371. static inline int bad_range(struct zone *zone, struct page *page)
  372. {
  373. return 0;
  374. }
  375. #endif
  376. static void bad_page(struct page *page, const char *reason,
  377. unsigned long bad_flags)
  378. {
  379. static unsigned long resume;
  380. static unsigned long nr_shown;
  381. static unsigned long nr_unshown;
  382. /* Don't complain about poisoned pages */
  383. if (PageHWPoison(page)) {
  384. page_mapcount_reset(page); /* remove PageBuddy */
  385. return;
  386. }
  387. /*
  388. * Allow a burst of 60 reports, then keep quiet for that minute;
  389. * or allow a steady drip of one report per second.
  390. */
  391. if (nr_shown == 60) {
  392. if (time_before(jiffies, resume)) {
  393. nr_unshown++;
  394. goto out;
  395. }
  396. if (nr_unshown) {
  397. printk(KERN_ALERT
  398. "BUG: Bad page state: %lu messages suppressed\n",
  399. nr_unshown);
  400. nr_unshown = 0;
  401. }
  402. nr_shown = 0;
  403. }
  404. if (nr_shown++ == 0)
  405. resume = jiffies + 60 * HZ;
  406. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  407. current->comm, page_to_pfn(page));
  408. dump_page_badflags(page, reason, bad_flags);
  409. print_modules();
  410. dump_stack();
  411. out:
  412. /* Leave bad fields for debug, except PageBuddy could make trouble */
  413. page_mapcount_reset(page); /* remove PageBuddy */
  414. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  415. }
  416. /*
  417. * Higher-order pages are called "compound pages". They are structured thusly:
  418. *
  419. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  420. *
  421. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  422. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  423. *
  424. * The first tail page's ->compound_dtor holds the offset in array of compound
  425. * page destructors. See compound_page_dtors.
  426. *
  427. * The first tail page's ->compound_order holds the order of allocation.
  428. * This usage means that zero-order pages may not be compound.
  429. */
  430. static void free_compound_page(struct page *page)
  431. {
  432. __free_pages_ok(page, compound_order(page));
  433. }
  434. void prep_compound_page(struct page *page, unsigned int order)
  435. {
  436. int i;
  437. int nr_pages = 1 << order;
  438. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  439. set_compound_order(page, order);
  440. __SetPageHead(page);
  441. for (i = 1; i < nr_pages; i++) {
  442. struct page *p = page + i;
  443. set_page_count(p, 0);
  444. set_compound_head(p, page);
  445. }
  446. }
  447. #ifdef CONFIG_DEBUG_PAGEALLOC
  448. unsigned int _debug_guardpage_minorder;
  449. bool _debug_pagealloc_enabled __read_mostly;
  450. bool _debug_guardpage_enabled __read_mostly;
  451. static int __init early_debug_pagealloc(char *buf)
  452. {
  453. if (!buf)
  454. return -EINVAL;
  455. if (strcmp(buf, "on") == 0)
  456. _debug_pagealloc_enabled = true;
  457. return 0;
  458. }
  459. early_param("debug_pagealloc", early_debug_pagealloc);
  460. static bool need_debug_guardpage(void)
  461. {
  462. /* If we don't use debug_pagealloc, we don't need guard page */
  463. if (!debug_pagealloc_enabled())
  464. return false;
  465. return true;
  466. }
  467. static void init_debug_guardpage(void)
  468. {
  469. if (!debug_pagealloc_enabled())
  470. return;
  471. _debug_guardpage_enabled = true;
  472. }
  473. struct page_ext_operations debug_guardpage_ops = {
  474. .need = need_debug_guardpage,
  475. .init = init_debug_guardpage,
  476. };
  477. static int __init debug_guardpage_minorder_setup(char *buf)
  478. {
  479. unsigned long res;
  480. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  481. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  482. return 0;
  483. }
  484. _debug_guardpage_minorder = res;
  485. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  486. return 0;
  487. }
  488. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  489. static inline void set_page_guard(struct zone *zone, struct page *page,
  490. unsigned int order, int migratetype)
  491. {
  492. struct page_ext *page_ext;
  493. if (!debug_guardpage_enabled())
  494. return;
  495. page_ext = lookup_page_ext(page);
  496. if (unlikely(!page_ext))
  497. return;
  498. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  499. INIT_LIST_HEAD(&page->lru);
  500. set_page_private(page, order);
  501. /* Guard pages are not available for any usage */
  502. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  503. }
  504. static inline void clear_page_guard(struct zone *zone, struct page *page,
  505. unsigned int order, int migratetype)
  506. {
  507. struct page_ext *page_ext;
  508. if (!debug_guardpage_enabled())
  509. return;
  510. page_ext = lookup_page_ext(page);
  511. if (unlikely(!page_ext))
  512. return;
  513. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  514. set_page_private(page, 0);
  515. if (!is_migrate_isolate(migratetype))
  516. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  517. }
  518. #else
  519. struct page_ext_operations debug_guardpage_ops = { NULL, };
  520. static inline void set_page_guard(struct zone *zone, struct page *page,
  521. unsigned int order, int migratetype) {}
  522. static inline void clear_page_guard(struct zone *zone, struct page *page,
  523. unsigned int order, int migratetype) {}
  524. #endif
  525. static inline void set_page_order(struct page *page, unsigned int order)
  526. {
  527. set_page_private(page, order);
  528. __SetPageBuddy(page);
  529. }
  530. static inline void rmv_page_order(struct page *page)
  531. {
  532. __ClearPageBuddy(page);
  533. set_page_private(page, 0);
  534. }
  535. /*
  536. * This function checks whether a page is free && is the buddy
  537. * we can do coalesce a page and its buddy if
  538. * (a) the buddy is not in a hole &&
  539. * (b) the buddy is in the buddy system &&
  540. * (c) a page and its buddy have the same order &&
  541. * (d) a page and its buddy are in the same zone.
  542. *
  543. * For recording whether a page is in the buddy system, we set ->_mapcount
  544. * PAGE_BUDDY_MAPCOUNT_VALUE.
  545. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  546. * serialized by zone->lock.
  547. *
  548. * For recording page's order, we use page_private(page).
  549. */
  550. static inline int page_is_buddy(struct page *page, struct page *buddy,
  551. unsigned int order)
  552. {
  553. if (!pfn_valid_within(page_to_pfn(buddy)))
  554. return 0;
  555. if (page_is_guard(buddy) && page_order(buddy) == order) {
  556. if (page_zone_id(page) != page_zone_id(buddy))
  557. return 0;
  558. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  559. return 1;
  560. }
  561. if (PageBuddy(buddy) && page_order(buddy) == order) {
  562. /*
  563. * zone check is done late to avoid uselessly
  564. * calculating zone/node ids for pages that could
  565. * never merge.
  566. */
  567. if (page_zone_id(page) != page_zone_id(buddy))
  568. return 0;
  569. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  570. return 1;
  571. }
  572. return 0;
  573. }
  574. /*
  575. * Freeing function for a buddy system allocator.
  576. *
  577. * The concept of a buddy system is to maintain direct-mapped table
  578. * (containing bit values) for memory blocks of various "orders".
  579. * The bottom level table contains the map for the smallest allocatable
  580. * units of memory (here, pages), and each level above it describes
  581. * pairs of units from the levels below, hence, "buddies".
  582. * At a high level, all that happens here is marking the table entry
  583. * at the bottom level available, and propagating the changes upward
  584. * as necessary, plus some accounting needed to play nicely with other
  585. * parts of the VM system.
  586. * At each level, we keep a list of pages, which are heads of continuous
  587. * free pages of length of (1 << order) and marked with _mapcount
  588. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  589. * field.
  590. * So when we are allocating or freeing one, we can derive the state of the
  591. * other. That is, if we allocate a small block, and both were
  592. * free, the remainder of the region must be split into blocks.
  593. * If a block is freed, and its buddy is also free, then this
  594. * triggers coalescing into a block of larger size.
  595. *
  596. * -- nyc
  597. */
  598. static inline void __free_one_page(struct page *page,
  599. unsigned long pfn,
  600. struct zone *zone, unsigned int order,
  601. int migratetype)
  602. {
  603. unsigned long page_idx;
  604. unsigned long combined_idx;
  605. unsigned long uninitialized_var(buddy_idx);
  606. struct page *buddy;
  607. unsigned int max_order;
  608. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  609. VM_BUG_ON(!zone_is_initialized(zone));
  610. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  611. VM_BUG_ON(migratetype == -1);
  612. if (likely(!is_migrate_isolate(migratetype)))
  613. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  614. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  615. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  616. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  617. continue_merging:
  618. while (order < max_order - 1) {
  619. buddy_idx = __find_buddy_index(page_idx, order);
  620. buddy = page + (buddy_idx - page_idx);
  621. if (!page_is_buddy(page, buddy, order))
  622. goto done_merging;
  623. /*
  624. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  625. * merge with it and move up one order.
  626. */
  627. if (page_is_guard(buddy)) {
  628. clear_page_guard(zone, buddy, order, migratetype);
  629. } else {
  630. list_del(&buddy->lru);
  631. zone->free_area[order].nr_free--;
  632. rmv_page_order(buddy);
  633. }
  634. combined_idx = buddy_idx & page_idx;
  635. page = page + (combined_idx - page_idx);
  636. page_idx = combined_idx;
  637. order++;
  638. }
  639. if (max_order < MAX_ORDER) {
  640. /* If we are here, it means order is >= pageblock_order.
  641. * We want to prevent merge between freepages on isolate
  642. * pageblock and normal pageblock. Without this, pageblock
  643. * isolation could cause incorrect freepage or CMA accounting.
  644. *
  645. * We don't want to hit this code for the more frequent
  646. * low-order merging.
  647. */
  648. if (unlikely(has_isolate_pageblock(zone))) {
  649. int buddy_mt;
  650. buddy_idx = __find_buddy_index(page_idx, order);
  651. buddy = page + (buddy_idx - page_idx);
  652. buddy_mt = get_pageblock_migratetype(buddy);
  653. if (migratetype != buddy_mt
  654. && (is_migrate_isolate(migratetype) ||
  655. is_migrate_isolate(buddy_mt)))
  656. goto done_merging;
  657. }
  658. max_order++;
  659. goto continue_merging;
  660. }
  661. done_merging:
  662. set_page_order(page, order);
  663. /*
  664. * If this is not the largest possible page, check if the buddy
  665. * of the next-highest order is free. If it is, it's possible
  666. * that pages are being freed that will coalesce soon. In case,
  667. * that is happening, add the free page to the tail of the list
  668. * so it's less likely to be used soon and more likely to be merged
  669. * as a higher order page
  670. */
  671. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  672. struct page *higher_page, *higher_buddy;
  673. combined_idx = buddy_idx & page_idx;
  674. higher_page = page + (combined_idx - page_idx);
  675. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  676. higher_buddy = higher_page + (buddy_idx - combined_idx);
  677. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  678. list_add_tail(&page->lru,
  679. &zone->free_area[order].free_list[migratetype]);
  680. goto out;
  681. }
  682. }
  683. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  684. out:
  685. zone->free_area[order].nr_free++;
  686. }
  687. static inline int free_pages_check(struct page *page)
  688. {
  689. const char *bad_reason = NULL;
  690. unsigned long bad_flags = 0;
  691. if (unlikely(page_mapcount(page)))
  692. bad_reason = "nonzero mapcount";
  693. if (unlikely(page->mapping != NULL))
  694. bad_reason = "non-NULL mapping";
  695. if (unlikely(atomic_read(&page->_count) != 0))
  696. bad_reason = "nonzero _count";
  697. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  698. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  699. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  700. }
  701. #ifdef CONFIG_MEMCG
  702. if (unlikely(page->mem_cgroup))
  703. bad_reason = "page still charged to cgroup";
  704. #endif
  705. if (unlikely(bad_reason)) {
  706. bad_page(page, bad_reason, bad_flags);
  707. return 1;
  708. }
  709. page_cpupid_reset_last(page);
  710. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  711. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  712. return 0;
  713. }
  714. /*
  715. * Frees a number of pages from the PCP lists
  716. * Assumes all pages on list are in same zone, and of same order.
  717. * count is the number of pages to free.
  718. *
  719. * If the zone was previously in an "all pages pinned" state then look to
  720. * see if this freeing clears that state.
  721. *
  722. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  723. * pinned" detection logic.
  724. */
  725. static void free_pcppages_bulk(struct zone *zone, int count,
  726. struct per_cpu_pages *pcp)
  727. {
  728. int migratetype = 0;
  729. int batch_free = 0;
  730. int to_free = count;
  731. unsigned long nr_scanned;
  732. spin_lock(&zone->lock);
  733. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  734. if (nr_scanned)
  735. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  736. while (to_free) {
  737. struct page *page;
  738. struct list_head *list;
  739. /*
  740. * Remove pages from lists in a round-robin fashion. A
  741. * batch_free count is maintained that is incremented when an
  742. * empty list is encountered. This is so more pages are freed
  743. * off fuller lists instead of spinning excessively around empty
  744. * lists
  745. */
  746. do {
  747. batch_free++;
  748. if (++migratetype == MIGRATE_PCPTYPES)
  749. migratetype = 0;
  750. list = &pcp->lists[migratetype];
  751. } while (list_empty(list));
  752. /* This is the only non-empty list. Free them all. */
  753. if (batch_free == MIGRATE_PCPTYPES)
  754. batch_free = to_free;
  755. do {
  756. int mt; /* migratetype of the to-be-freed page */
  757. page = list_entry(list->prev, struct page, lru);
  758. /* must delete as __free_one_page list manipulates */
  759. list_del(&page->lru);
  760. mt = get_pcppage_migratetype(page);
  761. /* MIGRATE_ISOLATE page should not go to pcplists */
  762. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  763. /* Pageblock could have been isolated meanwhile */
  764. if (unlikely(has_isolate_pageblock(zone)))
  765. mt = get_pageblock_migratetype(page);
  766. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  767. trace_mm_page_pcpu_drain(page, 0, mt);
  768. } while (--to_free && --batch_free && !list_empty(list));
  769. }
  770. spin_unlock(&zone->lock);
  771. }
  772. static void free_one_page(struct zone *zone,
  773. struct page *page, unsigned long pfn,
  774. unsigned int order,
  775. int migratetype)
  776. {
  777. unsigned long nr_scanned;
  778. spin_lock(&zone->lock);
  779. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  780. if (nr_scanned)
  781. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  782. if (unlikely(has_isolate_pageblock(zone) ||
  783. is_migrate_isolate(migratetype))) {
  784. migratetype = get_pfnblock_migratetype(page, pfn);
  785. }
  786. __free_one_page(page, pfn, zone, order, migratetype);
  787. spin_unlock(&zone->lock);
  788. }
  789. static int free_tail_pages_check(struct page *head_page, struct page *page)
  790. {
  791. int ret = 1;
  792. /*
  793. * We rely page->lru.next never has bit 0 set, unless the page
  794. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  795. */
  796. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  797. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  798. ret = 0;
  799. goto out;
  800. }
  801. if (unlikely(!PageTail(page))) {
  802. bad_page(page, "PageTail not set", 0);
  803. goto out;
  804. }
  805. if (unlikely(compound_head(page) != head_page)) {
  806. bad_page(page, "compound_head not consistent", 0);
  807. goto out;
  808. }
  809. ret = 0;
  810. out:
  811. clear_compound_head(page);
  812. return ret;
  813. }
  814. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  815. unsigned long zone, int nid)
  816. {
  817. set_page_links(page, zone, nid, pfn);
  818. init_page_count(page);
  819. page_mapcount_reset(page);
  820. page_cpupid_reset_last(page);
  821. INIT_LIST_HEAD(&page->lru);
  822. #ifdef WANT_PAGE_VIRTUAL
  823. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  824. if (!is_highmem_idx(zone))
  825. set_page_address(page, __va(pfn << PAGE_SHIFT));
  826. #endif
  827. }
  828. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  829. int nid)
  830. {
  831. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  832. }
  833. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  834. static void init_reserved_page(unsigned long pfn)
  835. {
  836. pg_data_t *pgdat;
  837. int nid, zid;
  838. if (!early_page_uninitialised(pfn))
  839. return;
  840. nid = early_pfn_to_nid(pfn);
  841. pgdat = NODE_DATA(nid);
  842. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  843. struct zone *zone = &pgdat->node_zones[zid];
  844. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  845. break;
  846. }
  847. __init_single_pfn(pfn, zid, nid);
  848. }
  849. #else
  850. static inline void init_reserved_page(unsigned long pfn)
  851. {
  852. }
  853. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  854. /*
  855. * Initialised pages do not have PageReserved set. This function is
  856. * called for each range allocated by the bootmem allocator and
  857. * marks the pages PageReserved. The remaining valid pages are later
  858. * sent to the buddy page allocator.
  859. */
  860. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  861. {
  862. unsigned long start_pfn = PFN_DOWN(start);
  863. unsigned long end_pfn = PFN_UP(end);
  864. for (; start_pfn < end_pfn; start_pfn++) {
  865. if (pfn_valid(start_pfn)) {
  866. struct page *page = pfn_to_page(start_pfn);
  867. init_reserved_page(start_pfn);
  868. /* Avoid false-positive PageTail() */
  869. INIT_LIST_HEAD(&page->lru);
  870. SetPageReserved(page);
  871. }
  872. }
  873. }
  874. static bool free_pages_prepare(struct page *page, unsigned int order)
  875. {
  876. bool compound = PageCompound(page);
  877. int i, bad = 0;
  878. VM_BUG_ON_PAGE(PageTail(page), page);
  879. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  880. trace_mm_page_free(page, order);
  881. kmemcheck_free_shadow(page, order);
  882. kasan_free_pages(page, order);
  883. if (PageAnon(page))
  884. page->mapping = NULL;
  885. bad += free_pages_check(page);
  886. for (i = 1; i < (1 << order); i++) {
  887. if (compound)
  888. bad += free_tail_pages_check(page, page + i);
  889. bad += free_pages_check(page + i);
  890. }
  891. if (bad)
  892. return false;
  893. reset_page_owner(page, order);
  894. if (!PageHighMem(page)) {
  895. debug_check_no_locks_freed(page_address(page),
  896. PAGE_SIZE << order);
  897. debug_check_no_obj_freed(page_address(page),
  898. PAGE_SIZE << order);
  899. }
  900. arch_free_page(page, order);
  901. kernel_map_pages(page, 1 << order, 0);
  902. return true;
  903. }
  904. static void __free_pages_ok(struct page *page, unsigned int order)
  905. {
  906. unsigned long flags;
  907. int migratetype;
  908. unsigned long pfn = page_to_pfn(page);
  909. if (!free_pages_prepare(page, order))
  910. return;
  911. migratetype = get_pfnblock_migratetype(page, pfn);
  912. local_irq_save(flags);
  913. __count_vm_events(PGFREE, 1 << order);
  914. free_one_page(page_zone(page), page, pfn, order, migratetype);
  915. local_irq_restore(flags);
  916. }
  917. static void __init __free_pages_boot_core(struct page *page,
  918. unsigned long pfn, unsigned int order)
  919. {
  920. unsigned int nr_pages = 1 << order;
  921. struct page *p = page;
  922. unsigned int loop;
  923. prefetchw(p);
  924. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  925. prefetchw(p + 1);
  926. __ClearPageReserved(p);
  927. set_page_count(p, 0);
  928. }
  929. __ClearPageReserved(p);
  930. set_page_count(p, 0);
  931. page_zone(page)->managed_pages += nr_pages;
  932. set_page_refcounted(page);
  933. __free_pages(page, order);
  934. }
  935. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  936. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  937. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  938. int __meminit early_pfn_to_nid(unsigned long pfn)
  939. {
  940. static DEFINE_SPINLOCK(early_pfn_lock);
  941. int nid;
  942. spin_lock(&early_pfn_lock);
  943. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  944. if (nid < 0)
  945. nid = first_online_node;
  946. spin_unlock(&early_pfn_lock);
  947. return nid;
  948. }
  949. #endif
  950. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  951. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  952. struct mminit_pfnnid_cache *state)
  953. {
  954. int nid;
  955. nid = __early_pfn_to_nid(pfn, state);
  956. if (nid >= 0 && nid != node)
  957. return false;
  958. return true;
  959. }
  960. /* Only safe to use early in boot when initialisation is single-threaded */
  961. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  962. {
  963. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  964. }
  965. #else
  966. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  967. {
  968. return true;
  969. }
  970. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  971. struct mminit_pfnnid_cache *state)
  972. {
  973. return true;
  974. }
  975. #endif
  976. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  977. unsigned int order)
  978. {
  979. if (early_page_uninitialised(pfn))
  980. return;
  981. return __free_pages_boot_core(page, pfn, order);
  982. }
  983. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  984. static void __init deferred_free_range(struct page *page,
  985. unsigned long pfn, int nr_pages)
  986. {
  987. int i;
  988. if (!page)
  989. return;
  990. /* Free a large naturally-aligned chunk if possible */
  991. if (nr_pages == MAX_ORDER_NR_PAGES &&
  992. (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
  993. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  994. __free_pages_boot_core(page, pfn, MAX_ORDER-1);
  995. return;
  996. }
  997. for (i = 0; i < nr_pages; i++, page++, pfn++)
  998. __free_pages_boot_core(page, pfn, 0);
  999. }
  1000. /* Completion tracking for deferred_init_memmap() threads */
  1001. static atomic_t pgdat_init_n_undone __initdata;
  1002. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1003. static inline void __init pgdat_init_report_one_done(void)
  1004. {
  1005. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1006. complete(&pgdat_init_all_done_comp);
  1007. }
  1008. /* Initialise remaining memory on a node */
  1009. static int __init deferred_init_memmap(void *data)
  1010. {
  1011. pg_data_t *pgdat = data;
  1012. int nid = pgdat->node_id;
  1013. struct mminit_pfnnid_cache nid_init_state = { };
  1014. unsigned long start = jiffies;
  1015. unsigned long nr_pages = 0;
  1016. unsigned long walk_start, walk_end;
  1017. int i, zid;
  1018. struct zone *zone;
  1019. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1020. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1021. if (first_init_pfn == ULONG_MAX) {
  1022. pgdat_init_report_one_done();
  1023. return 0;
  1024. }
  1025. /* Bind memory initialisation thread to a local node if possible */
  1026. if (!cpumask_empty(cpumask))
  1027. set_cpus_allowed_ptr(current, cpumask);
  1028. /* Sanity check boundaries */
  1029. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1030. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1031. pgdat->first_deferred_pfn = ULONG_MAX;
  1032. /* Only the highest zone is deferred so find it */
  1033. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1034. zone = pgdat->node_zones + zid;
  1035. if (first_init_pfn < zone_end_pfn(zone))
  1036. break;
  1037. }
  1038. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1039. unsigned long pfn, end_pfn;
  1040. struct page *page = NULL;
  1041. struct page *free_base_page = NULL;
  1042. unsigned long free_base_pfn = 0;
  1043. int nr_to_free = 0;
  1044. end_pfn = min(walk_end, zone_end_pfn(zone));
  1045. pfn = first_init_pfn;
  1046. if (pfn < walk_start)
  1047. pfn = walk_start;
  1048. if (pfn < zone->zone_start_pfn)
  1049. pfn = zone->zone_start_pfn;
  1050. for (; pfn < end_pfn; pfn++) {
  1051. if (!pfn_valid_within(pfn))
  1052. goto free_range;
  1053. /*
  1054. * Ensure pfn_valid is checked every
  1055. * MAX_ORDER_NR_PAGES for memory holes
  1056. */
  1057. if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  1058. if (!pfn_valid(pfn)) {
  1059. page = NULL;
  1060. goto free_range;
  1061. }
  1062. }
  1063. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1064. page = NULL;
  1065. goto free_range;
  1066. }
  1067. /* Minimise pfn page lookups and scheduler checks */
  1068. if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
  1069. page++;
  1070. } else {
  1071. nr_pages += nr_to_free;
  1072. deferred_free_range(free_base_page,
  1073. free_base_pfn, nr_to_free);
  1074. free_base_page = NULL;
  1075. free_base_pfn = nr_to_free = 0;
  1076. page = pfn_to_page(pfn);
  1077. cond_resched();
  1078. }
  1079. if (page->flags) {
  1080. VM_BUG_ON(page_zone(page) != zone);
  1081. goto free_range;
  1082. }
  1083. __init_single_page(page, pfn, zid, nid);
  1084. if (!free_base_page) {
  1085. free_base_page = page;
  1086. free_base_pfn = pfn;
  1087. nr_to_free = 0;
  1088. }
  1089. nr_to_free++;
  1090. /* Where possible, batch up pages for a single free */
  1091. continue;
  1092. free_range:
  1093. /* Free the current block of pages to allocator */
  1094. nr_pages += nr_to_free;
  1095. deferred_free_range(free_base_page, free_base_pfn,
  1096. nr_to_free);
  1097. free_base_page = NULL;
  1098. free_base_pfn = nr_to_free = 0;
  1099. }
  1100. first_init_pfn = max(end_pfn, first_init_pfn);
  1101. }
  1102. /* Sanity check that the next zone really is unpopulated */
  1103. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1104. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1105. jiffies_to_msecs(jiffies - start));
  1106. pgdat_init_report_one_done();
  1107. return 0;
  1108. }
  1109. void __init page_alloc_init_late(void)
  1110. {
  1111. int nid;
  1112. /* There will be num_node_state(N_MEMORY) threads */
  1113. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1114. for_each_node_state(nid, N_MEMORY) {
  1115. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1116. }
  1117. /* Block until all are initialised */
  1118. wait_for_completion(&pgdat_init_all_done_comp);
  1119. /* Reinit limits that are based on free pages after the kernel is up */
  1120. files_maxfiles_init();
  1121. }
  1122. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1123. #ifdef CONFIG_CMA
  1124. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1125. void __init init_cma_reserved_pageblock(struct page *page)
  1126. {
  1127. unsigned i = pageblock_nr_pages;
  1128. struct page *p = page;
  1129. do {
  1130. __ClearPageReserved(p);
  1131. set_page_count(p, 0);
  1132. } while (++p, --i);
  1133. set_pageblock_migratetype(page, MIGRATE_CMA);
  1134. if (pageblock_order >= MAX_ORDER) {
  1135. i = pageblock_nr_pages;
  1136. p = page;
  1137. do {
  1138. set_page_refcounted(p);
  1139. __free_pages(p, MAX_ORDER - 1);
  1140. p += MAX_ORDER_NR_PAGES;
  1141. } while (i -= MAX_ORDER_NR_PAGES);
  1142. } else {
  1143. set_page_refcounted(page);
  1144. __free_pages(page, pageblock_order);
  1145. }
  1146. adjust_managed_page_count(page, pageblock_nr_pages);
  1147. }
  1148. #endif
  1149. /*
  1150. * The order of subdivision here is critical for the IO subsystem.
  1151. * Please do not alter this order without good reasons and regression
  1152. * testing. Specifically, as large blocks of memory are subdivided,
  1153. * the order in which smaller blocks are delivered depends on the order
  1154. * they're subdivided in this function. This is the primary factor
  1155. * influencing the order in which pages are delivered to the IO
  1156. * subsystem according to empirical testing, and this is also justified
  1157. * by considering the behavior of a buddy system containing a single
  1158. * large block of memory acted on by a series of small allocations.
  1159. * This behavior is a critical factor in sglist merging's success.
  1160. *
  1161. * -- nyc
  1162. */
  1163. static inline void expand(struct zone *zone, struct page *page,
  1164. int low, int high, struct free_area *area,
  1165. int migratetype)
  1166. {
  1167. unsigned long size = 1 << high;
  1168. while (high > low) {
  1169. area--;
  1170. high--;
  1171. size >>= 1;
  1172. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1173. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  1174. debug_guardpage_enabled() &&
  1175. high < debug_guardpage_minorder()) {
  1176. /*
  1177. * Mark as guard pages (or page), that will allow to
  1178. * merge back to allocator when buddy will be freed.
  1179. * Corresponding page table entries will not be touched,
  1180. * pages will stay not present in virtual address space
  1181. */
  1182. set_page_guard(zone, &page[size], high, migratetype);
  1183. continue;
  1184. }
  1185. list_add(&page[size].lru, &area->free_list[migratetype]);
  1186. area->nr_free++;
  1187. set_page_order(&page[size], high);
  1188. }
  1189. }
  1190. /*
  1191. * This page is about to be returned from the page allocator
  1192. */
  1193. static inline int check_new_page(struct page *page)
  1194. {
  1195. const char *bad_reason = NULL;
  1196. unsigned long bad_flags = 0;
  1197. if (unlikely(page_mapcount(page)))
  1198. bad_reason = "nonzero mapcount";
  1199. if (unlikely(page->mapping != NULL))
  1200. bad_reason = "non-NULL mapping";
  1201. if (unlikely(atomic_read(&page->_count) != 0))
  1202. bad_reason = "nonzero _count";
  1203. if (unlikely(page->flags & __PG_HWPOISON)) {
  1204. bad_reason = "HWPoisoned (hardware-corrupted)";
  1205. bad_flags = __PG_HWPOISON;
  1206. }
  1207. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1208. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1209. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1210. }
  1211. #ifdef CONFIG_MEMCG
  1212. if (unlikely(page->mem_cgroup))
  1213. bad_reason = "page still charged to cgroup";
  1214. #endif
  1215. if (unlikely(bad_reason)) {
  1216. bad_page(page, bad_reason, bad_flags);
  1217. return 1;
  1218. }
  1219. return 0;
  1220. }
  1221. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1222. int alloc_flags)
  1223. {
  1224. int i;
  1225. for (i = 0; i < (1 << order); i++) {
  1226. struct page *p = page + i;
  1227. if (unlikely(check_new_page(p)))
  1228. return 1;
  1229. }
  1230. set_page_private(page, 0);
  1231. set_page_refcounted(page);
  1232. arch_alloc_page(page, order);
  1233. kernel_map_pages(page, 1 << order, 1);
  1234. kasan_alloc_pages(page, order);
  1235. if (gfp_flags & __GFP_ZERO)
  1236. for (i = 0; i < (1 << order); i++)
  1237. clear_highpage(page + i);
  1238. if (order && (gfp_flags & __GFP_COMP))
  1239. prep_compound_page(page, order);
  1240. set_page_owner(page, order, gfp_flags);
  1241. /*
  1242. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1243. * allocate the page. The expectation is that the caller is taking
  1244. * steps that will free more memory. The caller should avoid the page
  1245. * being used for !PFMEMALLOC purposes.
  1246. */
  1247. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1248. set_page_pfmemalloc(page);
  1249. else
  1250. clear_page_pfmemalloc(page);
  1251. return 0;
  1252. }
  1253. /*
  1254. * Go through the free lists for the given migratetype and remove
  1255. * the smallest available page from the freelists
  1256. */
  1257. static inline
  1258. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1259. int migratetype)
  1260. {
  1261. unsigned int current_order;
  1262. struct free_area *area;
  1263. struct page *page;
  1264. /* Find a page of the appropriate size in the preferred list */
  1265. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1266. area = &(zone->free_area[current_order]);
  1267. if (list_empty(&area->free_list[migratetype]))
  1268. continue;
  1269. page = list_entry(area->free_list[migratetype].next,
  1270. struct page, lru);
  1271. list_del(&page->lru);
  1272. rmv_page_order(page);
  1273. area->nr_free--;
  1274. expand(zone, page, order, current_order, area, migratetype);
  1275. set_pcppage_migratetype(page, migratetype);
  1276. return page;
  1277. }
  1278. return NULL;
  1279. }
  1280. /*
  1281. * This array describes the order lists are fallen back to when
  1282. * the free lists for the desirable migrate type are depleted
  1283. */
  1284. static int fallbacks[MIGRATE_TYPES][4] = {
  1285. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1286. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1287. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1288. #ifdef CONFIG_CMA
  1289. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1290. #endif
  1291. #ifdef CONFIG_MEMORY_ISOLATION
  1292. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1293. #endif
  1294. };
  1295. #ifdef CONFIG_CMA
  1296. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1297. unsigned int order)
  1298. {
  1299. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1300. }
  1301. #else
  1302. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1303. unsigned int order) { return NULL; }
  1304. #endif
  1305. /*
  1306. * Move the free pages in a range to the free lists of the requested type.
  1307. * Note that start_page and end_pages are not aligned on a pageblock
  1308. * boundary. If alignment is required, use move_freepages_block()
  1309. */
  1310. int move_freepages(struct zone *zone,
  1311. struct page *start_page, struct page *end_page,
  1312. int migratetype)
  1313. {
  1314. struct page *page;
  1315. unsigned int order;
  1316. int pages_moved = 0;
  1317. #ifndef CONFIG_HOLES_IN_ZONE
  1318. /*
  1319. * page_zone is not safe to call in this context when
  1320. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1321. * anyway as we check zone boundaries in move_freepages_block().
  1322. * Remove at a later date when no bug reports exist related to
  1323. * grouping pages by mobility
  1324. */
  1325. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1326. #endif
  1327. for (page = start_page; page <= end_page;) {
  1328. if (!pfn_valid_within(page_to_pfn(page))) {
  1329. page++;
  1330. continue;
  1331. }
  1332. /* Make sure we are not inadvertently changing nodes */
  1333. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1334. if (!PageBuddy(page)) {
  1335. page++;
  1336. continue;
  1337. }
  1338. order = page_order(page);
  1339. list_move(&page->lru,
  1340. &zone->free_area[order].free_list[migratetype]);
  1341. page += 1 << order;
  1342. pages_moved += 1 << order;
  1343. }
  1344. return pages_moved;
  1345. }
  1346. int move_freepages_block(struct zone *zone, struct page *page,
  1347. int migratetype)
  1348. {
  1349. unsigned long start_pfn, end_pfn;
  1350. struct page *start_page, *end_page;
  1351. start_pfn = page_to_pfn(page);
  1352. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1353. start_page = pfn_to_page(start_pfn);
  1354. end_page = start_page + pageblock_nr_pages - 1;
  1355. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1356. /* Do not cross zone boundaries */
  1357. if (!zone_spans_pfn(zone, start_pfn))
  1358. start_page = page;
  1359. if (!zone_spans_pfn(zone, end_pfn))
  1360. return 0;
  1361. return move_freepages(zone, start_page, end_page, migratetype);
  1362. }
  1363. static void change_pageblock_range(struct page *pageblock_page,
  1364. int start_order, int migratetype)
  1365. {
  1366. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1367. while (nr_pageblocks--) {
  1368. set_pageblock_migratetype(pageblock_page, migratetype);
  1369. pageblock_page += pageblock_nr_pages;
  1370. }
  1371. }
  1372. /*
  1373. * When we are falling back to another migratetype during allocation, try to
  1374. * steal extra free pages from the same pageblocks to satisfy further
  1375. * allocations, instead of polluting multiple pageblocks.
  1376. *
  1377. * If we are stealing a relatively large buddy page, it is likely there will
  1378. * be more free pages in the pageblock, so try to steal them all. For
  1379. * reclaimable and unmovable allocations, we steal regardless of page size,
  1380. * as fragmentation caused by those allocations polluting movable pageblocks
  1381. * is worse than movable allocations stealing from unmovable and reclaimable
  1382. * pageblocks.
  1383. */
  1384. static bool can_steal_fallback(unsigned int order, int start_mt)
  1385. {
  1386. /*
  1387. * Leaving this order check is intended, although there is
  1388. * relaxed order check in next check. The reason is that
  1389. * we can actually steal whole pageblock if this condition met,
  1390. * but, below check doesn't guarantee it and that is just heuristic
  1391. * so could be changed anytime.
  1392. */
  1393. if (order >= pageblock_order)
  1394. return true;
  1395. if (order >= pageblock_order / 2 ||
  1396. start_mt == MIGRATE_RECLAIMABLE ||
  1397. start_mt == MIGRATE_UNMOVABLE ||
  1398. page_group_by_mobility_disabled)
  1399. return true;
  1400. return false;
  1401. }
  1402. /*
  1403. * This function implements actual steal behaviour. If order is large enough,
  1404. * we can steal whole pageblock. If not, we first move freepages in this
  1405. * pageblock and check whether half of pages are moved or not. If half of
  1406. * pages are moved, we can change migratetype of pageblock and permanently
  1407. * use it's pages as requested migratetype in the future.
  1408. */
  1409. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1410. int start_type)
  1411. {
  1412. unsigned int current_order = page_order(page);
  1413. int pages;
  1414. /* Take ownership for orders >= pageblock_order */
  1415. if (current_order >= pageblock_order) {
  1416. change_pageblock_range(page, current_order, start_type);
  1417. return;
  1418. }
  1419. pages = move_freepages_block(zone, page, start_type);
  1420. /* Claim the whole block if over half of it is free */
  1421. if (pages >= (1 << (pageblock_order-1)) ||
  1422. page_group_by_mobility_disabled)
  1423. set_pageblock_migratetype(page, start_type);
  1424. }
  1425. /*
  1426. * Check whether there is a suitable fallback freepage with requested order.
  1427. * If only_stealable is true, this function returns fallback_mt only if
  1428. * we can steal other freepages all together. This would help to reduce
  1429. * fragmentation due to mixed migratetype pages in one pageblock.
  1430. */
  1431. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1432. int migratetype, bool only_stealable, bool *can_steal)
  1433. {
  1434. int i;
  1435. int fallback_mt;
  1436. if (area->nr_free == 0)
  1437. return -1;
  1438. *can_steal = false;
  1439. for (i = 0;; i++) {
  1440. fallback_mt = fallbacks[migratetype][i];
  1441. if (fallback_mt == MIGRATE_TYPES)
  1442. break;
  1443. if (list_empty(&area->free_list[fallback_mt]))
  1444. continue;
  1445. if (can_steal_fallback(order, migratetype))
  1446. *can_steal = true;
  1447. if (!only_stealable)
  1448. return fallback_mt;
  1449. if (*can_steal)
  1450. return fallback_mt;
  1451. }
  1452. return -1;
  1453. }
  1454. /*
  1455. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1456. * there are no empty page blocks that contain a page with a suitable order
  1457. */
  1458. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1459. unsigned int alloc_order)
  1460. {
  1461. int mt;
  1462. unsigned long max_managed, flags;
  1463. /*
  1464. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1465. * Check is race-prone but harmless.
  1466. */
  1467. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1468. if (zone->nr_reserved_highatomic >= max_managed)
  1469. return;
  1470. spin_lock_irqsave(&zone->lock, flags);
  1471. /* Recheck the nr_reserved_highatomic limit under the lock */
  1472. if (zone->nr_reserved_highatomic >= max_managed)
  1473. goto out_unlock;
  1474. /* Yoink! */
  1475. mt = get_pageblock_migratetype(page);
  1476. if (mt != MIGRATE_HIGHATOMIC &&
  1477. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1478. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1479. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1480. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1481. }
  1482. out_unlock:
  1483. spin_unlock_irqrestore(&zone->lock, flags);
  1484. }
  1485. /*
  1486. * Used when an allocation is about to fail under memory pressure. This
  1487. * potentially hurts the reliability of high-order allocations when under
  1488. * intense memory pressure but failed atomic allocations should be easier
  1489. * to recover from than an OOM.
  1490. */
  1491. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1492. {
  1493. struct zonelist *zonelist = ac->zonelist;
  1494. unsigned long flags;
  1495. struct zoneref *z;
  1496. struct zone *zone;
  1497. struct page *page;
  1498. int order;
  1499. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1500. ac->nodemask) {
  1501. /* Preserve at least one pageblock */
  1502. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1503. continue;
  1504. spin_lock_irqsave(&zone->lock, flags);
  1505. for (order = 0; order < MAX_ORDER; order++) {
  1506. struct free_area *area = &(zone->free_area[order]);
  1507. if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
  1508. continue;
  1509. page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
  1510. struct page, lru);
  1511. /*
  1512. * In page freeing path, migratetype change is racy so
  1513. * we can counter several free pages in a pageblock
  1514. * in this loop althoug we changed the pageblock type
  1515. * from highatomic to ac->migratetype. So we should
  1516. * adjust the count once.
  1517. */
  1518. if (get_pageblock_migratetype(page) ==
  1519. MIGRATE_HIGHATOMIC) {
  1520. /*
  1521. * It should never happen but changes to
  1522. * locking could inadvertently allow a per-cpu
  1523. * drain to add pages to MIGRATE_HIGHATOMIC
  1524. * while unreserving so be safe and watch for
  1525. * underflows.
  1526. */
  1527. zone->nr_reserved_highatomic -= min(
  1528. pageblock_nr_pages,
  1529. zone->nr_reserved_highatomic);
  1530. }
  1531. /*
  1532. * Convert to ac->migratetype and avoid the normal
  1533. * pageblock stealing heuristics. Minimally, the caller
  1534. * is doing the work and needs the pages. More
  1535. * importantly, if the block was always converted to
  1536. * MIGRATE_UNMOVABLE or another type then the number
  1537. * of pageblocks that cannot be completely freed
  1538. * may increase.
  1539. */
  1540. set_pageblock_migratetype(page, ac->migratetype);
  1541. move_freepages_block(zone, page, ac->migratetype);
  1542. spin_unlock_irqrestore(&zone->lock, flags);
  1543. return;
  1544. }
  1545. spin_unlock_irqrestore(&zone->lock, flags);
  1546. }
  1547. }
  1548. /* Remove an element from the buddy allocator from the fallback list */
  1549. static inline struct page *
  1550. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1551. {
  1552. struct free_area *area;
  1553. unsigned int current_order;
  1554. struct page *page;
  1555. int fallback_mt;
  1556. bool can_steal;
  1557. /* Find the largest possible block of pages in the other list */
  1558. for (current_order = MAX_ORDER-1;
  1559. current_order >= order && current_order <= MAX_ORDER-1;
  1560. --current_order) {
  1561. area = &(zone->free_area[current_order]);
  1562. fallback_mt = find_suitable_fallback(area, current_order,
  1563. start_migratetype, false, &can_steal);
  1564. if (fallback_mt == -1)
  1565. continue;
  1566. page = list_entry(area->free_list[fallback_mt].next,
  1567. struct page, lru);
  1568. if (can_steal)
  1569. steal_suitable_fallback(zone, page, start_migratetype);
  1570. /* Remove the page from the freelists */
  1571. area->nr_free--;
  1572. list_del(&page->lru);
  1573. rmv_page_order(page);
  1574. expand(zone, page, order, current_order, area,
  1575. start_migratetype);
  1576. /*
  1577. * The pcppage_migratetype may differ from pageblock's
  1578. * migratetype depending on the decisions in
  1579. * find_suitable_fallback(). This is OK as long as it does not
  1580. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1581. * fallback only via special __rmqueue_cma_fallback() function
  1582. */
  1583. set_pcppage_migratetype(page, start_migratetype);
  1584. trace_mm_page_alloc_extfrag(page, order, current_order,
  1585. start_migratetype, fallback_mt);
  1586. return page;
  1587. }
  1588. return NULL;
  1589. }
  1590. /*
  1591. * Do the hard work of removing an element from the buddy allocator.
  1592. * Call me with the zone->lock already held.
  1593. */
  1594. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1595. int migratetype, gfp_t gfp_flags)
  1596. {
  1597. struct page *page;
  1598. page = __rmqueue_smallest(zone, order, migratetype);
  1599. if (unlikely(!page)) {
  1600. if (migratetype == MIGRATE_MOVABLE)
  1601. page = __rmqueue_cma_fallback(zone, order);
  1602. if (!page)
  1603. page = __rmqueue_fallback(zone, order, migratetype);
  1604. }
  1605. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1606. return page;
  1607. }
  1608. /*
  1609. * Obtain a specified number of elements from the buddy allocator, all under
  1610. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1611. * Returns the number of new pages which were placed at *list.
  1612. */
  1613. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1614. unsigned long count, struct list_head *list,
  1615. int migratetype, bool cold)
  1616. {
  1617. int i;
  1618. spin_lock(&zone->lock);
  1619. for (i = 0; i < count; ++i) {
  1620. struct page *page = __rmqueue(zone, order, migratetype, 0);
  1621. if (unlikely(page == NULL))
  1622. break;
  1623. /*
  1624. * Split buddy pages returned by expand() are received here
  1625. * in physical page order. The page is added to the callers and
  1626. * list and the list head then moves forward. From the callers
  1627. * perspective, the linked list is ordered by page number in
  1628. * some conditions. This is useful for IO devices that can
  1629. * merge IO requests if the physical pages are ordered
  1630. * properly.
  1631. */
  1632. if (likely(!cold))
  1633. list_add(&page->lru, list);
  1634. else
  1635. list_add_tail(&page->lru, list);
  1636. list = &page->lru;
  1637. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1638. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1639. -(1 << order));
  1640. }
  1641. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1642. spin_unlock(&zone->lock);
  1643. return i;
  1644. }
  1645. #ifdef CONFIG_NUMA
  1646. /*
  1647. * Called from the vmstat counter updater to drain pagesets of this
  1648. * currently executing processor on remote nodes after they have
  1649. * expired.
  1650. *
  1651. * Note that this function must be called with the thread pinned to
  1652. * a single processor.
  1653. */
  1654. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1655. {
  1656. unsigned long flags;
  1657. int to_drain, batch;
  1658. local_irq_save(flags);
  1659. batch = READ_ONCE(pcp->batch);
  1660. to_drain = min(pcp->count, batch);
  1661. if (to_drain > 0) {
  1662. free_pcppages_bulk(zone, to_drain, pcp);
  1663. pcp->count -= to_drain;
  1664. }
  1665. local_irq_restore(flags);
  1666. }
  1667. #endif
  1668. /*
  1669. * Drain pcplists of the indicated processor and zone.
  1670. *
  1671. * The processor must either be the current processor and the
  1672. * thread pinned to the current processor or a processor that
  1673. * is not online.
  1674. */
  1675. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1676. {
  1677. unsigned long flags;
  1678. struct per_cpu_pageset *pset;
  1679. struct per_cpu_pages *pcp;
  1680. local_irq_save(flags);
  1681. pset = per_cpu_ptr(zone->pageset, cpu);
  1682. pcp = &pset->pcp;
  1683. if (pcp->count) {
  1684. free_pcppages_bulk(zone, pcp->count, pcp);
  1685. pcp->count = 0;
  1686. }
  1687. local_irq_restore(flags);
  1688. }
  1689. /*
  1690. * Drain pcplists of all zones on the indicated processor.
  1691. *
  1692. * The processor must either be the current processor and the
  1693. * thread pinned to the current processor or a processor that
  1694. * is not online.
  1695. */
  1696. static void drain_pages(unsigned int cpu)
  1697. {
  1698. struct zone *zone;
  1699. for_each_populated_zone(zone) {
  1700. drain_pages_zone(cpu, zone);
  1701. }
  1702. }
  1703. /*
  1704. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1705. *
  1706. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1707. * the single zone's pages.
  1708. */
  1709. void drain_local_pages(struct zone *zone)
  1710. {
  1711. int cpu = smp_processor_id();
  1712. if (zone)
  1713. drain_pages_zone(cpu, zone);
  1714. else
  1715. drain_pages(cpu);
  1716. }
  1717. /*
  1718. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1719. *
  1720. * When zone parameter is non-NULL, spill just the single zone's pages.
  1721. *
  1722. * Note that this code is protected against sending an IPI to an offline
  1723. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1724. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1725. * nothing keeps CPUs from showing up after we populated the cpumask and
  1726. * before the call to on_each_cpu_mask().
  1727. */
  1728. void drain_all_pages(struct zone *zone)
  1729. {
  1730. int cpu;
  1731. /*
  1732. * Allocate in the BSS so we wont require allocation in
  1733. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1734. */
  1735. static cpumask_t cpus_with_pcps;
  1736. /*
  1737. * We don't care about racing with CPU hotplug event
  1738. * as offline notification will cause the notified
  1739. * cpu to drain that CPU pcps and on_each_cpu_mask
  1740. * disables preemption as part of its processing
  1741. */
  1742. for_each_online_cpu(cpu) {
  1743. struct per_cpu_pageset *pcp;
  1744. struct zone *z;
  1745. bool has_pcps = false;
  1746. if (zone) {
  1747. pcp = per_cpu_ptr(zone->pageset, cpu);
  1748. if (pcp->pcp.count)
  1749. has_pcps = true;
  1750. } else {
  1751. for_each_populated_zone(z) {
  1752. pcp = per_cpu_ptr(z->pageset, cpu);
  1753. if (pcp->pcp.count) {
  1754. has_pcps = true;
  1755. break;
  1756. }
  1757. }
  1758. }
  1759. if (has_pcps)
  1760. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1761. else
  1762. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1763. }
  1764. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  1765. zone, 1);
  1766. }
  1767. #ifdef CONFIG_HIBERNATION
  1768. void mark_free_pages(struct zone *zone)
  1769. {
  1770. unsigned long pfn, max_zone_pfn;
  1771. unsigned long flags;
  1772. unsigned int order, t;
  1773. struct list_head *curr;
  1774. if (zone_is_empty(zone))
  1775. return;
  1776. spin_lock_irqsave(&zone->lock, flags);
  1777. max_zone_pfn = zone_end_pfn(zone);
  1778. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1779. if (pfn_valid(pfn)) {
  1780. struct page *page = pfn_to_page(pfn);
  1781. if (!swsusp_page_is_forbidden(page))
  1782. swsusp_unset_page_free(page);
  1783. }
  1784. for_each_migratetype_order(order, t) {
  1785. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1786. unsigned long i;
  1787. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1788. for (i = 0; i < (1UL << order); i++)
  1789. swsusp_set_page_free(pfn_to_page(pfn + i));
  1790. }
  1791. }
  1792. spin_unlock_irqrestore(&zone->lock, flags);
  1793. }
  1794. #endif /* CONFIG_PM */
  1795. /*
  1796. * Free a 0-order page
  1797. * cold == true ? free a cold page : free a hot page
  1798. */
  1799. void free_hot_cold_page(struct page *page, bool cold)
  1800. {
  1801. struct zone *zone = page_zone(page);
  1802. struct per_cpu_pages *pcp;
  1803. unsigned long flags;
  1804. unsigned long pfn = page_to_pfn(page);
  1805. int migratetype;
  1806. if (!free_pages_prepare(page, 0))
  1807. return;
  1808. migratetype = get_pfnblock_migratetype(page, pfn);
  1809. set_pcppage_migratetype(page, migratetype);
  1810. local_irq_save(flags);
  1811. __count_vm_event(PGFREE);
  1812. /*
  1813. * We only track unmovable, reclaimable and movable on pcp lists.
  1814. * Free ISOLATE pages back to the allocator because they are being
  1815. * offlined but treat RESERVE as movable pages so we can get those
  1816. * areas back if necessary. Otherwise, we may have to free
  1817. * excessively into the page allocator
  1818. */
  1819. if (migratetype >= MIGRATE_PCPTYPES) {
  1820. if (unlikely(is_migrate_isolate(migratetype))) {
  1821. free_one_page(zone, page, pfn, 0, migratetype);
  1822. goto out;
  1823. }
  1824. migratetype = MIGRATE_MOVABLE;
  1825. }
  1826. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1827. if (!cold)
  1828. list_add(&page->lru, &pcp->lists[migratetype]);
  1829. else
  1830. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1831. pcp->count++;
  1832. if (pcp->count >= pcp->high) {
  1833. unsigned long batch = READ_ONCE(pcp->batch);
  1834. free_pcppages_bulk(zone, batch, pcp);
  1835. pcp->count -= batch;
  1836. }
  1837. out:
  1838. local_irq_restore(flags);
  1839. }
  1840. /*
  1841. * Free a list of 0-order pages
  1842. */
  1843. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1844. {
  1845. struct page *page, *next;
  1846. list_for_each_entry_safe(page, next, list, lru) {
  1847. trace_mm_page_free_batched(page, cold);
  1848. free_hot_cold_page(page, cold);
  1849. }
  1850. }
  1851. /*
  1852. * split_page takes a non-compound higher-order page, and splits it into
  1853. * n (1<<order) sub-pages: page[0..n]
  1854. * Each sub-page must be freed individually.
  1855. *
  1856. * Note: this is probably too low level an operation for use in drivers.
  1857. * Please consult with lkml before using this in your driver.
  1858. */
  1859. void split_page(struct page *page, unsigned int order)
  1860. {
  1861. int i;
  1862. gfp_t gfp_mask;
  1863. VM_BUG_ON_PAGE(PageCompound(page), page);
  1864. VM_BUG_ON_PAGE(!page_count(page), page);
  1865. #ifdef CONFIG_KMEMCHECK
  1866. /*
  1867. * Split shadow pages too, because free(page[0]) would
  1868. * otherwise free the whole shadow.
  1869. */
  1870. if (kmemcheck_page_is_tracked(page))
  1871. split_page(virt_to_page(page[0].shadow), order);
  1872. #endif
  1873. gfp_mask = get_page_owner_gfp(page);
  1874. set_page_owner(page, 0, gfp_mask);
  1875. for (i = 1; i < (1 << order); i++) {
  1876. set_page_refcounted(page + i);
  1877. set_page_owner(page + i, 0, gfp_mask);
  1878. }
  1879. }
  1880. EXPORT_SYMBOL_GPL(split_page);
  1881. int __isolate_free_page(struct page *page, unsigned int order)
  1882. {
  1883. unsigned long watermark;
  1884. struct zone *zone;
  1885. int mt;
  1886. BUG_ON(!PageBuddy(page));
  1887. zone = page_zone(page);
  1888. mt = get_pageblock_migratetype(page);
  1889. if (!is_migrate_isolate(mt)) {
  1890. /* Obey watermarks as if the page was being allocated */
  1891. watermark = low_wmark_pages(zone) + (1 << order);
  1892. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1893. return 0;
  1894. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1895. }
  1896. /* Remove page from free list */
  1897. list_del(&page->lru);
  1898. zone->free_area[order].nr_free--;
  1899. rmv_page_order(page);
  1900. set_page_owner(page, order, __GFP_MOVABLE);
  1901. /* Set the pageblock if the isolated page is at least a pageblock */
  1902. if (order >= pageblock_order - 1) {
  1903. struct page *endpage = page + (1 << order) - 1;
  1904. for (; page < endpage; page += pageblock_nr_pages) {
  1905. int mt = get_pageblock_migratetype(page);
  1906. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1907. set_pageblock_migratetype(page,
  1908. MIGRATE_MOVABLE);
  1909. }
  1910. }
  1911. return 1UL << order;
  1912. }
  1913. /*
  1914. * Similar to split_page except the page is already free. As this is only
  1915. * being used for migration, the migratetype of the block also changes.
  1916. * As this is called with interrupts disabled, the caller is responsible
  1917. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1918. * are enabled.
  1919. *
  1920. * Note: this is probably too low level an operation for use in drivers.
  1921. * Please consult with lkml before using this in your driver.
  1922. */
  1923. int split_free_page(struct page *page)
  1924. {
  1925. unsigned int order;
  1926. int nr_pages;
  1927. order = page_order(page);
  1928. nr_pages = __isolate_free_page(page, order);
  1929. if (!nr_pages)
  1930. return 0;
  1931. /* Split into individual pages */
  1932. set_page_refcounted(page);
  1933. split_page(page, order);
  1934. return nr_pages;
  1935. }
  1936. /*
  1937. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  1938. */
  1939. static inline
  1940. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1941. struct zone *zone, unsigned int order,
  1942. gfp_t gfp_flags, int alloc_flags, int migratetype)
  1943. {
  1944. unsigned long flags;
  1945. struct page *page;
  1946. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  1947. if (likely(order == 0)) {
  1948. struct per_cpu_pages *pcp;
  1949. struct list_head *list;
  1950. local_irq_save(flags);
  1951. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1952. list = &pcp->lists[migratetype];
  1953. if (list_empty(list)) {
  1954. pcp->count += rmqueue_bulk(zone, 0,
  1955. pcp->batch, list,
  1956. migratetype, cold);
  1957. if (unlikely(list_empty(list)))
  1958. goto failed;
  1959. }
  1960. if (cold)
  1961. page = list_entry(list->prev, struct page, lru);
  1962. else
  1963. page = list_entry(list->next, struct page, lru);
  1964. list_del(&page->lru);
  1965. pcp->count--;
  1966. } else {
  1967. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1968. /*
  1969. * __GFP_NOFAIL is not to be used in new code.
  1970. *
  1971. * All __GFP_NOFAIL callers should be fixed so that they
  1972. * properly detect and handle allocation failures.
  1973. *
  1974. * We most definitely don't want callers attempting to
  1975. * allocate greater than order-1 page units with
  1976. * __GFP_NOFAIL.
  1977. */
  1978. WARN_ON_ONCE(order > 1);
  1979. }
  1980. spin_lock_irqsave(&zone->lock, flags);
  1981. page = NULL;
  1982. if (alloc_flags & ALLOC_HARDER) {
  1983. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  1984. if (page)
  1985. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1986. }
  1987. if (!page)
  1988. page = __rmqueue(zone, order, migratetype, gfp_flags);
  1989. spin_unlock(&zone->lock);
  1990. if (!page)
  1991. goto failed;
  1992. __mod_zone_freepage_state(zone, -(1 << order),
  1993. get_pcppage_migratetype(page));
  1994. }
  1995. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1996. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  1997. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  1998. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1999. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  2000. zone_statistics(preferred_zone, zone, gfp_flags);
  2001. local_irq_restore(flags);
  2002. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  2003. return page;
  2004. failed:
  2005. local_irq_restore(flags);
  2006. return NULL;
  2007. }
  2008. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2009. static struct {
  2010. struct fault_attr attr;
  2011. bool ignore_gfp_highmem;
  2012. bool ignore_gfp_reclaim;
  2013. u32 min_order;
  2014. } fail_page_alloc = {
  2015. .attr = FAULT_ATTR_INITIALIZER,
  2016. .ignore_gfp_reclaim = true,
  2017. .ignore_gfp_highmem = true,
  2018. .min_order = 1,
  2019. };
  2020. static int __init setup_fail_page_alloc(char *str)
  2021. {
  2022. return setup_fault_attr(&fail_page_alloc.attr, str);
  2023. }
  2024. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2025. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2026. {
  2027. if (order < fail_page_alloc.min_order)
  2028. return false;
  2029. if (gfp_mask & __GFP_NOFAIL)
  2030. return false;
  2031. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2032. return false;
  2033. if (fail_page_alloc.ignore_gfp_reclaim &&
  2034. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2035. return false;
  2036. return should_fail(&fail_page_alloc.attr, 1 << order);
  2037. }
  2038. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2039. static int __init fail_page_alloc_debugfs(void)
  2040. {
  2041. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2042. struct dentry *dir;
  2043. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2044. &fail_page_alloc.attr);
  2045. if (IS_ERR(dir))
  2046. return PTR_ERR(dir);
  2047. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2048. &fail_page_alloc.ignore_gfp_reclaim))
  2049. goto fail;
  2050. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2051. &fail_page_alloc.ignore_gfp_highmem))
  2052. goto fail;
  2053. if (!debugfs_create_u32("min-order", mode, dir,
  2054. &fail_page_alloc.min_order))
  2055. goto fail;
  2056. return 0;
  2057. fail:
  2058. debugfs_remove_recursive(dir);
  2059. return -ENOMEM;
  2060. }
  2061. late_initcall(fail_page_alloc_debugfs);
  2062. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2063. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2064. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2065. {
  2066. return false;
  2067. }
  2068. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2069. /*
  2070. * Return true if free base pages are above 'mark'. For high-order checks it
  2071. * will return true of the order-0 watermark is reached and there is at least
  2072. * one free page of a suitable size. Checking now avoids taking the zone lock
  2073. * to check in the allocation paths if no pages are free.
  2074. */
  2075. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  2076. unsigned long mark, int classzone_idx, int alloc_flags,
  2077. long free_pages)
  2078. {
  2079. long min = mark;
  2080. int o;
  2081. const int alloc_harder = (alloc_flags & ALLOC_HARDER);
  2082. /* free_pages may go negative - that's OK */
  2083. free_pages -= (1 << order) - 1;
  2084. if (alloc_flags & ALLOC_HIGH)
  2085. min -= min / 2;
  2086. /*
  2087. * If the caller does not have rights to ALLOC_HARDER then subtract
  2088. * the high-atomic reserves. This will over-estimate the size of the
  2089. * atomic reserve but it avoids a search.
  2090. */
  2091. if (likely(!alloc_harder))
  2092. free_pages -= z->nr_reserved_highatomic;
  2093. else
  2094. min -= min / 4;
  2095. #ifdef CONFIG_CMA
  2096. /* If allocation can't use CMA areas don't use free CMA pages */
  2097. if (!(alloc_flags & ALLOC_CMA))
  2098. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2099. #endif
  2100. /*
  2101. * Check watermarks for an order-0 allocation request. If these
  2102. * are not met, then a high-order request also cannot go ahead
  2103. * even if a suitable page happened to be free.
  2104. */
  2105. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2106. return false;
  2107. /* If this is an order-0 request then the watermark is fine */
  2108. if (!order)
  2109. return true;
  2110. /* For a high-order request, check at least one suitable page is free */
  2111. for (o = order; o < MAX_ORDER; o++) {
  2112. struct free_area *area = &z->free_area[o];
  2113. int mt;
  2114. if (!area->nr_free)
  2115. continue;
  2116. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2117. if (!list_empty(&area->free_list[mt]))
  2118. return true;
  2119. }
  2120. #ifdef CONFIG_CMA
  2121. if ((alloc_flags & ALLOC_CMA) &&
  2122. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2123. return true;
  2124. }
  2125. #endif
  2126. if (alloc_harder &&
  2127. !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
  2128. return true;
  2129. }
  2130. return false;
  2131. }
  2132. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2133. int classzone_idx, int alloc_flags)
  2134. {
  2135. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2136. zone_page_state(z, NR_FREE_PAGES));
  2137. }
  2138. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2139. unsigned long mark, int classzone_idx)
  2140. {
  2141. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2142. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2143. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2144. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2145. free_pages);
  2146. }
  2147. #ifdef CONFIG_NUMA
  2148. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2149. {
  2150. return local_zone->node == zone->node;
  2151. }
  2152. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2153. {
  2154. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
  2155. RECLAIM_DISTANCE;
  2156. }
  2157. #else /* CONFIG_NUMA */
  2158. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2159. {
  2160. return true;
  2161. }
  2162. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2163. {
  2164. return true;
  2165. }
  2166. #endif /* CONFIG_NUMA */
  2167. static void reset_alloc_batches(struct zone *preferred_zone)
  2168. {
  2169. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  2170. do {
  2171. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2172. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2173. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2174. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2175. } while (zone++ != preferred_zone);
  2176. }
  2177. /*
  2178. * get_page_from_freelist goes through the zonelist trying to allocate
  2179. * a page.
  2180. */
  2181. static struct page *
  2182. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2183. const struct alloc_context *ac)
  2184. {
  2185. struct zonelist *zonelist = ac->zonelist;
  2186. struct zoneref *z;
  2187. struct page *page = NULL;
  2188. struct zone *zone;
  2189. int nr_fair_skipped = 0;
  2190. bool zonelist_rescan;
  2191. zonelist_scan:
  2192. zonelist_rescan = false;
  2193. /*
  2194. * Scan zonelist, looking for a zone with enough free.
  2195. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2196. */
  2197. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  2198. ac->nodemask) {
  2199. unsigned long mark;
  2200. if (cpusets_enabled() &&
  2201. (alloc_flags & ALLOC_CPUSET) &&
  2202. !cpuset_zone_allowed(zone, gfp_mask))
  2203. continue;
  2204. /*
  2205. * Distribute pages in proportion to the individual
  2206. * zone size to ensure fair page aging. The zone a
  2207. * page was allocated in should have no effect on the
  2208. * time the page has in memory before being reclaimed.
  2209. */
  2210. if (alloc_flags & ALLOC_FAIR) {
  2211. if (!zone_local(ac->preferred_zone, zone))
  2212. break;
  2213. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  2214. nr_fair_skipped++;
  2215. continue;
  2216. }
  2217. }
  2218. /*
  2219. * When allocating a page cache page for writing, we
  2220. * want to get it from a zone that is within its dirty
  2221. * limit, such that no single zone holds more than its
  2222. * proportional share of globally allowed dirty pages.
  2223. * The dirty limits take into account the zone's
  2224. * lowmem reserves and high watermark so that kswapd
  2225. * should be able to balance it without having to
  2226. * write pages from its LRU list.
  2227. *
  2228. * This may look like it could increase pressure on
  2229. * lower zones by failing allocations in higher zones
  2230. * before they are full. But the pages that do spill
  2231. * over are limited as the lower zones are protected
  2232. * by this very same mechanism. It should not become
  2233. * a practical burden to them.
  2234. *
  2235. * XXX: For now, allow allocations to potentially
  2236. * exceed the per-zone dirty limit in the slowpath
  2237. * (spread_dirty_pages unset) before going into reclaim,
  2238. * which is important when on a NUMA setup the allowed
  2239. * zones are together not big enough to reach the
  2240. * global limit. The proper fix for these situations
  2241. * will require awareness of zones in the
  2242. * dirty-throttling and the flusher threads.
  2243. */
  2244. if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
  2245. continue;
  2246. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2247. if (!zone_watermark_ok(zone, order, mark,
  2248. ac->classzone_idx, alloc_flags)) {
  2249. int ret;
  2250. /* Checked here to keep the fast path fast */
  2251. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2252. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2253. goto try_this_zone;
  2254. if (zone_reclaim_mode == 0 ||
  2255. !zone_allows_reclaim(ac->preferred_zone, zone))
  2256. continue;
  2257. ret = zone_reclaim(zone, gfp_mask, order);
  2258. switch (ret) {
  2259. case ZONE_RECLAIM_NOSCAN:
  2260. /* did not scan */
  2261. continue;
  2262. case ZONE_RECLAIM_FULL:
  2263. /* scanned but unreclaimable */
  2264. continue;
  2265. default:
  2266. /* did we reclaim enough */
  2267. if (zone_watermark_ok(zone, order, mark,
  2268. ac->classzone_idx, alloc_flags))
  2269. goto try_this_zone;
  2270. continue;
  2271. }
  2272. }
  2273. try_this_zone:
  2274. page = buffered_rmqueue(ac->preferred_zone, zone, order,
  2275. gfp_mask, alloc_flags, ac->migratetype);
  2276. if (page) {
  2277. if (prep_new_page(page, order, gfp_mask, alloc_flags))
  2278. goto try_this_zone;
  2279. /*
  2280. * If this is a high-order atomic allocation then check
  2281. * if the pageblock should be reserved for the future
  2282. */
  2283. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2284. reserve_highatomic_pageblock(page, zone, order);
  2285. return page;
  2286. }
  2287. }
  2288. /*
  2289. * The first pass makes sure allocations are spread fairly within the
  2290. * local node. However, the local node might have free pages left
  2291. * after the fairness batches are exhausted, and remote zones haven't
  2292. * even been considered yet. Try once more without fairness, and
  2293. * include remote zones now, before entering the slowpath and waking
  2294. * kswapd: prefer spilling to a remote zone over swapping locally.
  2295. */
  2296. if (alloc_flags & ALLOC_FAIR) {
  2297. alloc_flags &= ~ALLOC_FAIR;
  2298. if (nr_fair_skipped) {
  2299. zonelist_rescan = true;
  2300. reset_alloc_batches(ac->preferred_zone);
  2301. }
  2302. if (nr_online_nodes > 1)
  2303. zonelist_rescan = true;
  2304. }
  2305. if (zonelist_rescan)
  2306. goto zonelist_scan;
  2307. return NULL;
  2308. }
  2309. /*
  2310. * Large machines with many possible nodes should not always dump per-node
  2311. * meminfo in irq context.
  2312. */
  2313. static inline bool should_suppress_show_mem(void)
  2314. {
  2315. bool ret = false;
  2316. #if NODES_SHIFT > 8
  2317. ret = in_interrupt();
  2318. #endif
  2319. return ret;
  2320. }
  2321. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2322. DEFAULT_RATELIMIT_INTERVAL,
  2323. DEFAULT_RATELIMIT_BURST);
  2324. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
  2325. {
  2326. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2327. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2328. debug_guardpage_minorder() > 0)
  2329. return;
  2330. /*
  2331. * This documents exceptions given to allocations in certain
  2332. * contexts that are allowed to allocate outside current's set
  2333. * of allowed nodes.
  2334. */
  2335. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2336. if (test_thread_flag(TIF_MEMDIE) ||
  2337. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2338. filter &= ~SHOW_MEM_FILTER_NODES;
  2339. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2340. filter &= ~SHOW_MEM_FILTER_NODES;
  2341. if (fmt) {
  2342. struct va_format vaf;
  2343. va_list args;
  2344. va_start(args, fmt);
  2345. vaf.fmt = fmt;
  2346. vaf.va = &args;
  2347. pr_warn("%pV", &vaf);
  2348. va_end(args);
  2349. }
  2350. pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
  2351. current->comm, order, gfp_mask);
  2352. dump_stack();
  2353. if (!should_suppress_show_mem())
  2354. show_mem(filter);
  2355. }
  2356. static inline struct page *
  2357. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2358. const struct alloc_context *ac, unsigned long *did_some_progress)
  2359. {
  2360. struct oom_control oc = {
  2361. .zonelist = ac->zonelist,
  2362. .nodemask = ac->nodemask,
  2363. .gfp_mask = gfp_mask,
  2364. .order = order,
  2365. };
  2366. struct page *page;
  2367. *did_some_progress = 0;
  2368. /*
  2369. * Acquire the oom lock. If that fails, somebody else is
  2370. * making progress for us.
  2371. */
  2372. if (!mutex_trylock(&oom_lock)) {
  2373. *did_some_progress = 1;
  2374. schedule_timeout_uninterruptible(1);
  2375. return NULL;
  2376. }
  2377. /*
  2378. * Go through the zonelist yet one more time, keep very high watermark
  2379. * here, this is only to catch a parallel oom killing, we must fail if
  2380. * we're still under heavy pressure.
  2381. */
  2382. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2383. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2384. if (page)
  2385. goto out;
  2386. if (!(gfp_mask & __GFP_NOFAIL)) {
  2387. /* Coredumps can quickly deplete all memory reserves */
  2388. if (current->flags & PF_DUMPCORE)
  2389. goto out;
  2390. /* The OOM killer will not help higher order allocs */
  2391. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2392. goto out;
  2393. /* The OOM killer does not needlessly kill tasks for lowmem */
  2394. if (ac->high_zoneidx < ZONE_NORMAL)
  2395. goto out;
  2396. /* The OOM killer does not compensate for IO-less reclaim */
  2397. if (!(gfp_mask & __GFP_FS)) {
  2398. /*
  2399. * XXX: Page reclaim didn't yield anything,
  2400. * and the OOM killer can't be invoked, but
  2401. * keep looping as per tradition.
  2402. */
  2403. *did_some_progress = 1;
  2404. goto out;
  2405. }
  2406. if (pm_suspended_storage())
  2407. goto out;
  2408. /* The OOM killer may not free memory on a specific node */
  2409. if (gfp_mask & __GFP_THISNODE)
  2410. goto out;
  2411. }
  2412. /* Exhausted what can be done so it's blamo time */
  2413. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
  2414. *did_some_progress = 1;
  2415. out:
  2416. mutex_unlock(&oom_lock);
  2417. return page;
  2418. }
  2419. #ifdef CONFIG_COMPACTION
  2420. /* Try memory compaction for high-order allocations before reclaim */
  2421. static struct page *
  2422. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2423. int alloc_flags, const struct alloc_context *ac,
  2424. enum migrate_mode mode, int *contended_compaction,
  2425. bool *deferred_compaction)
  2426. {
  2427. unsigned long compact_result;
  2428. struct page *page;
  2429. if (!order)
  2430. return NULL;
  2431. current->flags |= PF_MEMALLOC;
  2432. compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2433. mode, contended_compaction);
  2434. current->flags &= ~PF_MEMALLOC;
  2435. switch (compact_result) {
  2436. case COMPACT_DEFERRED:
  2437. *deferred_compaction = true;
  2438. /* fall-through */
  2439. case COMPACT_SKIPPED:
  2440. return NULL;
  2441. default:
  2442. break;
  2443. }
  2444. /*
  2445. * At least in one zone compaction wasn't deferred or skipped, so let's
  2446. * count a compaction stall
  2447. */
  2448. count_vm_event(COMPACTSTALL);
  2449. page = get_page_from_freelist(gfp_mask, order,
  2450. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2451. if (page) {
  2452. struct zone *zone = page_zone(page);
  2453. zone->compact_blockskip_flush = false;
  2454. compaction_defer_reset(zone, order, true);
  2455. count_vm_event(COMPACTSUCCESS);
  2456. return page;
  2457. }
  2458. /*
  2459. * It's bad if compaction run occurs and fails. The most likely reason
  2460. * is that pages exist, but not enough to satisfy watermarks.
  2461. */
  2462. count_vm_event(COMPACTFAIL);
  2463. cond_resched();
  2464. return NULL;
  2465. }
  2466. #else
  2467. static inline struct page *
  2468. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2469. int alloc_flags, const struct alloc_context *ac,
  2470. enum migrate_mode mode, int *contended_compaction,
  2471. bool *deferred_compaction)
  2472. {
  2473. return NULL;
  2474. }
  2475. #endif /* CONFIG_COMPACTION */
  2476. /* Perform direct synchronous page reclaim */
  2477. static int
  2478. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2479. const struct alloc_context *ac)
  2480. {
  2481. struct reclaim_state reclaim_state;
  2482. int progress;
  2483. cond_resched();
  2484. /* We now go into synchronous reclaim */
  2485. cpuset_memory_pressure_bump();
  2486. current->flags |= PF_MEMALLOC;
  2487. lockdep_set_current_reclaim_state(gfp_mask);
  2488. reclaim_state.reclaimed_slab = 0;
  2489. current->reclaim_state = &reclaim_state;
  2490. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2491. ac->nodemask);
  2492. current->reclaim_state = NULL;
  2493. lockdep_clear_current_reclaim_state();
  2494. current->flags &= ~PF_MEMALLOC;
  2495. cond_resched();
  2496. return progress;
  2497. }
  2498. /* The really slow allocator path where we enter direct reclaim */
  2499. static inline struct page *
  2500. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2501. int alloc_flags, const struct alloc_context *ac,
  2502. unsigned long *did_some_progress)
  2503. {
  2504. struct page *page = NULL;
  2505. bool drained = false;
  2506. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2507. if (unlikely(!(*did_some_progress)))
  2508. return NULL;
  2509. retry:
  2510. page = get_page_from_freelist(gfp_mask, order,
  2511. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2512. /*
  2513. * If an allocation failed after direct reclaim, it could be because
  2514. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2515. * Shrink them them and try again
  2516. */
  2517. if (!page && !drained) {
  2518. unreserve_highatomic_pageblock(ac);
  2519. drain_all_pages(NULL);
  2520. drained = true;
  2521. goto retry;
  2522. }
  2523. return page;
  2524. }
  2525. /*
  2526. * This is called in the allocator slow-path if the allocation request is of
  2527. * sufficient urgency to ignore watermarks and take other desperate measures
  2528. */
  2529. static inline struct page *
  2530. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2531. const struct alloc_context *ac)
  2532. {
  2533. struct page *page;
  2534. do {
  2535. page = get_page_from_freelist(gfp_mask, order,
  2536. ALLOC_NO_WATERMARKS, ac);
  2537. if (!page && gfp_mask & __GFP_NOFAIL)
  2538. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
  2539. HZ/50);
  2540. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2541. return page;
  2542. }
  2543. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2544. {
  2545. struct zoneref *z;
  2546. struct zone *zone;
  2547. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2548. ac->high_zoneidx, ac->nodemask)
  2549. wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
  2550. }
  2551. static inline int
  2552. gfp_to_alloc_flags(gfp_t gfp_mask)
  2553. {
  2554. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2555. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2556. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2557. /*
  2558. * The caller may dip into page reserves a bit more if the caller
  2559. * cannot run direct reclaim, or if the caller has realtime scheduling
  2560. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2561. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2562. */
  2563. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2564. if (gfp_mask & __GFP_ATOMIC) {
  2565. /*
  2566. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2567. * if it can't schedule.
  2568. */
  2569. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2570. alloc_flags |= ALLOC_HARDER;
  2571. /*
  2572. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2573. * comment for __cpuset_node_allowed().
  2574. */
  2575. alloc_flags &= ~ALLOC_CPUSET;
  2576. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2577. alloc_flags |= ALLOC_HARDER;
  2578. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2579. if (gfp_mask & __GFP_MEMALLOC)
  2580. alloc_flags |= ALLOC_NO_WATERMARKS;
  2581. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2582. alloc_flags |= ALLOC_NO_WATERMARKS;
  2583. else if (!in_interrupt() &&
  2584. ((current->flags & PF_MEMALLOC) ||
  2585. unlikely(test_thread_flag(TIF_MEMDIE))))
  2586. alloc_flags |= ALLOC_NO_WATERMARKS;
  2587. }
  2588. #ifdef CONFIG_CMA
  2589. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2590. alloc_flags |= ALLOC_CMA;
  2591. #endif
  2592. return alloc_flags;
  2593. }
  2594. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2595. {
  2596. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2597. }
  2598. static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
  2599. {
  2600. return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
  2601. }
  2602. static inline struct page *
  2603. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2604. struct alloc_context *ac)
  2605. {
  2606. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  2607. struct page *page = NULL;
  2608. int alloc_flags;
  2609. unsigned long pages_reclaimed = 0;
  2610. unsigned long did_some_progress;
  2611. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2612. bool deferred_compaction = false;
  2613. int contended_compaction = COMPACT_CONTENDED_NONE;
  2614. /*
  2615. * In the slowpath, we sanity check order to avoid ever trying to
  2616. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2617. * be using allocators in order of preference for an area that is
  2618. * too large.
  2619. */
  2620. if (order >= MAX_ORDER) {
  2621. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2622. return NULL;
  2623. }
  2624. /*
  2625. * We also sanity check to catch abuse of atomic reserves being used by
  2626. * callers that are not in atomic context.
  2627. */
  2628. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  2629. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  2630. gfp_mask &= ~__GFP_ATOMIC;
  2631. /*
  2632. * If this allocation cannot block and it is for a specific node, then
  2633. * fail early. There's no need to wakeup kswapd or retry for a
  2634. * speculative node-specific allocation.
  2635. */
  2636. if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
  2637. goto nopage;
  2638. retry:
  2639. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  2640. wake_all_kswapds(order, ac);
  2641. /*
  2642. * OK, we're below the kswapd watermark and have kicked background
  2643. * reclaim. Now things get more complex, so set up alloc_flags according
  2644. * to how we want to proceed.
  2645. */
  2646. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2647. /*
  2648. * Find the true preferred zone if the allocation is unconstrained by
  2649. * cpusets.
  2650. */
  2651. if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
  2652. struct zoneref *preferred_zoneref;
  2653. preferred_zoneref = first_zones_zonelist(ac->zonelist,
  2654. ac->high_zoneidx, NULL, &ac->preferred_zone);
  2655. ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2656. }
  2657. /* This is the last chance, in general, before the goto nopage. */
  2658. page = get_page_from_freelist(gfp_mask, order,
  2659. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2660. if (page)
  2661. goto got_pg;
  2662. /* Allocate without watermarks if the context allows */
  2663. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2664. /*
  2665. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2666. * the allocation is high priority and these type of
  2667. * allocations are system rather than user orientated
  2668. */
  2669. page = __alloc_pages_high_priority(gfp_mask, order, ac);
  2670. if (page) {
  2671. goto got_pg;
  2672. }
  2673. }
  2674. /* Caller is not willing to reclaim, we can't balance anything */
  2675. if (!can_direct_reclaim) {
  2676. /*
  2677. * All existing users of the deprecated __GFP_NOFAIL are
  2678. * blockable, so warn of any new users that actually allow this
  2679. * type of allocation to fail.
  2680. */
  2681. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2682. goto nopage;
  2683. }
  2684. /* Avoid recursion of direct reclaim */
  2685. if (current->flags & PF_MEMALLOC)
  2686. goto nopage;
  2687. /* Avoid allocations with no watermarks from looping endlessly */
  2688. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2689. goto nopage;
  2690. /*
  2691. * Try direct compaction. The first pass is asynchronous. Subsequent
  2692. * attempts after direct reclaim are synchronous
  2693. */
  2694. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  2695. migration_mode,
  2696. &contended_compaction,
  2697. &deferred_compaction);
  2698. if (page)
  2699. goto got_pg;
  2700. /* Checks for THP-specific high-order allocations */
  2701. if (is_thp_gfp_mask(gfp_mask)) {
  2702. /*
  2703. * If compaction is deferred for high-order allocations, it is
  2704. * because sync compaction recently failed. If this is the case
  2705. * and the caller requested a THP allocation, we do not want
  2706. * to heavily disrupt the system, so we fail the allocation
  2707. * instead of entering direct reclaim.
  2708. */
  2709. if (deferred_compaction)
  2710. goto nopage;
  2711. /*
  2712. * In all zones where compaction was attempted (and not
  2713. * deferred or skipped), lock contention has been detected.
  2714. * For THP allocation we do not want to disrupt the others
  2715. * so we fallback to base pages instead.
  2716. */
  2717. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2718. goto nopage;
  2719. /*
  2720. * If compaction was aborted due to need_resched(), we do not
  2721. * want to further increase allocation latency, unless it is
  2722. * khugepaged trying to collapse.
  2723. */
  2724. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2725. && !(current->flags & PF_KTHREAD))
  2726. goto nopage;
  2727. }
  2728. /*
  2729. * It can become very expensive to allocate transparent hugepages at
  2730. * fault, so use asynchronous memory compaction for THP unless it is
  2731. * khugepaged trying to collapse.
  2732. */
  2733. if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
  2734. migration_mode = MIGRATE_SYNC_LIGHT;
  2735. /* Try direct reclaim and then allocating */
  2736. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  2737. &did_some_progress);
  2738. if (page)
  2739. goto got_pg;
  2740. /* Do not loop if specifically requested */
  2741. if (gfp_mask & __GFP_NORETRY)
  2742. goto noretry;
  2743. /* Keep reclaiming pages as long as there is reasonable progress */
  2744. pages_reclaimed += did_some_progress;
  2745. if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
  2746. ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
  2747. /* Wait for some write requests to complete then retry */
  2748. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
  2749. goto retry;
  2750. }
  2751. /* Reclaim has failed us, start killing things */
  2752. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  2753. if (page)
  2754. goto got_pg;
  2755. /* Retry as long as the OOM killer is making progress */
  2756. if (did_some_progress)
  2757. goto retry;
  2758. noretry:
  2759. /*
  2760. * High-order allocations do not necessarily loop after
  2761. * direct reclaim and reclaim/compaction depends on compaction
  2762. * being called after reclaim so call directly if necessary
  2763. */
  2764. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
  2765. ac, migration_mode,
  2766. &contended_compaction,
  2767. &deferred_compaction);
  2768. if (page)
  2769. goto got_pg;
  2770. nopage:
  2771. warn_alloc_failed(gfp_mask, order, NULL);
  2772. got_pg:
  2773. return page;
  2774. }
  2775. /*
  2776. * This is the 'heart' of the zoned buddy allocator.
  2777. */
  2778. struct page *
  2779. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2780. struct zonelist *zonelist, nodemask_t *nodemask)
  2781. {
  2782. struct zoneref *preferred_zoneref;
  2783. struct page *page = NULL;
  2784. unsigned int cpuset_mems_cookie;
  2785. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2786. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  2787. struct alloc_context ac = {
  2788. .high_zoneidx = gfp_zone(gfp_mask),
  2789. .nodemask = nodemask,
  2790. .migratetype = gfpflags_to_migratetype(gfp_mask),
  2791. };
  2792. gfp_mask &= gfp_allowed_mask;
  2793. lockdep_trace_alloc(gfp_mask);
  2794. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  2795. if (should_fail_alloc_page(gfp_mask, order))
  2796. return NULL;
  2797. /*
  2798. * Check the zones suitable for the gfp_mask contain at least one
  2799. * valid zone. It's possible to have an empty zonelist as a result
  2800. * of __GFP_THISNODE and a memoryless node
  2801. */
  2802. if (unlikely(!zonelist->_zonerefs->zone))
  2803. return NULL;
  2804. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  2805. alloc_flags |= ALLOC_CMA;
  2806. retry_cpuset:
  2807. cpuset_mems_cookie = read_mems_allowed_begin();
  2808. /* We set it here, as __alloc_pages_slowpath might have changed it */
  2809. ac.zonelist = zonelist;
  2810. /* Dirty zone balancing only done in the fast path */
  2811. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  2812. /* The preferred zone is used for statistics later */
  2813. preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
  2814. ac.nodemask ? : &cpuset_current_mems_allowed,
  2815. &ac.preferred_zone);
  2816. if (!ac.preferred_zone)
  2817. goto out;
  2818. ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2819. /* First allocation attempt */
  2820. alloc_mask = gfp_mask|__GFP_HARDWALL;
  2821. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  2822. if (unlikely(!page)) {
  2823. /*
  2824. * Runtime PM, block IO and its error handling path
  2825. * can deadlock because I/O on the device might not
  2826. * complete.
  2827. */
  2828. alloc_mask = memalloc_noio_flags(gfp_mask);
  2829. ac.spread_dirty_pages = false;
  2830. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  2831. }
  2832. if (kmemcheck_enabled && page)
  2833. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2834. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  2835. out:
  2836. /*
  2837. * When updating a task's mems_allowed, it is possible to race with
  2838. * parallel threads in such a way that an allocation can fail while
  2839. * the mask is being updated. If a page allocation is about to fail,
  2840. * check if the cpuset changed during allocation and if so, retry.
  2841. */
  2842. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2843. goto retry_cpuset;
  2844. return page;
  2845. }
  2846. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2847. /*
  2848. * Common helper functions.
  2849. */
  2850. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2851. {
  2852. struct page *page;
  2853. /*
  2854. * __get_free_pages() returns a 32-bit address, which cannot represent
  2855. * a highmem page
  2856. */
  2857. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2858. page = alloc_pages(gfp_mask, order);
  2859. if (!page)
  2860. return 0;
  2861. return (unsigned long) page_address(page);
  2862. }
  2863. EXPORT_SYMBOL(__get_free_pages);
  2864. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2865. {
  2866. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2867. }
  2868. EXPORT_SYMBOL(get_zeroed_page);
  2869. void __free_pages(struct page *page, unsigned int order)
  2870. {
  2871. if (put_page_testzero(page)) {
  2872. if (order == 0)
  2873. free_hot_cold_page(page, false);
  2874. else
  2875. __free_pages_ok(page, order);
  2876. }
  2877. }
  2878. EXPORT_SYMBOL(__free_pages);
  2879. void free_pages(unsigned long addr, unsigned int order)
  2880. {
  2881. if (addr != 0) {
  2882. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2883. __free_pages(virt_to_page((void *)addr), order);
  2884. }
  2885. }
  2886. EXPORT_SYMBOL(free_pages);
  2887. /*
  2888. * Page Fragment:
  2889. * An arbitrary-length arbitrary-offset area of memory which resides
  2890. * within a 0 or higher order page. Multiple fragments within that page
  2891. * are individually refcounted, in the page's reference counter.
  2892. *
  2893. * The page_frag functions below provide a simple allocation framework for
  2894. * page fragments. This is used by the network stack and network device
  2895. * drivers to provide a backing region of memory for use as either an
  2896. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  2897. */
  2898. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  2899. gfp_t gfp_mask)
  2900. {
  2901. struct page *page = NULL;
  2902. gfp_t gfp = gfp_mask;
  2903. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2904. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  2905. __GFP_NOMEMALLOC;
  2906. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  2907. PAGE_FRAG_CACHE_MAX_ORDER);
  2908. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  2909. #endif
  2910. if (unlikely(!page))
  2911. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  2912. nc->va = page ? page_address(page) : NULL;
  2913. return page;
  2914. }
  2915. void *__alloc_page_frag(struct page_frag_cache *nc,
  2916. unsigned int fragsz, gfp_t gfp_mask)
  2917. {
  2918. unsigned int size = PAGE_SIZE;
  2919. struct page *page;
  2920. int offset;
  2921. if (unlikely(!nc->va)) {
  2922. refill:
  2923. page = __page_frag_refill(nc, gfp_mask);
  2924. if (!page)
  2925. return NULL;
  2926. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2927. /* if size can vary use size else just use PAGE_SIZE */
  2928. size = nc->size;
  2929. #endif
  2930. /* Even if we own the page, we do not use atomic_set().
  2931. * This would break get_page_unless_zero() users.
  2932. */
  2933. atomic_add(size - 1, &page->_count);
  2934. /* reset page count bias and offset to start of new frag */
  2935. nc->pfmemalloc = page_is_pfmemalloc(page);
  2936. nc->pagecnt_bias = size;
  2937. nc->offset = size;
  2938. }
  2939. offset = nc->offset - fragsz;
  2940. if (unlikely(offset < 0)) {
  2941. page = virt_to_page(nc->va);
  2942. if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
  2943. goto refill;
  2944. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  2945. /* if size can vary use size else just use PAGE_SIZE */
  2946. size = nc->size;
  2947. #endif
  2948. /* OK, page count is 0, we can safely set it */
  2949. atomic_set(&page->_count, size);
  2950. /* reset page count bias and offset to start of new frag */
  2951. nc->pagecnt_bias = size;
  2952. offset = size - fragsz;
  2953. }
  2954. nc->pagecnt_bias--;
  2955. nc->offset = offset;
  2956. return nc->va + offset;
  2957. }
  2958. EXPORT_SYMBOL(__alloc_page_frag);
  2959. /*
  2960. * Frees a page fragment allocated out of either a compound or order 0 page.
  2961. */
  2962. void __free_page_frag(void *addr)
  2963. {
  2964. struct page *page = virt_to_head_page(addr);
  2965. if (unlikely(put_page_testzero(page)))
  2966. __free_pages_ok(page, compound_order(page));
  2967. }
  2968. EXPORT_SYMBOL(__free_page_frag);
  2969. /*
  2970. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  2971. * of the current memory cgroup.
  2972. *
  2973. * It should be used when the caller would like to use kmalloc, but since the
  2974. * allocation is large, it has to fall back to the page allocator.
  2975. */
  2976. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  2977. {
  2978. struct page *page;
  2979. page = alloc_pages(gfp_mask, order);
  2980. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  2981. __free_pages(page, order);
  2982. page = NULL;
  2983. }
  2984. return page;
  2985. }
  2986. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  2987. {
  2988. struct page *page;
  2989. page = alloc_pages_node(nid, gfp_mask, order);
  2990. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  2991. __free_pages(page, order);
  2992. page = NULL;
  2993. }
  2994. return page;
  2995. }
  2996. /*
  2997. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  2998. * alloc_kmem_pages.
  2999. */
  3000. void __free_kmem_pages(struct page *page, unsigned int order)
  3001. {
  3002. memcg_kmem_uncharge(page, order);
  3003. __free_pages(page, order);
  3004. }
  3005. void free_kmem_pages(unsigned long addr, unsigned int order)
  3006. {
  3007. if (addr != 0) {
  3008. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3009. __free_kmem_pages(virt_to_page((void *)addr), order);
  3010. }
  3011. }
  3012. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3013. size_t size)
  3014. {
  3015. if (addr) {
  3016. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3017. unsigned long used = addr + PAGE_ALIGN(size);
  3018. split_page(virt_to_page((void *)addr), order);
  3019. while (used < alloc_end) {
  3020. free_page(used);
  3021. used += PAGE_SIZE;
  3022. }
  3023. }
  3024. return (void *)addr;
  3025. }
  3026. /**
  3027. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3028. * @size: the number of bytes to allocate
  3029. * @gfp_mask: GFP flags for the allocation
  3030. *
  3031. * This function is similar to alloc_pages(), except that it allocates the
  3032. * minimum number of pages to satisfy the request. alloc_pages() can only
  3033. * allocate memory in power-of-two pages.
  3034. *
  3035. * This function is also limited by MAX_ORDER.
  3036. *
  3037. * Memory allocated by this function must be released by free_pages_exact().
  3038. */
  3039. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3040. {
  3041. unsigned int order = get_order(size);
  3042. unsigned long addr;
  3043. addr = __get_free_pages(gfp_mask, order);
  3044. return make_alloc_exact(addr, order, size);
  3045. }
  3046. EXPORT_SYMBOL(alloc_pages_exact);
  3047. /**
  3048. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3049. * pages on a node.
  3050. * @nid: the preferred node ID where memory should be allocated
  3051. * @size: the number of bytes to allocate
  3052. * @gfp_mask: GFP flags for the allocation
  3053. *
  3054. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3055. * back.
  3056. */
  3057. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3058. {
  3059. unsigned int order = get_order(size);
  3060. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3061. if (!p)
  3062. return NULL;
  3063. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3064. }
  3065. /**
  3066. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3067. * @virt: the value returned by alloc_pages_exact.
  3068. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3069. *
  3070. * Release the memory allocated by a previous call to alloc_pages_exact.
  3071. */
  3072. void free_pages_exact(void *virt, size_t size)
  3073. {
  3074. unsigned long addr = (unsigned long)virt;
  3075. unsigned long end = addr + PAGE_ALIGN(size);
  3076. while (addr < end) {
  3077. free_page(addr);
  3078. addr += PAGE_SIZE;
  3079. }
  3080. }
  3081. EXPORT_SYMBOL(free_pages_exact);
  3082. /**
  3083. * nr_free_zone_pages - count number of pages beyond high watermark
  3084. * @offset: The zone index of the highest zone
  3085. *
  3086. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3087. * high watermark within all zones at or below a given zone index. For each
  3088. * zone, the number of pages is calculated as:
  3089. * managed_pages - high_pages
  3090. */
  3091. static unsigned long nr_free_zone_pages(int offset)
  3092. {
  3093. struct zoneref *z;
  3094. struct zone *zone;
  3095. /* Just pick one node, since fallback list is circular */
  3096. unsigned long sum = 0;
  3097. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3098. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3099. unsigned long size = zone->managed_pages;
  3100. unsigned long high = high_wmark_pages(zone);
  3101. if (size > high)
  3102. sum += size - high;
  3103. }
  3104. return sum;
  3105. }
  3106. /**
  3107. * nr_free_buffer_pages - count number of pages beyond high watermark
  3108. *
  3109. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3110. * watermark within ZONE_DMA and ZONE_NORMAL.
  3111. */
  3112. unsigned long nr_free_buffer_pages(void)
  3113. {
  3114. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3115. }
  3116. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3117. /**
  3118. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3119. *
  3120. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3121. * high watermark within all zones.
  3122. */
  3123. unsigned long nr_free_pagecache_pages(void)
  3124. {
  3125. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3126. }
  3127. static inline void show_node(struct zone *zone)
  3128. {
  3129. if (IS_ENABLED(CONFIG_NUMA))
  3130. printk("Node %d ", zone_to_nid(zone));
  3131. }
  3132. void si_meminfo(struct sysinfo *val)
  3133. {
  3134. val->totalram = totalram_pages;
  3135. val->sharedram = global_page_state(NR_SHMEM);
  3136. val->freeram = global_page_state(NR_FREE_PAGES);
  3137. val->bufferram = nr_blockdev_pages();
  3138. val->totalhigh = totalhigh_pages;
  3139. val->freehigh = nr_free_highpages();
  3140. val->mem_unit = PAGE_SIZE;
  3141. }
  3142. EXPORT_SYMBOL(si_meminfo);
  3143. #ifdef CONFIG_NUMA
  3144. void si_meminfo_node(struct sysinfo *val, int nid)
  3145. {
  3146. int zone_type; /* needs to be signed */
  3147. unsigned long managed_pages = 0;
  3148. pg_data_t *pgdat = NODE_DATA(nid);
  3149. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3150. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3151. val->totalram = managed_pages;
  3152. val->sharedram = node_page_state(nid, NR_SHMEM);
  3153. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  3154. #ifdef CONFIG_HIGHMEM
  3155. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  3156. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  3157. NR_FREE_PAGES);
  3158. #else
  3159. val->totalhigh = 0;
  3160. val->freehigh = 0;
  3161. #endif
  3162. val->mem_unit = PAGE_SIZE;
  3163. }
  3164. #endif
  3165. /*
  3166. * Determine whether the node should be displayed or not, depending on whether
  3167. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3168. */
  3169. bool skip_free_areas_node(unsigned int flags, int nid)
  3170. {
  3171. bool ret = false;
  3172. unsigned int cpuset_mems_cookie;
  3173. if (!(flags & SHOW_MEM_FILTER_NODES))
  3174. goto out;
  3175. do {
  3176. cpuset_mems_cookie = read_mems_allowed_begin();
  3177. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3178. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3179. out:
  3180. return ret;
  3181. }
  3182. #define K(x) ((x) << (PAGE_SHIFT-10))
  3183. static void show_migration_types(unsigned char type)
  3184. {
  3185. static const char types[MIGRATE_TYPES] = {
  3186. [MIGRATE_UNMOVABLE] = 'U',
  3187. [MIGRATE_MOVABLE] = 'M',
  3188. [MIGRATE_RECLAIMABLE] = 'E',
  3189. [MIGRATE_HIGHATOMIC] = 'H',
  3190. #ifdef CONFIG_CMA
  3191. [MIGRATE_CMA] = 'C',
  3192. #endif
  3193. #ifdef CONFIG_MEMORY_ISOLATION
  3194. [MIGRATE_ISOLATE] = 'I',
  3195. #endif
  3196. };
  3197. char tmp[MIGRATE_TYPES + 1];
  3198. char *p = tmp;
  3199. int i;
  3200. for (i = 0; i < MIGRATE_TYPES; i++) {
  3201. if (type & (1 << i))
  3202. *p++ = types[i];
  3203. }
  3204. *p = '\0';
  3205. printk("(%s) ", tmp);
  3206. }
  3207. /*
  3208. * Show free area list (used inside shift_scroll-lock stuff)
  3209. * We also calculate the percentage fragmentation. We do this by counting the
  3210. * memory on each free list with the exception of the first item on the list.
  3211. *
  3212. * Bits in @filter:
  3213. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3214. * cpuset.
  3215. */
  3216. void show_free_areas(unsigned int filter)
  3217. {
  3218. unsigned long free_pcp = 0;
  3219. int cpu;
  3220. struct zone *zone;
  3221. for_each_populated_zone(zone) {
  3222. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3223. continue;
  3224. for_each_online_cpu(cpu)
  3225. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3226. }
  3227. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3228. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3229. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3230. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3231. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3232. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3233. global_page_state(NR_ACTIVE_ANON),
  3234. global_page_state(NR_INACTIVE_ANON),
  3235. global_page_state(NR_ISOLATED_ANON),
  3236. global_page_state(NR_ACTIVE_FILE),
  3237. global_page_state(NR_INACTIVE_FILE),
  3238. global_page_state(NR_ISOLATED_FILE),
  3239. global_page_state(NR_UNEVICTABLE),
  3240. global_page_state(NR_FILE_DIRTY),
  3241. global_page_state(NR_WRITEBACK),
  3242. global_page_state(NR_UNSTABLE_NFS),
  3243. global_page_state(NR_SLAB_RECLAIMABLE),
  3244. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3245. global_page_state(NR_FILE_MAPPED),
  3246. global_page_state(NR_SHMEM),
  3247. global_page_state(NR_PAGETABLE),
  3248. global_page_state(NR_BOUNCE),
  3249. global_page_state(NR_FREE_PAGES),
  3250. free_pcp,
  3251. global_page_state(NR_FREE_CMA_PAGES));
  3252. for_each_populated_zone(zone) {
  3253. int i;
  3254. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3255. continue;
  3256. free_pcp = 0;
  3257. for_each_online_cpu(cpu)
  3258. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3259. show_node(zone);
  3260. printk("%s"
  3261. " free:%lukB"
  3262. " min:%lukB"
  3263. " low:%lukB"
  3264. " high:%lukB"
  3265. " active_anon:%lukB"
  3266. " inactive_anon:%lukB"
  3267. " active_file:%lukB"
  3268. " inactive_file:%lukB"
  3269. " unevictable:%lukB"
  3270. " isolated(anon):%lukB"
  3271. " isolated(file):%lukB"
  3272. " present:%lukB"
  3273. " managed:%lukB"
  3274. " mlocked:%lukB"
  3275. " dirty:%lukB"
  3276. " writeback:%lukB"
  3277. " mapped:%lukB"
  3278. " shmem:%lukB"
  3279. " slab_reclaimable:%lukB"
  3280. " slab_unreclaimable:%lukB"
  3281. " kernel_stack:%lukB"
  3282. " pagetables:%lukB"
  3283. " unstable:%lukB"
  3284. " bounce:%lukB"
  3285. " free_pcp:%lukB"
  3286. " local_pcp:%ukB"
  3287. " free_cma:%lukB"
  3288. " writeback_tmp:%lukB"
  3289. " pages_scanned:%lu"
  3290. " all_unreclaimable? %s"
  3291. "\n",
  3292. zone->name,
  3293. K(zone_page_state(zone, NR_FREE_PAGES)),
  3294. K(min_wmark_pages(zone)),
  3295. K(low_wmark_pages(zone)),
  3296. K(high_wmark_pages(zone)),
  3297. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  3298. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  3299. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  3300. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  3301. K(zone_page_state(zone, NR_UNEVICTABLE)),
  3302. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  3303. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  3304. K(zone->present_pages),
  3305. K(zone->managed_pages),
  3306. K(zone_page_state(zone, NR_MLOCK)),
  3307. K(zone_page_state(zone, NR_FILE_DIRTY)),
  3308. K(zone_page_state(zone, NR_WRITEBACK)),
  3309. K(zone_page_state(zone, NR_FILE_MAPPED)),
  3310. K(zone_page_state(zone, NR_SHMEM)),
  3311. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3312. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3313. zone_page_state(zone, NR_KERNEL_STACK) *
  3314. THREAD_SIZE / 1024,
  3315. K(zone_page_state(zone, NR_PAGETABLE)),
  3316. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  3317. K(zone_page_state(zone, NR_BOUNCE)),
  3318. K(free_pcp),
  3319. K(this_cpu_read(zone->pageset->pcp.count)),
  3320. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  3321. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  3322. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  3323. (!zone_reclaimable(zone) ? "yes" : "no")
  3324. );
  3325. printk("lowmem_reserve[]:");
  3326. for (i = 0; i < MAX_NR_ZONES; i++)
  3327. printk(" %ld", zone->lowmem_reserve[i]);
  3328. printk("\n");
  3329. }
  3330. for_each_populated_zone(zone) {
  3331. unsigned int order;
  3332. unsigned long nr[MAX_ORDER], flags, total = 0;
  3333. unsigned char types[MAX_ORDER];
  3334. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3335. continue;
  3336. show_node(zone);
  3337. printk("%s: ", zone->name);
  3338. spin_lock_irqsave(&zone->lock, flags);
  3339. for (order = 0; order < MAX_ORDER; order++) {
  3340. struct free_area *area = &zone->free_area[order];
  3341. int type;
  3342. nr[order] = area->nr_free;
  3343. total += nr[order] << order;
  3344. types[order] = 0;
  3345. for (type = 0; type < MIGRATE_TYPES; type++) {
  3346. if (!list_empty(&area->free_list[type]))
  3347. types[order] |= 1 << type;
  3348. }
  3349. }
  3350. spin_unlock_irqrestore(&zone->lock, flags);
  3351. for (order = 0; order < MAX_ORDER; order++) {
  3352. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3353. if (nr[order])
  3354. show_migration_types(types[order]);
  3355. }
  3356. printk("= %lukB\n", K(total));
  3357. }
  3358. hugetlb_show_meminfo();
  3359. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  3360. show_swap_cache_info();
  3361. }
  3362. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3363. {
  3364. zoneref->zone = zone;
  3365. zoneref->zone_idx = zone_idx(zone);
  3366. }
  3367. /*
  3368. * Builds allocation fallback zone lists.
  3369. *
  3370. * Add all populated zones of a node to the zonelist.
  3371. */
  3372. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3373. int nr_zones)
  3374. {
  3375. struct zone *zone;
  3376. enum zone_type zone_type = MAX_NR_ZONES;
  3377. do {
  3378. zone_type--;
  3379. zone = pgdat->node_zones + zone_type;
  3380. if (populated_zone(zone)) {
  3381. zoneref_set_zone(zone,
  3382. &zonelist->_zonerefs[nr_zones++]);
  3383. check_highest_zone(zone_type);
  3384. }
  3385. } while (zone_type);
  3386. return nr_zones;
  3387. }
  3388. /*
  3389. * zonelist_order:
  3390. * 0 = automatic detection of better ordering.
  3391. * 1 = order by ([node] distance, -zonetype)
  3392. * 2 = order by (-zonetype, [node] distance)
  3393. *
  3394. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3395. * the same zonelist. So only NUMA can configure this param.
  3396. */
  3397. #define ZONELIST_ORDER_DEFAULT 0
  3398. #define ZONELIST_ORDER_NODE 1
  3399. #define ZONELIST_ORDER_ZONE 2
  3400. /* zonelist order in the kernel.
  3401. * set_zonelist_order() will set this to NODE or ZONE.
  3402. */
  3403. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3404. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3405. #ifdef CONFIG_NUMA
  3406. /* The value user specified ....changed by config */
  3407. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3408. /* string for sysctl */
  3409. #define NUMA_ZONELIST_ORDER_LEN 16
  3410. char numa_zonelist_order[16] = "default";
  3411. /*
  3412. * interface for configure zonelist ordering.
  3413. * command line option "numa_zonelist_order"
  3414. * = "[dD]efault - default, automatic configuration.
  3415. * = "[nN]ode - order by node locality, then by zone within node
  3416. * = "[zZ]one - order by zone, then by locality within zone
  3417. */
  3418. static int __parse_numa_zonelist_order(char *s)
  3419. {
  3420. if (*s == 'd' || *s == 'D') {
  3421. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3422. } else if (*s == 'n' || *s == 'N') {
  3423. user_zonelist_order = ZONELIST_ORDER_NODE;
  3424. } else if (*s == 'z' || *s == 'Z') {
  3425. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3426. } else {
  3427. printk(KERN_WARNING
  3428. "Ignoring invalid numa_zonelist_order value: "
  3429. "%s\n", s);
  3430. return -EINVAL;
  3431. }
  3432. return 0;
  3433. }
  3434. static __init int setup_numa_zonelist_order(char *s)
  3435. {
  3436. int ret;
  3437. if (!s)
  3438. return 0;
  3439. ret = __parse_numa_zonelist_order(s);
  3440. if (ret == 0)
  3441. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3442. return ret;
  3443. }
  3444. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3445. /*
  3446. * sysctl handler for numa_zonelist_order
  3447. */
  3448. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3449. void __user *buffer, size_t *length,
  3450. loff_t *ppos)
  3451. {
  3452. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3453. int ret;
  3454. static DEFINE_MUTEX(zl_order_mutex);
  3455. mutex_lock(&zl_order_mutex);
  3456. if (write) {
  3457. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3458. ret = -EINVAL;
  3459. goto out;
  3460. }
  3461. strcpy(saved_string, (char *)table->data);
  3462. }
  3463. ret = proc_dostring(table, write, buffer, length, ppos);
  3464. if (ret)
  3465. goto out;
  3466. if (write) {
  3467. int oldval = user_zonelist_order;
  3468. ret = __parse_numa_zonelist_order((char *)table->data);
  3469. if (ret) {
  3470. /*
  3471. * bogus value. restore saved string
  3472. */
  3473. strncpy((char *)table->data, saved_string,
  3474. NUMA_ZONELIST_ORDER_LEN);
  3475. user_zonelist_order = oldval;
  3476. } else if (oldval != user_zonelist_order) {
  3477. mutex_lock(&zonelists_mutex);
  3478. build_all_zonelists(NULL, NULL);
  3479. mutex_unlock(&zonelists_mutex);
  3480. }
  3481. }
  3482. out:
  3483. mutex_unlock(&zl_order_mutex);
  3484. return ret;
  3485. }
  3486. #define MAX_NODE_LOAD (nr_online_nodes)
  3487. static int node_load[MAX_NUMNODES];
  3488. /**
  3489. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3490. * @node: node whose fallback list we're appending
  3491. * @used_node_mask: nodemask_t of already used nodes
  3492. *
  3493. * We use a number of factors to determine which is the next node that should
  3494. * appear on a given node's fallback list. The node should not have appeared
  3495. * already in @node's fallback list, and it should be the next closest node
  3496. * according to the distance array (which contains arbitrary distance values
  3497. * from each node to each node in the system), and should also prefer nodes
  3498. * with no CPUs, since presumably they'll have very little allocation pressure
  3499. * on them otherwise.
  3500. * It returns -1 if no node is found.
  3501. */
  3502. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3503. {
  3504. int n, val;
  3505. int min_val = INT_MAX;
  3506. int best_node = NUMA_NO_NODE;
  3507. const struct cpumask *tmp = cpumask_of_node(0);
  3508. /* Use the local node if we haven't already */
  3509. if (!node_isset(node, *used_node_mask)) {
  3510. node_set(node, *used_node_mask);
  3511. return node;
  3512. }
  3513. for_each_node_state(n, N_MEMORY) {
  3514. /* Don't want a node to appear more than once */
  3515. if (node_isset(n, *used_node_mask))
  3516. continue;
  3517. /* Use the distance array to find the distance */
  3518. val = node_distance(node, n);
  3519. /* Penalize nodes under us ("prefer the next node") */
  3520. val += (n < node);
  3521. /* Give preference to headless and unused nodes */
  3522. tmp = cpumask_of_node(n);
  3523. if (!cpumask_empty(tmp))
  3524. val += PENALTY_FOR_NODE_WITH_CPUS;
  3525. /* Slight preference for less loaded node */
  3526. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3527. val += node_load[n];
  3528. if (val < min_val) {
  3529. min_val = val;
  3530. best_node = n;
  3531. }
  3532. }
  3533. if (best_node >= 0)
  3534. node_set(best_node, *used_node_mask);
  3535. return best_node;
  3536. }
  3537. /*
  3538. * Build zonelists ordered by node and zones within node.
  3539. * This results in maximum locality--normal zone overflows into local
  3540. * DMA zone, if any--but risks exhausting DMA zone.
  3541. */
  3542. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3543. {
  3544. int j;
  3545. struct zonelist *zonelist;
  3546. zonelist = &pgdat->node_zonelists[0];
  3547. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3548. ;
  3549. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3550. zonelist->_zonerefs[j].zone = NULL;
  3551. zonelist->_zonerefs[j].zone_idx = 0;
  3552. }
  3553. /*
  3554. * Build gfp_thisnode zonelists
  3555. */
  3556. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3557. {
  3558. int j;
  3559. struct zonelist *zonelist;
  3560. zonelist = &pgdat->node_zonelists[1];
  3561. j = build_zonelists_node(pgdat, zonelist, 0);
  3562. zonelist->_zonerefs[j].zone = NULL;
  3563. zonelist->_zonerefs[j].zone_idx = 0;
  3564. }
  3565. /*
  3566. * Build zonelists ordered by zone and nodes within zones.
  3567. * This results in conserving DMA zone[s] until all Normal memory is
  3568. * exhausted, but results in overflowing to remote node while memory
  3569. * may still exist in local DMA zone.
  3570. */
  3571. static int node_order[MAX_NUMNODES];
  3572. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3573. {
  3574. int pos, j, node;
  3575. int zone_type; /* needs to be signed */
  3576. struct zone *z;
  3577. struct zonelist *zonelist;
  3578. zonelist = &pgdat->node_zonelists[0];
  3579. pos = 0;
  3580. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3581. for (j = 0; j < nr_nodes; j++) {
  3582. node = node_order[j];
  3583. z = &NODE_DATA(node)->node_zones[zone_type];
  3584. if (populated_zone(z)) {
  3585. zoneref_set_zone(z,
  3586. &zonelist->_zonerefs[pos++]);
  3587. check_highest_zone(zone_type);
  3588. }
  3589. }
  3590. }
  3591. zonelist->_zonerefs[pos].zone = NULL;
  3592. zonelist->_zonerefs[pos].zone_idx = 0;
  3593. }
  3594. #if defined(CONFIG_64BIT)
  3595. /*
  3596. * Devices that require DMA32/DMA are relatively rare and do not justify a
  3597. * penalty to every machine in case the specialised case applies. Default
  3598. * to Node-ordering on 64-bit NUMA machines
  3599. */
  3600. static int default_zonelist_order(void)
  3601. {
  3602. return ZONELIST_ORDER_NODE;
  3603. }
  3604. #else
  3605. /*
  3606. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  3607. * by the kernel. If processes running on node 0 deplete the low memory zone
  3608. * then reclaim will occur more frequency increasing stalls and potentially
  3609. * be easier to OOM if a large percentage of the zone is under writeback or
  3610. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  3611. * Hence, default to zone ordering on 32-bit.
  3612. */
  3613. static int default_zonelist_order(void)
  3614. {
  3615. return ZONELIST_ORDER_ZONE;
  3616. }
  3617. #endif /* CONFIG_64BIT */
  3618. static void set_zonelist_order(void)
  3619. {
  3620. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3621. current_zonelist_order = default_zonelist_order();
  3622. else
  3623. current_zonelist_order = user_zonelist_order;
  3624. }
  3625. static void build_zonelists(pg_data_t *pgdat)
  3626. {
  3627. int j, node, load;
  3628. enum zone_type i;
  3629. nodemask_t used_mask;
  3630. int local_node, prev_node;
  3631. struct zonelist *zonelist;
  3632. unsigned int order = current_zonelist_order;
  3633. /* initialize zonelists */
  3634. for (i = 0; i < MAX_ZONELISTS; i++) {
  3635. zonelist = pgdat->node_zonelists + i;
  3636. zonelist->_zonerefs[0].zone = NULL;
  3637. zonelist->_zonerefs[0].zone_idx = 0;
  3638. }
  3639. /* NUMA-aware ordering of nodes */
  3640. local_node = pgdat->node_id;
  3641. load = nr_online_nodes;
  3642. prev_node = local_node;
  3643. nodes_clear(used_mask);
  3644. memset(node_order, 0, sizeof(node_order));
  3645. j = 0;
  3646. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3647. /*
  3648. * We don't want to pressure a particular node.
  3649. * So adding penalty to the first node in same
  3650. * distance group to make it round-robin.
  3651. */
  3652. if (node_distance(local_node, node) !=
  3653. node_distance(local_node, prev_node))
  3654. node_load[node] = load;
  3655. prev_node = node;
  3656. load--;
  3657. if (order == ZONELIST_ORDER_NODE)
  3658. build_zonelists_in_node_order(pgdat, node);
  3659. else
  3660. node_order[j++] = node; /* remember order */
  3661. }
  3662. if (order == ZONELIST_ORDER_ZONE) {
  3663. /* calculate node order -- i.e., DMA last! */
  3664. build_zonelists_in_zone_order(pgdat, j);
  3665. }
  3666. build_thisnode_zonelists(pgdat);
  3667. }
  3668. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3669. /*
  3670. * Return node id of node used for "local" allocations.
  3671. * I.e., first node id of first zone in arg node's generic zonelist.
  3672. * Used for initializing percpu 'numa_mem', which is used primarily
  3673. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3674. */
  3675. int local_memory_node(int node)
  3676. {
  3677. struct zone *zone;
  3678. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3679. gfp_zone(GFP_KERNEL),
  3680. NULL,
  3681. &zone);
  3682. return zone->node;
  3683. }
  3684. #endif
  3685. #else /* CONFIG_NUMA */
  3686. static void set_zonelist_order(void)
  3687. {
  3688. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3689. }
  3690. static void build_zonelists(pg_data_t *pgdat)
  3691. {
  3692. int node, local_node;
  3693. enum zone_type j;
  3694. struct zonelist *zonelist;
  3695. local_node = pgdat->node_id;
  3696. zonelist = &pgdat->node_zonelists[0];
  3697. j = build_zonelists_node(pgdat, zonelist, 0);
  3698. /*
  3699. * Now we build the zonelist so that it contains the zones
  3700. * of all the other nodes.
  3701. * We don't want to pressure a particular node, so when
  3702. * building the zones for node N, we make sure that the
  3703. * zones coming right after the local ones are those from
  3704. * node N+1 (modulo N)
  3705. */
  3706. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3707. if (!node_online(node))
  3708. continue;
  3709. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3710. }
  3711. for (node = 0; node < local_node; node++) {
  3712. if (!node_online(node))
  3713. continue;
  3714. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3715. }
  3716. zonelist->_zonerefs[j].zone = NULL;
  3717. zonelist->_zonerefs[j].zone_idx = 0;
  3718. }
  3719. #endif /* CONFIG_NUMA */
  3720. /*
  3721. * Boot pageset table. One per cpu which is going to be used for all
  3722. * zones and all nodes. The parameters will be set in such a way
  3723. * that an item put on a list will immediately be handed over to
  3724. * the buddy list. This is safe since pageset manipulation is done
  3725. * with interrupts disabled.
  3726. *
  3727. * The boot_pagesets must be kept even after bootup is complete for
  3728. * unused processors and/or zones. They do play a role for bootstrapping
  3729. * hotplugged processors.
  3730. *
  3731. * zoneinfo_show() and maybe other functions do
  3732. * not check if the processor is online before following the pageset pointer.
  3733. * Other parts of the kernel may not check if the zone is available.
  3734. */
  3735. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3736. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3737. static void setup_zone_pageset(struct zone *zone);
  3738. /*
  3739. * Global mutex to protect against size modification of zonelists
  3740. * as well as to serialize pageset setup for the new populated zone.
  3741. */
  3742. DEFINE_MUTEX(zonelists_mutex);
  3743. /* return values int ....just for stop_machine() */
  3744. static int __build_all_zonelists(void *data)
  3745. {
  3746. int nid;
  3747. int cpu;
  3748. pg_data_t *self = data;
  3749. #ifdef CONFIG_NUMA
  3750. memset(node_load, 0, sizeof(node_load));
  3751. #endif
  3752. if (self && !node_online(self->node_id)) {
  3753. build_zonelists(self);
  3754. }
  3755. for_each_online_node(nid) {
  3756. pg_data_t *pgdat = NODE_DATA(nid);
  3757. build_zonelists(pgdat);
  3758. }
  3759. /*
  3760. * Initialize the boot_pagesets that are going to be used
  3761. * for bootstrapping processors. The real pagesets for
  3762. * each zone will be allocated later when the per cpu
  3763. * allocator is available.
  3764. *
  3765. * boot_pagesets are used also for bootstrapping offline
  3766. * cpus if the system is already booted because the pagesets
  3767. * are needed to initialize allocators on a specific cpu too.
  3768. * F.e. the percpu allocator needs the page allocator which
  3769. * needs the percpu allocator in order to allocate its pagesets
  3770. * (a chicken-egg dilemma).
  3771. */
  3772. for_each_possible_cpu(cpu) {
  3773. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3774. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3775. /*
  3776. * We now know the "local memory node" for each node--
  3777. * i.e., the node of the first zone in the generic zonelist.
  3778. * Set up numa_mem percpu variable for on-line cpus. During
  3779. * boot, only the boot cpu should be on-line; we'll init the
  3780. * secondary cpus' numa_mem as they come on-line. During
  3781. * node/memory hotplug, we'll fixup all on-line cpus.
  3782. */
  3783. if (cpu_online(cpu))
  3784. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3785. #endif
  3786. }
  3787. return 0;
  3788. }
  3789. static noinline void __init
  3790. build_all_zonelists_init(void)
  3791. {
  3792. __build_all_zonelists(NULL);
  3793. mminit_verify_zonelist();
  3794. cpuset_init_current_mems_allowed();
  3795. }
  3796. /*
  3797. * Called with zonelists_mutex held always
  3798. * unless system_state == SYSTEM_BOOTING.
  3799. *
  3800. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  3801. * [we're only called with non-NULL zone through __meminit paths] and
  3802. * (2) call of __init annotated helper build_all_zonelists_init
  3803. * [protected by SYSTEM_BOOTING].
  3804. */
  3805. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3806. {
  3807. set_zonelist_order();
  3808. if (system_state == SYSTEM_BOOTING) {
  3809. build_all_zonelists_init();
  3810. } else {
  3811. #ifdef CONFIG_MEMORY_HOTPLUG
  3812. if (zone)
  3813. setup_zone_pageset(zone);
  3814. #endif
  3815. /* we have to stop all cpus to guarantee there is no user
  3816. of zonelist */
  3817. stop_machine(__build_all_zonelists, pgdat, NULL);
  3818. /* cpuset refresh routine should be here */
  3819. }
  3820. vm_total_pages = nr_free_pagecache_pages();
  3821. /*
  3822. * Disable grouping by mobility if the number of pages in the
  3823. * system is too low to allow the mechanism to work. It would be
  3824. * more accurate, but expensive to check per-zone. This check is
  3825. * made on memory-hotadd so a system can start with mobility
  3826. * disabled and enable it later
  3827. */
  3828. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3829. page_group_by_mobility_disabled = 1;
  3830. else
  3831. page_group_by_mobility_disabled = 0;
  3832. pr_info("Built %i zonelists in %s order, mobility grouping %s. "
  3833. "Total pages: %ld\n",
  3834. nr_online_nodes,
  3835. zonelist_order_name[current_zonelist_order],
  3836. page_group_by_mobility_disabled ? "off" : "on",
  3837. vm_total_pages);
  3838. #ifdef CONFIG_NUMA
  3839. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  3840. #endif
  3841. }
  3842. /*
  3843. * Helper functions to size the waitqueue hash table.
  3844. * Essentially these want to choose hash table sizes sufficiently
  3845. * large so that collisions trying to wait on pages are rare.
  3846. * But in fact, the number of active page waitqueues on typical
  3847. * systems is ridiculously low, less than 200. So this is even
  3848. * conservative, even though it seems large.
  3849. *
  3850. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3851. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3852. */
  3853. #define PAGES_PER_WAITQUEUE 256
  3854. #ifndef CONFIG_MEMORY_HOTPLUG
  3855. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3856. {
  3857. unsigned long size = 1;
  3858. pages /= PAGES_PER_WAITQUEUE;
  3859. while (size < pages)
  3860. size <<= 1;
  3861. /*
  3862. * Once we have dozens or even hundreds of threads sleeping
  3863. * on IO we've got bigger problems than wait queue collision.
  3864. * Limit the size of the wait table to a reasonable size.
  3865. */
  3866. size = min(size, 4096UL);
  3867. return max(size, 4UL);
  3868. }
  3869. #else
  3870. /*
  3871. * A zone's size might be changed by hot-add, so it is not possible to determine
  3872. * a suitable size for its wait_table. So we use the maximum size now.
  3873. *
  3874. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3875. *
  3876. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3877. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3878. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3879. *
  3880. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3881. * or more by the traditional way. (See above). It equals:
  3882. *
  3883. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3884. * ia64(16K page size) : = ( 8G + 4M)byte.
  3885. * powerpc (64K page size) : = (32G +16M)byte.
  3886. */
  3887. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3888. {
  3889. return 4096UL;
  3890. }
  3891. #endif
  3892. /*
  3893. * This is an integer logarithm so that shifts can be used later
  3894. * to extract the more random high bits from the multiplicative
  3895. * hash function before the remainder is taken.
  3896. */
  3897. static inline unsigned long wait_table_bits(unsigned long size)
  3898. {
  3899. return ffz(~size);
  3900. }
  3901. /*
  3902. * Initially all pages are reserved - free ones are freed
  3903. * up by free_all_bootmem() once the early boot process is
  3904. * done. Non-atomic initialization, single-pass.
  3905. */
  3906. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3907. unsigned long start_pfn, enum memmap_context context)
  3908. {
  3909. pg_data_t *pgdat = NODE_DATA(nid);
  3910. unsigned long end_pfn = start_pfn + size;
  3911. unsigned long pfn;
  3912. struct zone *z;
  3913. unsigned long nr_initialised = 0;
  3914. if (highest_memmap_pfn < end_pfn - 1)
  3915. highest_memmap_pfn = end_pfn - 1;
  3916. z = &pgdat->node_zones[zone];
  3917. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3918. /*
  3919. * There can be holes in boot-time mem_map[]s
  3920. * handed to this function. They do not
  3921. * exist on hotplugged memory.
  3922. */
  3923. if (context == MEMMAP_EARLY) {
  3924. if (!early_pfn_valid(pfn))
  3925. continue;
  3926. if (!early_pfn_in_nid(pfn, nid))
  3927. continue;
  3928. if (!update_defer_init(pgdat, pfn, end_pfn,
  3929. &nr_initialised))
  3930. break;
  3931. }
  3932. /*
  3933. * Mark the block movable so that blocks are reserved for
  3934. * movable at startup. This will force kernel allocations
  3935. * to reserve their blocks rather than leaking throughout
  3936. * the address space during boot when many long-lived
  3937. * kernel allocations are made.
  3938. *
  3939. * bitmap is created for zone's valid pfn range. but memmap
  3940. * can be created for invalid pages (for alignment)
  3941. * check here not to call set_pageblock_migratetype() against
  3942. * pfn out of zone.
  3943. */
  3944. if (!(pfn & (pageblock_nr_pages - 1))) {
  3945. struct page *page = pfn_to_page(pfn);
  3946. __init_single_page(page, pfn, zone, nid);
  3947. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3948. } else {
  3949. __init_single_pfn(pfn, zone, nid);
  3950. }
  3951. }
  3952. }
  3953. static void __meminit zone_init_free_lists(struct zone *zone)
  3954. {
  3955. unsigned int order, t;
  3956. for_each_migratetype_order(order, t) {
  3957. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3958. zone->free_area[order].nr_free = 0;
  3959. }
  3960. }
  3961. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3962. #define memmap_init(size, nid, zone, start_pfn) \
  3963. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3964. #endif
  3965. static int zone_batchsize(struct zone *zone)
  3966. {
  3967. #ifdef CONFIG_MMU
  3968. int batch;
  3969. /*
  3970. * The per-cpu-pages pools are set to around 1000th of the
  3971. * size of the zone. But no more than 1/2 of a meg.
  3972. *
  3973. * OK, so we don't know how big the cache is. So guess.
  3974. */
  3975. batch = zone->managed_pages / 1024;
  3976. if (batch * PAGE_SIZE > 512 * 1024)
  3977. batch = (512 * 1024) / PAGE_SIZE;
  3978. batch /= 4; /* We effectively *= 4 below */
  3979. if (batch < 1)
  3980. batch = 1;
  3981. /*
  3982. * Clamp the batch to a 2^n - 1 value. Having a power
  3983. * of 2 value was found to be more likely to have
  3984. * suboptimal cache aliasing properties in some cases.
  3985. *
  3986. * For example if 2 tasks are alternately allocating
  3987. * batches of pages, one task can end up with a lot
  3988. * of pages of one half of the possible page colors
  3989. * and the other with pages of the other colors.
  3990. */
  3991. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3992. return batch;
  3993. #else
  3994. /* The deferral and batching of frees should be suppressed under NOMMU
  3995. * conditions.
  3996. *
  3997. * The problem is that NOMMU needs to be able to allocate large chunks
  3998. * of contiguous memory as there's no hardware page translation to
  3999. * assemble apparent contiguous memory from discontiguous pages.
  4000. *
  4001. * Queueing large contiguous runs of pages for batching, however,
  4002. * causes the pages to actually be freed in smaller chunks. As there
  4003. * can be a significant delay between the individual batches being
  4004. * recycled, this leads to the once large chunks of space being
  4005. * fragmented and becoming unavailable for high-order allocations.
  4006. */
  4007. return 0;
  4008. #endif
  4009. }
  4010. /*
  4011. * pcp->high and pcp->batch values are related and dependent on one another:
  4012. * ->batch must never be higher then ->high.
  4013. * The following function updates them in a safe manner without read side
  4014. * locking.
  4015. *
  4016. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4017. * those fields changing asynchronously (acording the the above rule).
  4018. *
  4019. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4020. * outside of boot time (or some other assurance that no concurrent updaters
  4021. * exist).
  4022. */
  4023. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4024. unsigned long batch)
  4025. {
  4026. /* start with a fail safe value for batch */
  4027. pcp->batch = 1;
  4028. smp_wmb();
  4029. /* Update high, then batch, in order */
  4030. pcp->high = high;
  4031. smp_wmb();
  4032. pcp->batch = batch;
  4033. }
  4034. /* a companion to pageset_set_high() */
  4035. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4036. {
  4037. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4038. }
  4039. static void pageset_init(struct per_cpu_pageset *p)
  4040. {
  4041. struct per_cpu_pages *pcp;
  4042. int migratetype;
  4043. memset(p, 0, sizeof(*p));
  4044. pcp = &p->pcp;
  4045. pcp->count = 0;
  4046. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4047. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4048. }
  4049. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4050. {
  4051. pageset_init(p);
  4052. pageset_set_batch(p, batch);
  4053. }
  4054. /*
  4055. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4056. * to the value high for the pageset p.
  4057. */
  4058. static void pageset_set_high(struct per_cpu_pageset *p,
  4059. unsigned long high)
  4060. {
  4061. unsigned long batch = max(1UL, high / 4);
  4062. if ((high / 4) > (PAGE_SHIFT * 8))
  4063. batch = PAGE_SHIFT * 8;
  4064. pageset_update(&p->pcp, high, batch);
  4065. }
  4066. static void pageset_set_high_and_batch(struct zone *zone,
  4067. struct per_cpu_pageset *pcp)
  4068. {
  4069. if (percpu_pagelist_fraction)
  4070. pageset_set_high(pcp,
  4071. (zone->managed_pages /
  4072. percpu_pagelist_fraction));
  4073. else
  4074. pageset_set_batch(pcp, zone_batchsize(zone));
  4075. }
  4076. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4077. {
  4078. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4079. pageset_init(pcp);
  4080. pageset_set_high_and_batch(zone, pcp);
  4081. }
  4082. static void __meminit setup_zone_pageset(struct zone *zone)
  4083. {
  4084. int cpu;
  4085. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4086. for_each_possible_cpu(cpu)
  4087. zone_pageset_init(zone, cpu);
  4088. }
  4089. /*
  4090. * Allocate per cpu pagesets and initialize them.
  4091. * Before this call only boot pagesets were available.
  4092. */
  4093. void __init setup_per_cpu_pageset(void)
  4094. {
  4095. struct zone *zone;
  4096. for_each_populated_zone(zone)
  4097. setup_zone_pageset(zone);
  4098. }
  4099. static noinline __init_refok
  4100. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4101. {
  4102. int i;
  4103. size_t alloc_size;
  4104. /*
  4105. * The per-page waitqueue mechanism uses hashed waitqueues
  4106. * per zone.
  4107. */
  4108. zone->wait_table_hash_nr_entries =
  4109. wait_table_hash_nr_entries(zone_size_pages);
  4110. zone->wait_table_bits =
  4111. wait_table_bits(zone->wait_table_hash_nr_entries);
  4112. alloc_size = zone->wait_table_hash_nr_entries
  4113. * sizeof(wait_queue_head_t);
  4114. if (!slab_is_available()) {
  4115. zone->wait_table = (wait_queue_head_t *)
  4116. memblock_virt_alloc_node_nopanic(
  4117. alloc_size, zone->zone_pgdat->node_id);
  4118. } else {
  4119. /*
  4120. * This case means that a zone whose size was 0 gets new memory
  4121. * via memory hot-add.
  4122. * But it may be the case that a new node was hot-added. In
  4123. * this case vmalloc() will not be able to use this new node's
  4124. * memory - this wait_table must be initialized to use this new
  4125. * node itself as well.
  4126. * To use this new node's memory, further consideration will be
  4127. * necessary.
  4128. */
  4129. zone->wait_table = vmalloc(alloc_size);
  4130. }
  4131. if (!zone->wait_table)
  4132. return -ENOMEM;
  4133. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4134. init_waitqueue_head(zone->wait_table + i);
  4135. return 0;
  4136. }
  4137. static __meminit void zone_pcp_init(struct zone *zone)
  4138. {
  4139. /*
  4140. * per cpu subsystem is not up at this point. The following code
  4141. * relies on the ability of the linker to provide the
  4142. * offset of a (static) per cpu variable into the per cpu area.
  4143. */
  4144. zone->pageset = &boot_pageset;
  4145. if (populated_zone(zone))
  4146. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4147. zone->name, zone->present_pages,
  4148. zone_batchsize(zone));
  4149. }
  4150. int __meminit init_currently_empty_zone(struct zone *zone,
  4151. unsigned long zone_start_pfn,
  4152. unsigned long size)
  4153. {
  4154. struct pglist_data *pgdat = zone->zone_pgdat;
  4155. int ret;
  4156. ret = zone_wait_table_init(zone, size);
  4157. if (ret)
  4158. return ret;
  4159. pgdat->nr_zones = zone_idx(zone) + 1;
  4160. zone->zone_start_pfn = zone_start_pfn;
  4161. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4162. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4163. pgdat->node_id,
  4164. (unsigned long)zone_idx(zone),
  4165. zone_start_pfn, (zone_start_pfn + size));
  4166. zone_init_free_lists(zone);
  4167. return 0;
  4168. }
  4169. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4170. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4171. /*
  4172. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4173. */
  4174. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4175. struct mminit_pfnnid_cache *state)
  4176. {
  4177. unsigned long start_pfn, end_pfn;
  4178. int nid;
  4179. if (state->last_start <= pfn && pfn < state->last_end)
  4180. return state->last_nid;
  4181. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4182. if (nid != -1) {
  4183. state->last_start = start_pfn;
  4184. state->last_end = end_pfn;
  4185. state->last_nid = nid;
  4186. }
  4187. return nid;
  4188. }
  4189. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4190. /**
  4191. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4192. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4193. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4194. *
  4195. * If an architecture guarantees that all ranges registered contain no holes
  4196. * and may be freed, this this function may be used instead of calling
  4197. * memblock_free_early_nid() manually.
  4198. */
  4199. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4200. {
  4201. unsigned long start_pfn, end_pfn;
  4202. int i, this_nid;
  4203. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4204. start_pfn = min(start_pfn, max_low_pfn);
  4205. end_pfn = min(end_pfn, max_low_pfn);
  4206. if (start_pfn < end_pfn)
  4207. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4208. (end_pfn - start_pfn) << PAGE_SHIFT,
  4209. this_nid);
  4210. }
  4211. }
  4212. /**
  4213. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4214. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4215. *
  4216. * If an architecture guarantees that all ranges registered contain no holes and may
  4217. * be freed, this function may be used instead of calling memory_present() manually.
  4218. */
  4219. void __init sparse_memory_present_with_active_regions(int nid)
  4220. {
  4221. unsigned long start_pfn, end_pfn;
  4222. int i, this_nid;
  4223. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4224. memory_present(this_nid, start_pfn, end_pfn);
  4225. }
  4226. /**
  4227. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4228. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4229. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4230. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4231. *
  4232. * It returns the start and end page frame of a node based on information
  4233. * provided by memblock_set_node(). If called for a node
  4234. * with no available memory, a warning is printed and the start and end
  4235. * PFNs will be 0.
  4236. */
  4237. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4238. unsigned long *start_pfn, unsigned long *end_pfn)
  4239. {
  4240. unsigned long this_start_pfn, this_end_pfn;
  4241. int i;
  4242. *start_pfn = -1UL;
  4243. *end_pfn = 0;
  4244. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4245. *start_pfn = min(*start_pfn, this_start_pfn);
  4246. *end_pfn = max(*end_pfn, this_end_pfn);
  4247. }
  4248. if (*start_pfn == -1UL)
  4249. *start_pfn = 0;
  4250. }
  4251. /*
  4252. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4253. * assumption is made that zones within a node are ordered in monotonic
  4254. * increasing memory addresses so that the "highest" populated zone is used
  4255. */
  4256. static void __init find_usable_zone_for_movable(void)
  4257. {
  4258. int zone_index;
  4259. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4260. if (zone_index == ZONE_MOVABLE)
  4261. continue;
  4262. if (arch_zone_highest_possible_pfn[zone_index] >
  4263. arch_zone_lowest_possible_pfn[zone_index])
  4264. break;
  4265. }
  4266. VM_BUG_ON(zone_index == -1);
  4267. movable_zone = zone_index;
  4268. }
  4269. /*
  4270. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4271. * because it is sized independent of architecture. Unlike the other zones,
  4272. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4273. * in each node depending on the size of each node and how evenly kernelcore
  4274. * is distributed. This helper function adjusts the zone ranges
  4275. * provided by the architecture for a given node by using the end of the
  4276. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4277. * zones within a node are in order of monotonic increases memory addresses
  4278. */
  4279. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4280. unsigned long zone_type,
  4281. unsigned long node_start_pfn,
  4282. unsigned long node_end_pfn,
  4283. unsigned long *zone_start_pfn,
  4284. unsigned long *zone_end_pfn)
  4285. {
  4286. /* Only adjust if ZONE_MOVABLE is on this node */
  4287. if (zone_movable_pfn[nid]) {
  4288. /* Size ZONE_MOVABLE */
  4289. if (zone_type == ZONE_MOVABLE) {
  4290. *zone_start_pfn = zone_movable_pfn[nid];
  4291. *zone_end_pfn = min(node_end_pfn,
  4292. arch_zone_highest_possible_pfn[movable_zone]);
  4293. /* Adjust for ZONE_MOVABLE starting within this range */
  4294. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  4295. *zone_end_pfn > zone_movable_pfn[nid]) {
  4296. *zone_end_pfn = zone_movable_pfn[nid];
  4297. /* Check if this whole range is within ZONE_MOVABLE */
  4298. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4299. *zone_start_pfn = *zone_end_pfn;
  4300. }
  4301. }
  4302. /*
  4303. * Return the number of pages a zone spans in a node, including holes
  4304. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4305. */
  4306. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4307. unsigned long zone_type,
  4308. unsigned long node_start_pfn,
  4309. unsigned long node_end_pfn,
  4310. unsigned long *ignored)
  4311. {
  4312. unsigned long zone_start_pfn, zone_end_pfn;
  4313. /* When hotadd a new node from cpu_up(), the node should be empty */
  4314. if (!node_start_pfn && !node_end_pfn)
  4315. return 0;
  4316. /* Get the start and end of the zone */
  4317. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4318. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4319. adjust_zone_range_for_zone_movable(nid, zone_type,
  4320. node_start_pfn, node_end_pfn,
  4321. &zone_start_pfn, &zone_end_pfn);
  4322. /* Check that this node has pages within the zone's required range */
  4323. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  4324. return 0;
  4325. /* Move the zone boundaries inside the node if necessary */
  4326. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  4327. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  4328. /* Return the spanned pages */
  4329. return zone_end_pfn - zone_start_pfn;
  4330. }
  4331. /*
  4332. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4333. * then all holes in the requested range will be accounted for.
  4334. */
  4335. unsigned long __meminit __absent_pages_in_range(int nid,
  4336. unsigned long range_start_pfn,
  4337. unsigned long range_end_pfn)
  4338. {
  4339. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4340. unsigned long start_pfn, end_pfn;
  4341. int i;
  4342. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4343. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4344. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4345. nr_absent -= end_pfn - start_pfn;
  4346. }
  4347. return nr_absent;
  4348. }
  4349. /**
  4350. * absent_pages_in_range - Return number of page frames in holes within a range
  4351. * @start_pfn: The start PFN to start searching for holes
  4352. * @end_pfn: The end PFN to stop searching for holes
  4353. *
  4354. * It returns the number of pages frames in memory holes within a range.
  4355. */
  4356. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4357. unsigned long end_pfn)
  4358. {
  4359. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4360. }
  4361. /* Return the number of page frames in holes in a zone on a node */
  4362. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4363. unsigned long zone_type,
  4364. unsigned long node_start_pfn,
  4365. unsigned long node_end_pfn,
  4366. unsigned long *ignored)
  4367. {
  4368. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4369. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4370. unsigned long zone_start_pfn, zone_end_pfn;
  4371. /* When hotadd a new node from cpu_up(), the node should be empty */
  4372. if (!node_start_pfn && !node_end_pfn)
  4373. return 0;
  4374. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4375. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4376. adjust_zone_range_for_zone_movable(nid, zone_type,
  4377. node_start_pfn, node_end_pfn,
  4378. &zone_start_pfn, &zone_end_pfn);
  4379. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4380. }
  4381. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4382. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4383. unsigned long zone_type,
  4384. unsigned long node_start_pfn,
  4385. unsigned long node_end_pfn,
  4386. unsigned long *zones_size)
  4387. {
  4388. return zones_size[zone_type];
  4389. }
  4390. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4391. unsigned long zone_type,
  4392. unsigned long node_start_pfn,
  4393. unsigned long node_end_pfn,
  4394. unsigned long *zholes_size)
  4395. {
  4396. if (!zholes_size)
  4397. return 0;
  4398. return zholes_size[zone_type];
  4399. }
  4400. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4401. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4402. unsigned long node_start_pfn,
  4403. unsigned long node_end_pfn,
  4404. unsigned long *zones_size,
  4405. unsigned long *zholes_size)
  4406. {
  4407. unsigned long realtotalpages = 0, totalpages = 0;
  4408. enum zone_type i;
  4409. for (i = 0; i < MAX_NR_ZONES; i++) {
  4410. struct zone *zone = pgdat->node_zones + i;
  4411. unsigned long size, real_size;
  4412. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4413. node_start_pfn,
  4414. node_end_pfn,
  4415. zones_size);
  4416. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4417. node_start_pfn, node_end_pfn,
  4418. zholes_size);
  4419. zone->spanned_pages = size;
  4420. zone->present_pages = real_size;
  4421. totalpages += size;
  4422. realtotalpages += real_size;
  4423. }
  4424. pgdat->node_spanned_pages = totalpages;
  4425. pgdat->node_present_pages = realtotalpages;
  4426. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4427. realtotalpages);
  4428. }
  4429. #ifndef CONFIG_SPARSEMEM
  4430. /*
  4431. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4432. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4433. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4434. * round what is now in bits to nearest long in bits, then return it in
  4435. * bytes.
  4436. */
  4437. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4438. {
  4439. unsigned long usemapsize;
  4440. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4441. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4442. usemapsize = usemapsize >> pageblock_order;
  4443. usemapsize *= NR_PAGEBLOCK_BITS;
  4444. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4445. return usemapsize / 8;
  4446. }
  4447. static void __init setup_usemap(struct pglist_data *pgdat,
  4448. struct zone *zone,
  4449. unsigned long zone_start_pfn,
  4450. unsigned long zonesize)
  4451. {
  4452. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4453. zone->pageblock_flags = NULL;
  4454. if (usemapsize)
  4455. zone->pageblock_flags =
  4456. memblock_virt_alloc_node_nopanic(usemapsize,
  4457. pgdat->node_id);
  4458. }
  4459. #else
  4460. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4461. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4462. #endif /* CONFIG_SPARSEMEM */
  4463. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4464. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4465. void __paginginit set_pageblock_order(void)
  4466. {
  4467. unsigned int order;
  4468. /* Check that pageblock_nr_pages has not already been setup */
  4469. if (pageblock_order)
  4470. return;
  4471. if (HPAGE_SHIFT > PAGE_SHIFT)
  4472. order = HUGETLB_PAGE_ORDER;
  4473. else
  4474. order = MAX_ORDER - 1;
  4475. /*
  4476. * Assume the largest contiguous order of interest is a huge page.
  4477. * This value may be variable depending on boot parameters on IA64 and
  4478. * powerpc.
  4479. */
  4480. pageblock_order = order;
  4481. }
  4482. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4483. /*
  4484. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4485. * is unused as pageblock_order is set at compile-time. See
  4486. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4487. * the kernel config
  4488. */
  4489. void __paginginit set_pageblock_order(void)
  4490. {
  4491. }
  4492. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4493. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4494. unsigned long present_pages)
  4495. {
  4496. unsigned long pages = spanned_pages;
  4497. /*
  4498. * Provide a more accurate estimation if there are holes within
  4499. * the zone and SPARSEMEM is in use. If there are holes within the
  4500. * zone, each populated memory region may cost us one or two extra
  4501. * memmap pages due to alignment because memmap pages for each
  4502. * populated regions may not naturally algined on page boundary.
  4503. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4504. */
  4505. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4506. IS_ENABLED(CONFIG_SPARSEMEM))
  4507. pages = present_pages;
  4508. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4509. }
  4510. /*
  4511. * Set up the zone data structures:
  4512. * - mark all pages reserved
  4513. * - mark all memory queues empty
  4514. * - clear the memory bitmaps
  4515. *
  4516. * NOTE: pgdat should get zeroed by caller.
  4517. */
  4518. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  4519. {
  4520. enum zone_type j;
  4521. int nid = pgdat->node_id;
  4522. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4523. int ret;
  4524. pgdat_resize_init(pgdat);
  4525. #ifdef CONFIG_NUMA_BALANCING
  4526. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4527. pgdat->numabalancing_migrate_nr_pages = 0;
  4528. pgdat->numabalancing_migrate_next_window = jiffies;
  4529. #endif
  4530. init_waitqueue_head(&pgdat->kswapd_wait);
  4531. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4532. pgdat_page_ext_init(pgdat);
  4533. for (j = 0; j < MAX_NR_ZONES; j++) {
  4534. struct zone *zone = pgdat->node_zones + j;
  4535. unsigned long size, realsize, freesize, memmap_pages;
  4536. size = zone->spanned_pages;
  4537. realsize = freesize = zone->present_pages;
  4538. /*
  4539. * Adjust freesize so that it accounts for how much memory
  4540. * is used by this zone for memmap. This affects the watermark
  4541. * and per-cpu initialisations
  4542. */
  4543. memmap_pages = calc_memmap_size(size, realsize);
  4544. if (!is_highmem_idx(j)) {
  4545. if (freesize >= memmap_pages) {
  4546. freesize -= memmap_pages;
  4547. if (memmap_pages)
  4548. printk(KERN_DEBUG
  4549. " %s zone: %lu pages used for memmap\n",
  4550. zone_names[j], memmap_pages);
  4551. } else
  4552. printk(KERN_WARNING
  4553. " %s zone: %lu pages exceeds freesize %lu\n",
  4554. zone_names[j], memmap_pages, freesize);
  4555. }
  4556. /* Account for reserved pages */
  4557. if (j == 0 && freesize > dma_reserve) {
  4558. freesize -= dma_reserve;
  4559. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4560. zone_names[0], dma_reserve);
  4561. }
  4562. if (!is_highmem_idx(j))
  4563. nr_kernel_pages += freesize;
  4564. /* Charge for highmem memmap if there are enough kernel pages */
  4565. else if (nr_kernel_pages > memmap_pages * 2)
  4566. nr_kernel_pages -= memmap_pages;
  4567. nr_all_pages += freesize;
  4568. /*
  4569. * Set an approximate value for lowmem here, it will be adjusted
  4570. * when the bootmem allocator frees pages into the buddy system.
  4571. * And all highmem pages will be managed by the buddy system.
  4572. */
  4573. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4574. #ifdef CONFIG_NUMA
  4575. zone->node = nid;
  4576. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4577. / 100;
  4578. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4579. #endif
  4580. zone->name = zone_names[j];
  4581. spin_lock_init(&zone->lock);
  4582. spin_lock_init(&zone->lru_lock);
  4583. zone_seqlock_init(zone);
  4584. zone->zone_pgdat = pgdat;
  4585. zone_pcp_init(zone);
  4586. /* For bootup, initialized properly in watermark setup */
  4587. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4588. lruvec_init(&zone->lruvec);
  4589. if (!size)
  4590. continue;
  4591. set_pageblock_order();
  4592. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4593. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  4594. BUG_ON(ret);
  4595. memmap_init(size, nid, j, zone_start_pfn);
  4596. zone_start_pfn += size;
  4597. }
  4598. }
  4599. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4600. {
  4601. unsigned long __maybe_unused start = 0;
  4602. unsigned long __maybe_unused offset = 0;
  4603. /* Skip empty nodes */
  4604. if (!pgdat->node_spanned_pages)
  4605. return;
  4606. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4607. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4608. offset = pgdat->node_start_pfn - start;
  4609. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4610. if (!pgdat->node_mem_map) {
  4611. unsigned long size, end;
  4612. struct page *map;
  4613. /*
  4614. * The zone's endpoints aren't required to be MAX_ORDER
  4615. * aligned but the node_mem_map endpoints must be in order
  4616. * for the buddy allocator to function correctly.
  4617. */
  4618. end = pgdat_end_pfn(pgdat);
  4619. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4620. size = (end - start) * sizeof(struct page);
  4621. map = alloc_remap(pgdat->node_id, size);
  4622. if (!map)
  4623. map = memblock_virt_alloc_node_nopanic(size,
  4624. pgdat->node_id);
  4625. pgdat->node_mem_map = map + offset;
  4626. }
  4627. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4628. /*
  4629. * With no DISCONTIG, the global mem_map is just set as node 0's
  4630. */
  4631. if (pgdat == NODE_DATA(0)) {
  4632. mem_map = NODE_DATA(0)->node_mem_map;
  4633. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  4634. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4635. mem_map -= offset;
  4636. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4637. }
  4638. #endif
  4639. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4640. }
  4641. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4642. unsigned long node_start_pfn, unsigned long *zholes_size)
  4643. {
  4644. pg_data_t *pgdat = NODE_DATA(nid);
  4645. unsigned long start_pfn = 0;
  4646. unsigned long end_pfn = 0;
  4647. /* pg_data_t should be reset to zero when it's allocated */
  4648. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4649. pgdat->node_id = nid;
  4650. pgdat->node_start_pfn = node_start_pfn;
  4651. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4652. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4653. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  4654. (u64)start_pfn << PAGE_SHIFT,
  4655. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  4656. #endif
  4657. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4658. zones_size, zholes_size);
  4659. alloc_node_mem_map(pgdat);
  4660. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4661. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4662. nid, (unsigned long)pgdat,
  4663. (unsigned long)pgdat->node_mem_map);
  4664. #endif
  4665. reset_deferred_meminit(pgdat);
  4666. free_area_init_core(pgdat);
  4667. }
  4668. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4669. #if MAX_NUMNODES > 1
  4670. /*
  4671. * Figure out the number of possible node ids.
  4672. */
  4673. void __init setup_nr_node_ids(void)
  4674. {
  4675. unsigned int highest;
  4676. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  4677. nr_node_ids = highest + 1;
  4678. }
  4679. #endif
  4680. /**
  4681. * node_map_pfn_alignment - determine the maximum internode alignment
  4682. *
  4683. * This function should be called after node map is populated and sorted.
  4684. * It calculates the maximum power of two alignment which can distinguish
  4685. * all the nodes.
  4686. *
  4687. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4688. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4689. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4690. * shifted, 1GiB is enough and this function will indicate so.
  4691. *
  4692. * This is used to test whether pfn -> nid mapping of the chosen memory
  4693. * model has fine enough granularity to avoid incorrect mapping for the
  4694. * populated node map.
  4695. *
  4696. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4697. * requirement (single node).
  4698. */
  4699. unsigned long __init node_map_pfn_alignment(void)
  4700. {
  4701. unsigned long accl_mask = 0, last_end = 0;
  4702. unsigned long start, end, mask;
  4703. int last_nid = -1;
  4704. int i, nid;
  4705. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4706. if (!start || last_nid < 0 || last_nid == nid) {
  4707. last_nid = nid;
  4708. last_end = end;
  4709. continue;
  4710. }
  4711. /*
  4712. * Start with a mask granular enough to pin-point to the
  4713. * start pfn and tick off bits one-by-one until it becomes
  4714. * too coarse to separate the current node from the last.
  4715. */
  4716. mask = ~((1 << __ffs(start)) - 1);
  4717. while (mask && last_end <= (start & (mask << 1)))
  4718. mask <<= 1;
  4719. /* accumulate all internode masks */
  4720. accl_mask |= mask;
  4721. }
  4722. /* convert mask to number of pages */
  4723. return ~accl_mask + 1;
  4724. }
  4725. /* Find the lowest pfn for a node */
  4726. static unsigned long __init find_min_pfn_for_node(int nid)
  4727. {
  4728. unsigned long min_pfn = ULONG_MAX;
  4729. unsigned long start_pfn;
  4730. int i;
  4731. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4732. min_pfn = min(min_pfn, start_pfn);
  4733. if (min_pfn == ULONG_MAX) {
  4734. printk(KERN_WARNING
  4735. "Could not find start_pfn for node %d\n", nid);
  4736. return 0;
  4737. }
  4738. return min_pfn;
  4739. }
  4740. /**
  4741. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4742. *
  4743. * It returns the minimum PFN based on information provided via
  4744. * memblock_set_node().
  4745. */
  4746. unsigned long __init find_min_pfn_with_active_regions(void)
  4747. {
  4748. return find_min_pfn_for_node(MAX_NUMNODES);
  4749. }
  4750. /*
  4751. * early_calculate_totalpages()
  4752. * Sum pages in active regions for movable zone.
  4753. * Populate N_MEMORY for calculating usable_nodes.
  4754. */
  4755. static unsigned long __init early_calculate_totalpages(void)
  4756. {
  4757. unsigned long totalpages = 0;
  4758. unsigned long start_pfn, end_pfn;
  4759. int i, nid;
  4760. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4761. unsigned long pages = end_pfn - start_pfn;
  4762. totalpages += pages;
  4763. if (pages)
  4764. node_set_state(nid, N_MEMORY);
  4765. }
  4766. return totalpages;
  4767. }
  4768. /*
  4769. * Find the PFN the Movable zone begins in each node. Kernel memory
  4770. * is spread evenly between nodes as long as the nodes have enough
  4771. * memory. When they don't, some nodes will have more kernelcore than
  4772. * others
  4773. */
  4774. static void __init find_zone_movable_pfns_for_nodes(void)
  4775. {
  4776. int i, nid;
  4777. unsigned long usable_startpfn;
  4778. unsigned long kernelcore_node, kernelcore_remaining;
  4779. /* save the state before borrow the nodemask */
  4780. nodemask_t saved_node_state = node_states[N_MEMORY];
  4781. unsigned long totalpages = early_calculate_totalpages();
  4782. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4783. struct memblock_region *r;
  4784. /* Need to find movable_zone earlier when movable_node is specified. */
  4785. find_usable_zone_for_movable();
  4786. /*
  4787. * If movable_node is specified, ignore kernelcore and movablecore
  4788. * options.
  4789. */
  4790. if (movable_node_is_enabled()) {
  4791. for_each_memblock(memory, r) {
  4792. if (!memblock_is_hotpluggable(r))
  4793. continue;
  4794. nid = r->nid;
  4795. usable_startpfn = PFN_DOWN(r->base);
  4796. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4797. min(usable_startpfn, zone_movable_pfn[nid]) :
  4798. usable_startpfn;
  4799. }
  4800. goto out2;
  4801. }
  4802. /*
  4803. * If movablecore=nn[KMG] was specified, calculate what size of
  4804. * kernelcore that corresponds so that memory usable for
  4805. * any allocation type is evenly spread. If both kernelcore
  4806. * and movablecore are specified, then the value of kernelcore
  4807. * will be used for required_kernelcore if it's greater than
  4808. * what movablecore would have allowed.
  4809. */
  4810. if (required_movablecore) {
  4811. unsigned long corepages;
  4812. /*
  4813. * Round-up so that ZONE_MOVABLE is at least as large as what
  4814. * was requested by the user
  4815. */
  4816. required_movablecore =
  4817. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4818. required_movablecore = min(totalpages, required_movablecore);
  4819. corepages = totalpages - required_movablecore;
  4820. required_kernelcore = max(required_kernelcore, corepages);
  4821. }
  4822. /*
  4823. * If kernelcore was not specified or kernelcore size is larger
  4824. * than totalpages, there is no ZONE_MOVABLE.
  4825. */
  4826. if (!required_kernelcore || required_kernelcore >= totalpages)
  4827. goto out;
  4828. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4829. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4830. restart:
  4831. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4832. kernelcore_node = required_kernelcore / usable_nodes;
  4833. for_each_node_state(nid, N_MEMORY) {
  4834. unsigned long start_pfn, end_pfn;
  4835. /*
  4836. * Recalculate kernelcore_node if the division per node
  4837. * now exceeds what is necessary to satisfy the requested
  4838. * amount of memory for the kernel
  4839. */
  4840. if (required_kernelcore < kernelcore_node)
  4841. kernelcore_node = required_kernelcore / usable_nodes;
  4842. /*
  4843. * As the map is walked, we track how much memory is usable
  4844. * by the kernel using kernelcore_remaining. When it is
  4845. * 0, the rest of the node is usable by ZONE_MOVABLE
  4846. */
  4847. kernelcore_remaining = kernelcore_node;
  4848. /* Go through each range of PFNs within this node */
  4849. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4850. unsigned long size_pages;
  4851. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4852. if (start_pfn >= end_pfn)
  4853. continue;
  4854. /* Account for what is only usable for kernelcore */
  4855. if (start_pfn < usable_startpfn) {
  4856. unsigned long kernel_pages;
  4857. kernel_pages = min(end_pfn, usable_startpfn)
  4858. - start_pfn;
  4859. kernelcore_remaining -= min(kernel_pages,
  4860. kernelcore_remaining);
  4861. required_kernelcore -= min(kernel_pages,
  4862. required_kernelcore);
  4863. /* Continue if range is now fully accounted */
  4864. if (end_pfn <= usable_startpfn) {
  4865. /*
  4866. * Push zone_movable_pfn to the end so
  4867. * that if we have to rebalance
  4868. * kernelcore across nodes, we will
  4869. * not double account here
  4870. */
  4871. zone_movable_pfn[nid] = end_pfn;
  4872. continue;
  4873. }
  4874. start_pfn = usable_startpfn;
  4875. }
  4876. /*
  4877. * The usable PFN range for ZONE_MOVABLE is from
  4878. * start_pfn->end_pfn. Calculate size_pages as the
  4879. * number of pages used as kernelcore
  4880. */
  4881. size_pages = end_pfn - start_pfn;
  4882. if (size_pages > kernelcore_remaining)
  4883. size_pages = kernelcore_remaining;
  4884. zone_movable_pfn[nid] = start_pfn + size_pages;
  4885. /*
  4886. * Some kernelcore has been met, update counts and
  4887. * break if the kernelcore for this node has been
  4888. * satisfied
  4889. */
  4890. required_kernelcore -= min(required_kernelcore,
  4891. size_pages);
  4892. kernelcore_remaining -= size_pages;
  4893. if (!kernelcore_remaining)
  4894. break;
  4895. }
  4896. }
  4897. /*
  4898. * If there is still required_kernelcore, we do another pass with one
  4899. * less node in the count. This will push zone_movable_pfn[nid] further
  4900. * along on the nodes that still have memory until kernelcore is
  4901. * satisfied
  4902. */
  4903. usable_nodes--;
  4904. if (usable_nodes && required_kernelcore > usable_nodes)
  4905. goto restart;
  4906. out2:
  4907. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4908. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4909. zone_movable_pfn[nid] =
  4910. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4911. out:
  4912. /* restore the node_state */
  4913. node_states[N_MEMORY] = saved_node_state;
  4914. }
  4915. /* Any regular or high memory on that node ? */
  4916. static void check_for_memory(pg_data_t *pgdat, int nid)
  4917. {
  4918. enum zone_type zone_type;
  4919. if (N_MEMORY == N_NORMAL_MEMORY)
  4920. return;
  4921. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4922. struct zone *zone = &pgdat->node_zones[zone_type];
  4923. if (populated_zone(zone)) {
  4924. node_set_state(nid, N_HIGH_MEMORY);
  4925. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4926. zone_type <= ZONE_NORMAL)
  4927. node_set_state(nid, N_NORMAL_MEMORY);
  4928. break;
  4929. }
  4930. }
  4931. }
  4932. /**
  4933. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4934. * @max_zone_pfn: an array of max PFNs for each zone
  4935. *
  4936. * This will call free_area_init_node() for each active node in the system.
  4937. * Using the page ranges provided by memblock_set_node(), the size of each
  4938. * zone in each node and their holes is calculated. If the maximum PFN
  4939. * between two adjacent zones match, it is assumed that the zone is empty.
  4940. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4941. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4942. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4943. * at arch_max_dma_pfn.
  4944. */
  4945. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4946. {
  4947. unsigned long start_pfn, end_pfn;
  4948. int i, nid;
  4949. /* Record where the zone boundaries are */
  4950. memset(arch_zone_lowest_possible_pfn, 0,
  4951. sizeof(arch_zone_lowest_possible_pfn));
  4952. memset(arch_zone_highest_possible_pfn, 0,
  4953. sizeof(arch_zone_highest_possible_pfn));
  4954. start_pfn = find_min_pfn_with_active_regions();
  4955. for (i = 0; i < MAX_NR_ZONES; i++) {
  4956. if (i == ZONE_MOVABLE)
  4957. continue;
  4958. end_pfn = max(max_zone_pfn[i], start_pfn);
  4959. arch_zone_lowest_possible_pfn[i] = start_pfn;
  4960. arch_zone_highest_possible_pfn[i] = end_pfn;
  4961. start_pfn = end_pfn;
  4962. }
  4963. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4964. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4965. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4966. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4967. find_zone_movable_pfns_for_nodes();
  4968. /* Print out the zone ranges */
  4969. pr_info("Zone ranges:\n");
  4970. for (i = 0; i < MAX_NR_ZONES; i++) {
  4971. if (i == ZONE_MOVABLE)
  4972. continue;
  4973. pr_info(" %-8s ", zone_names[i]);
  4974. if (arch_zone_lowest_possible_pfn[i] ==
  4975. arch_zone_highest_possible_pfn[i])
  4976. pr_cont("empty\n");
  4977. else
  4978. pr_cont("[mem %#018Lx-%#018Lx]\n",
  4979. (u64)arch_zone_lowest_possible_pfn[i]
  4980. << PAGE_SHIFT,
  4981. ((u64)arch_zone_highest_possible_pfn[i]
  4982. << PAGE_SHIFT) - 1);
  4983. }
  4984. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4985. pr_info("Movable zone start for each node\n");
  4986. for (i = 0; i < MAX_NUMNODES; i++) {
  4987. if (zone_movable_pfn[i])
  4988. pr_info(" Node %d: %#018Lx\n", i,
  4989. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  4990. }
  4991. /* Print out the early node map */
  4992. pr_info("Early memory node ranges\n");
  4993. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4994. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  4995. (u64)start_pfn << PAGE_SHIFT,
  4996. ((u64)end_pfn << PAGE_SHIFT) - 1);
  4997. /* Initialise every node */
  4998. mminit_verify_pageflags_layout();
  4999. setup_nr_node_ids();
  5000. for_each_online_node(nid) {
  5001. pg_data_t *pgdat = NODE_DATA(nid);
  5002. free_area_init_node(nid, NULL,
  5003. find_min_pfn_for_node(nid), NULL);
  5004. /* Any memory on that node */
  5005. if (pgdat->node_present_pages)
  5006. node_set_state(nid, N_MEMORY);
  5007. check_for_memory(pgdat, nid);
  5008. }
  5009. }
  5010. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5011. {
  5012. unsigned long long coremem;
  5013. if (!p)
  5014. return -EINVAL;
  5015. coremem = memparse(p, &p);
  5016. *core = coremem >> PAGE_SHIFT;
  5017. /* Paranoid check that UL is enough for the coremem value */
  5018. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5019. return 0;
  5020. }
  5021. /*
  5022. * kernelcore=size sets the amount of memory for use for allocations that
  5023. * cannot be reclaimed or migrated.
  5024. */
  5025. static int __init cmdline_parse_kernelcore(char *p)
  5026. {
  5027. return cmdline_parse_core(p, &required_kernelcore);
  5028. }
  5029. /*
  5030. * movablecore=size sets the amount of memory for use for allocations that
  5031. * can be reclaimed or migrated.
  5032. */
  5033. static int __init cmdline_parse_movablecore(char *p)
  5034. {
  5035. return cmdline_parse_core(p, &required_movablecore);
  5036. }
  5037. early_param("kernelcore", cmdline_parse_kernelcore);
  5038. early_param("movablecore", cmdline_parse_movablecore);
  5039. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5040. void adjust_managed_page_count(struct page *page, long count)
  5041. {
  5042. spin_lock(&managed_page_count_lock);
  5043. page_zone(page)->managed_pages += count;
  5044. totalram_pages += count;
  5045. #ifdef CONFIG_HIGHMEM
  5046. if (PageHighMem(page))
  5047. totalhigh_pages += count;
  5048. #endif
  5049. spin_unlock(&managed_page_count_lock);
  5050. }
  5051. EXPORT_SYMBOL(adjust_managed_page_count);
  5052. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5053. {
  5054. void *pos;
  5055. unsigned long pages = 0;
  5056. start = (void *)PAGE_ALIGN((unsigned long)start);
  5057. end = (void *)((unsigned long)end & PAGE_MASK);
  5058. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5059. if ((unsigned int)poison <= 0xFF)
  5060. memset(pos, poison, PAGE_SIZE);
  5061. free_reserved_page(virt_to_page(pos));
  5062. }
  5063. if (pages && s)
  5064. pr_info("Freeing %s memory: %ldK\n",
  5065. s, pages << (PAGE_SHIFT - 10));
  5066. return pages;
  5067. }
  5068. EXPORT_SYMBOL(free_reserved_area);
  5069. #ifdef CONFIG_HIGHMEM
  5070. void free_highmem_page(struct page *page)
  5071. {
  5072. __free_reserved_page(page);
  5073. totalram_pages++;
  5074. page_zone(page)->managed_pages++;
  5075. totalhigh_pages++;
  5076. }
  5077. #endif
  5078. void __init mem_init_print_info(const char *str)
  5079. {
  5080. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5081. unsigned long init_code_size, init_data_size;
  5082. physpages = get_num_physpages();
  5083. codesize = _etext - _stext;
  5084. datasize = _edata - _sdata;
  5085. rosize = __end_rodata - __start_rodata;
  5086. bss_size = __bss_stop - __bss_start;
  5087. init_data_size = __init_end - __init_begin;
  5088. init_code_size = _einittext - _sinittext;
  5089. /*
  5090. * Detect special cases and adjust section sizes accordingly:
  5091. * 1) .init.* may be embedded into .data sections
  5092. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5093. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5094. * 3) .rodata.* may be embedded into .text or .data sections.
  5095. */
  5096. #define adj_init_size(start, end, size, pos, adj) \
  5097. do { \
  5098. if (start <= pos && pos < end && size > adj) \
  5099. size -= adj; \
  5100. } while (0)
  5101. adj_init_size(__init_begin, __init_end, init_data_size,
  5102. _sinittext, init_code_size);
  5103. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5104. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5105. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5106. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5107. #undef adj_init_size
  5108. pr_info("Memory: %luK/%luK available "
  5109. "(%luK kernel code, %luK rwdata, %luK rodata, "
  5110. "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5111. #ifdef CONFIG_HIGHMEM
  5112. ", %luK highmem"
  5113. #endif
  5114. "%s%s)\n",
  5115. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  5116. codesize >> 10, datasize >> 10, rosize >> 10,
  5117. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5118. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
  5119. totalcma_pages << (PAGE_SHIFT-10),
  5120. #ifdef CONFIG_HIGHMEM
  5121. totalhigh_pages << (PAGE_SHIFT-10),
  5122. #endif
  5123. str ? ", " : "", str ? str : "");
  5124. }
  5125. /**
  5126. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5127. * @new_dma_reserve: The number of pages to mark reserved
  5128. *
  5129. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5130. * In the DMA zone, a significant percentage may be consumed by kernel image
  5131. * and other unfreeable allocations which can skew the watermarks badly. This
  5132. * function may optionally be used to account for unfreeable pages in the
  5133. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5134. * smaller per-cpu batchsize.
  5135. */
  5136. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5137. {
  5138. dma_reserve = new_dma_reserve;
  5139. }
  5140. void __init free_area_init(unsigned long *zones_size)
  5141. {
  5142. free_area_init_node(0, zones_size,
  5143. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5144. }
  5145. static int page_alloc_cpu_notify(struct notifier_block *self,
  5146. unsigned long action, void *hcpu)
  5147. {
  5148. int cpu = (unsigned long)hcpu;
  5149. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5150. lru_add_drain_cpu(cpu);
  5151. drain_pages(cpu);
  5152. /*
  5153. * Spill the event counters of the dead processor
  5154. * into the current processors event counters.
  5155. * This artificially elevates the count of the current
  5156. * processor.
  5157. */
  5158. vm_events_fold_cpu(cpu);
  5159. /*
  5160. * Zero the differential counters of the dead processor
  5161. * so that the vm statistics are consistent.
  5162. *
  5163. * This is only okay since the processor is dead and cannot
  5164. * race with what we are doing.
  5165. */
  5166. cpu_vm_stats_fold(cpu);
  5167. }
  5168. return NOTIFY_OK;
  5169. }
  5170. void __init page_alloc_init(void)
  5171. {
  5172. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5173. }
  5174. /*
  5175. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5176. * or min_free_kbytes changes.
  5177. */
  5178. static void calculate_totalreserve_pages(void)
  5179. {
  5180. struct pglist_data *pgdat;
  5181. unsigned long reserve_pages = 0;
  5182. enum zone_type i, j;
  5183. for_each_online_pgdat(pgdat) {
  5184. for (i = 0; i < MAX_NR_ZONES; i++) {
  5185. struct zone *zone = pgdat->node_zones + i;
  5186. long max = 0;
  5187. /* Find valid and maximum lowmem_reserve in the zone */
  5188. for (j = i; j < MAX_NR_ZONES; j++) {
  5189. if (zone->lowmem_reserve[j] > max)
  5190. max = zone->lowmem_reserve[j];
  5191. }
  5192. /* we treat the high watermark as reserved pages. */
  5193. max += high_wmark_pages(zone);
  5194. if (max > zone->managed_pages)
  5195. max = zone->managed_pages;
  5196. reserve_pages += max;
  5197. /*
  5198. * Lowmem reserves are not available to
  5199. * GFP_HIGHUSER page cache allocations and
  5200. * kswapd tries to balance zones to their high
  5201. * watermark. As a result, neither should be
  5202. * regarded as dirtyable memory, to prevent a
  5203. * situation where reclaim has to clean pages
  5204. * in order to balance the zones.
  5205. */
  5206. zone->dirty_balance_reserve = max;
  5207. }
  5208. }
  5209. dirty_balance_reserve = reserve_pages;
  5210. totalreserve_pages = reserve_pages;
  5211. }
  5212. /*
  5213. * setup_per_zone_lowmem_reserve - called whenever
  5214. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5215. * has a correct pages reserved value, so an adequate number of
  5216. * pages are left in the zone after a successful __alloc_pages().
  5217. */
  5218. static void setup_per_zone_lowmem_reserve(void)
  5219. {
  5220. struct pglist_data *pgdat;
  5221. enum zone_type j, idx;
  5222. for_each_online_pgdat(pgdat) {
  5223. for (j = 0; j < MAX_NR_ZONES; j++) {
  5224. struct zone *zone = pgdat->node_zones + j;
  5225. unsigned long managed_pages = zone->managed_pages;
  5226. zone->lowmem_reserve[j] = 0;
  5227. idx = j;
  5228. while (idx) {
  5229. struct zone *lower_zone;
  5230. idx--;
  5231. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5232. sysctl_lowmem_reserve_ratio[idx] = 1;
  5233. lower_zone = pgdat->node_zones + idx;
  5234. lower_zone->lowmem_reserve[j] = managed_pages /
  5235. sysctl_lowmem_reserve_ratio[idx];
  5236. managed_pages += lower_zone->managed_pages;
  5237. }
  5238. }
  5239. }
  5240. /* update totalreserve_pages */
  5241. calculate_totalreserve_pages();
  5242. }
  5243. static void __setup_per_zone_wmarks(void)
  5244. {
  5245. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5246. unsigned long lowmem_pages = 0;
  5247. struct zone *zone;
  5248. unsigned long flags;
  5249. /* Calculate total number of !ZONE_HIGHMEM pages */
  5250. for_each_zone(zone) {
  5251. if (!is_highmem(zone))
  5252. lowmem_pages += zone->managed_pages;
  5253. }
  5254. for_each_zone(zone) {
  5255. u64 tmp;
  5256. spin_lock_irqsave(&zone->lock, flags);
  5257. tmp = (u64)pages_min * zone->managed_pages;
  5258. do_div(tmp, lowmem_pages);
  5259. if (is_highmem(zone)) {
  5260. /*
  5261. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5262. * need highmem pages, so cap pages_min to a small
  5263. * value here.
  5264. *
  5265. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5266. * deltas control asynch page reclaim, and so should
  5267. * not be capped for highmem.
  5268. */
  5269. unsigned long min_pages;
  5270. min_pages = zone->managed_pages / 1024;
  5271. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5272. zone->watermark[WMARK_MIN] = min_pages;
  5273. } else {
  5274. /*
  5275. * If it's a lowmem zone, reserve a number of pages
  5276. * proportionate to the zone's size.
  5277. */
  5278. zone->watermark[WMARK_MIN] = tmp;
  5279. }
  5280. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  5281. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  5282. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5283. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5284. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5285. spin_unlock_irqrestore(&zone->lock, flags);
  5286. }
  5287. /* update totalreserve_pages */
  5288. calculate_totalreserve_pages();
  5289. }
  5290. /**
  5291. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5292. * or when memory is hot-{added|removed}
  5293. *
  5294. * Ensures that the watermark[min,low,high] values for each zone are set
  5295. * correctly with respect to min_free_kbytes.
  5296. */
  5297. void setup_per_zone_wmarks(void)
  5298. {
  5299. mutex_lock(&zonelists_mutex);
  5300. __setup_per_zone_wmarks();
  5301. mutex_unlock(&zonelists_mutex);
  5302. }
  5303. /*
  5304. * The inactive anon list should be small enough that the VM never has to
  5305. * do too much work, but large enough that each inactive page has a chance
  5306. * to be referenced again before it is swapped out.
  5307. *
  5308. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  5309. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  5310. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  5311. * the anonymous pages are kept on the inactive list.
  5312. *
  5313. * total target max
  5314. * memory ratio inactive anon
  5315. * -------------------------------------
  5316. * 10MB 1 5MB
  5317. * 100MB 1 50MB
  5318. * 1GB 3 250MB
  5319. * 10GB 10 0.9GB
  5320. * 100GB 31 3GB
  5321. * 1TB 101 10GB
  5322. * 10TB 320 32GB
  5323. */
  5324. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  5325. {
  5326. unsigned int gb, ratio;
  5327. /* Zone size in gigabytes */
  5328. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  5329. if (gb)
  5330. ratio = int_sqrt(10 * gb);
  5331. else
  5332. ratio = 1;
  5333. zone->inactive_ratio = ratio;
  5334. }
  5335. static void __meminit setup_per_zone_inactive_ratio(void)
  5336. {
  5337. struct zone *zone;
  5338. for_each_zone(zone)
  5339. calculate_zone_inactive_ratio(zone);
  5340. }
  5341. /*
  5342. * Initialise min_free_kbytes.
  5343. *
  5344. * For small machines we want it small (128k min). For large machines
  5345. * we want it large (64MB max). But it is not linear, because network
  5346. * bandwidth does not increase linearly with machine size. We use
  5347. *
  5348. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5349. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5350. *
  5351. * which yields
  5352. *
  5353. * 16MB: 512k
  5354. * 32MB: 724k
  5355. * 64MB: 1024k
  5356. * 128MB: 1448k
  5357. * 256MB: 2048k
  5358. * 512MB: 2896k
  5359. * 1024MB: 4096k
  5360. * 2048MB: 5792k
  5361. * 4096MB: 8192k
  5362. * 8192MB: 11584k
  5363. * 16384MB: 16384k
  5364. */
  5365. int __meminit init_per_zone_wmark_min(void)
  5366. {
  5367. unsigned long lowmem_kbytes;
  5368. int new_min_free_kbytes;
  5369. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5370. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5371. if (new_min_free_kbytes > user_min_free_kbytes) {
  5372. min_free_kbytes = new_min_free_kbytes;
  5373. if (min_free_kbytes < 128)
  5374. min_free_kbytes = 128;
  5375. if (min_free_kbytes > 65536)
  5376. min_free_kbytes = 65536;
  5377. } else {
  5378. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5379. new_min_free_kbytes, user_min_free_kbytes);
  5380. }
  5381. setup_per_zone_wmarks();
  5382. refresh_zone_stat_thresholds();
  5383. setup_per_zone_lowmem_reserve();
  5384. setup_per_zone_inactive_ratio();
  5385. return 0;
  5386. }
  5387. core_initcall(init_per_zone_wmark_min)
  5388. /*
  5389. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5390. * that we can call two helper functions whenever min_free_kbytes
  5391. * changes.
  5392. */
  5393. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5394. void __user *buffer, size_t *length, loff_t *ppos)
  5395. {
  5396. int rc;
  5397. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5398. if (rc)
  5399. return rc;
  5400. if (write) {
  5401. user_min_free_kbytes = min_free_kbytes;
  5402. setup_per_zone_wmarks();
  5403. }
  5404. return 0;
  5405. }
  5406. #ifdef CONFIG_NUMA
  5407. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5408. void __user *buffer, size_t *length, loff_t *ppos)
  5409. {
  5410. struct zone *zone;
  5411. int rc;
  5412. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5413. if (rc)
  5414. return rc;
  5415. for_each_zone(zone)
  5416. zone->min_unmapped_pages = (zone->managed_pages *
  5417. sysctl_min_unmapped_ratio) / 100;
  5418. return 0;
  5419. }
  5420. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5421. void __user *buffer, size_t *length, loff_t *ppos)
  5422. {
  5423. struct zone *zone;
  5424. int rc;
  5425. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5426. if (rc)
  5427. return rc;
  5428. for_each_zone(zone)
  5429. zone->min_slab_pages = (zone->managed_pages *
  5430. sysctl_min_slab_ratio) / 100;
  5431. return 0;
  5432. }
  5433. #endif
  5434. /*
  5435. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5436. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5437. * whenever sysctl_lowmem_reserve_ratio changes.
  5438. *
  5439. * The reserve ratio obviously has absolutely no relation with the
  5440. * minimum watermarks. The lowmem reserve ratio can only make sense
  5441. * if in function of the boot time zone sizes.
  5442. */
  5443. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5444. void __user *buffer, size_t *length, loff_t *ppos)
  5445. {
  5446. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5447. setup_per_zone_lowmem_reserve();
  5448. return 0;
  5449. }
  5450. /*
  5451. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5452. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5453. * pagelist can have before it gets flushed back to buddy allocator.
  5454. */
  5455. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5456. void __user *buffer, size_t *length, loff_t *ppos)
  5457. {
  5458. struct zone *zone;
  5459. int old_percpu_pagelist_fraction;
  5460. int ret;
  5461. mutex_lock(&pcp_batch_high_lock);
  5462. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5463. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5464. if (!write || ret < 0)
  5465. goto out;
  5466. /* Sanity checking to avoid pcp imbalance */
  5467. if (percpu_pagelist_fraction &&
  5468. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5469. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5470. ret = -EINVAL;
  5471. goto out;
  5472. }
  5473. /* No change? */
  5474. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5475. goto out;
  5476. for_each_populated_zone(zone) {
  5477. unsigned int cpu;
  5478. for_each_possible_cpu(cpu)
  5479. pageset_set_high_and_batch(zone,
  5480. per_cpu_ptr(zone->pageset, cpu));
  5481. }
  5482. out:
  5483. mutex_unlock(&pcp_batch_high_lock);
  5484. return ret;
  5485. }
  5486. #ifdef CONFIG_NUMA
  5487. int hashdist = HASHDIST_DEFAULT;
  5488. static int __init set_hashdist(char *str)
  5489. {
  5490. if (!str)
  5491. return 0;
  5492. hashdist = simple_strtoul(str, &str, 0);
  5493. return 1;
  5494. }
  5495. __setup("hashdist=", set_hashdist);
  5496. #endif
  5497. /*
  5498. * allocate a large system hash table from bootmem
  5499. * - it is assumed that the hash table must contain an exact power-of-2
  5500. * quantity of entries
  5501. * - limit is the number of hash buckets, not the total allocation size
  5502. */
  5503. void *__init alloc_large_system_hash(const char *tablename,
  5504. unsigned long bucketsize,
  5505. unsigned long numentries,
  5506. int scale,
  5507. int flags,
  5508. unsigned int *_hash_shift,
  5509. unsigned int *_hash_mask,
  5510. unsigned long low_limit,
  5511. unsigned long high_limit)
  5512. {
  5513. unsigned long long max = high_limit;
  5514. unsigned long log2qty, size;
  5515. void *table = NULL;
  5516. /* allow the kernel cmdline to have a say */
  5517. if (!numentries) {
  5518. /* round applicable memory size up to nearest megabyte */
  5519. numentries = nr_kernel_pages;
  5520. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5521. if (PAGE_SHIFT < 20)
  5522. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5523. /* limit to 1 bucket per 2^scale bytes of low memory */
  5524. if (scale > PAGE_SHIFT)
  5525. numentries >>= (scale - PAGE_SHIFT);
  5526. else
  5527. numentries <<= (PAGE_SHIFT - scale);
  5528. /* Make sure we've got at least a 0-order allocation.. */
  5529. if (unlikely(flags & HASH_SMALL)) {
  5530. /* Makes no sense without HASH_EARLY */
  5531. WARN_ON(!(flags & HASH_EARLY));
  5532. if (!(numentries >> *_hash_shift)) {
  5533. numentries = 1UL << *_hash_shift;
  5534. BUG_ON(!numentries);
  5535. }
  5536. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5537. numentries = PAGE_SIZE / bucketsize;
  5538. }
  5539. numentries = roundup_pow_of_two(numentries);
  5540. /* limit allocation size to 1/16 total memory by default */
  5541. if (max == 0) {
  5542. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5543. do_div(max, bucketsize);
  5544. }
  5545. max = min(max, 0x80000000ULL);
  5546. if (numentries < low_limit)
  5547. numentries = low_limit;
  5548. if (numentries > max)
  5549. numentries = max;
  5550. log2qty = ilog2(numentries);
  5551. do {
  5552. size = bucketsize << log2qty;
  5553. if (flags & HASH_EARLY)
  5554. table = memblock_virt_alloc_nopanic(size, 0);
  5555. else if (hashdist)
  5556. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5557. else {
  5558. /*
  5559. * If bucketsize is not a power-of-two, we may free
  5560. * some pages at the end of hash table which
  5561. * alloc_pages_exact() automatically does
  5562. */
  5563. if (get_order(size) < MAX_ORDER) {
  5564. table = alloc_pages_exact(size, GFP_ATOMIC);
  5565. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5566. }
  5567. }
  5568. } while (!table && size > PAGE_SIZE && --log2qty);
  5569. if (!table)
  5570. panic("Failed to allocate %s hash table\n", tablename);
  5571. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5572. tablename,
  5573. (1UL << log2qty),
  5574. ilog2(size) - PAGE_SHIFT,
  5575. size);
  5576. if (_hash_shift)
  5577. *_hash_shift = log2qty;
  5578. if (_hash_mask)
  5579. *_hash_mask = (1 << log2qty) - 1;
  5580. return table;
  5581. }
  5582. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5583. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5584. unsigned long pfn)
  5585. {
  5586. #ifdef CONFIG_SPARSEMEM
  5587. return __pfn_to_section(pfn)->pageblock_flags;
  5588. #else
  5589. return zone->pageblock_flags;
  5590. #endif /* CONFIG_SPARSEMEM */
  5591. }
  5592. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5593. {
  5594. #ifdef CONFIG_SPARSEMEM
  5595. pfn &= (PAGES_PER_SECTION-1);
  5596. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5597. #else
  5598. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5599. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5600. #endif /* CONFIG_SPARSEMEM */
  5601. }
  5602. /**
  5603. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5604. * @page: The page within the block of interest
  5605. * @pfn: The target page frame number
  5606. * @end_bitidx: The last bit of interest to retrieve
  5607. * @mask: mask of bits that the caller is interested in
  5608. *
  5609. * Return: pageblock_bits flags
  5610. */
  5611. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5612. unsigned long end_bitidx,
  5613. unsigned long mask)
  5614. {
  5615. struct zone *zone;
  5616. unsigned long *bitmap;
  5617. unsigned long bitidx, word_bitidx;
  5618. unsigned long word;
  5619. zone = page_zone(page);
  5620. bitmap = get_pageblock_bitmap(zone, pfn);
  5621. bitidx = pfn_to_bitidx(zone, pfn);
  5622. word_bitidx = bitidx / BITS_PER_LONG;
  5623. bitidx &= (BITS_PER_LONG-1);
  5624. word = bitmap[word_bitidx];
  5625. bitidx += end_bitidx;
  5626. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5627. }
  5628. /**
  5629. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5630. * @page: The page within the block of interest
  5631. * @flags: The flags to set
  5632. * @pfn: The target page frame number
  5633. * @end_bitidx: The last bit of interest
  5634. * @mask: mask of bits that the caller is interested in
  5635. */
  5636. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5637. unsigned long pfn,
  5638. unsigned long end_bitidx,
  5639. unsigned long mask)
  5640. {
  5641. struct zone *zone;
  5642. unsigned long *bitmap;
  5643. unsigned long bitidx, word_bitidx;
  5644. unsigned long old_word, word;
  5645. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5646. zone = page_zone(page);
  5647. bitmap = get_pageblock_bitmap(zone, pfn);
  5648. bitidx = pfn_to_bitidx(zone, pfn);
  5649. word_bitidx = bitidx / BITS_PER_LONG;
  5650. bitidx &= (BITS_PER_LONG-1);
  5651. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5652. bitidx += end_bitidx;
  5653. mask <<= (BITS_PER_LONG - bitidx - 1);
  5654. flags <<= (BITS_PER_LONG - bitidx - 1);
  5655. word = READ_ONCE(bitmap[word_bitidx]);
  5656. for (;;) {
  5657. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5658. if (word == old_word)
  5659. break;
  5660. word = old_word;
  5661. }
  5662. }
  5663. /*
  5664. * This function checks whether pageblock includes unmovable pages or not.
  5665. * If @count is not zero, it is okay to include less @count unmovable pages
  5666. *
  5667. * PageLRU check without isolation or lru_lock could race so that
  5668. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5669. * expect this function should be exact.
  5670. */
  5671. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5672. bool skip_hwpoisoned_pages)
  5673. {
  5674. unsigned long pfn, iter, found;
  5675. int mt;
  5676. /*
  5677. * For avoiding noise data, lru_add_drain_all() should be called
  5678. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5679. */
  5680. if (zone_idx(zone) == ZONE_MOVABLE)
  5681. return false;
  5682. mt = get_pageblock_migratetype(page);
  5683. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5684. return false;
  5685. pfn = page_to_pfn(page);
  5686. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5687. unsigned long check = pfn + iter;
  5688. if (!pfn_valid_within(check))
  5689. continue;
  5690. page = pfn_to_page(check);
  5691. /*
  5692. * Hugepages are not in LRU lists, but they're movable.
  5693. * We need not scan over tail pages bacause we don't
  5694. * handle each tail page individually in migration.
  5695. */
  5696. if (PageHuge(page)) {
  5697. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5698. continue;
  5699. }
  5700. /*
  5701. * We can't use page_count without pin a page
  5702. * because another CPU can free compound page.
  5703. * This check already skips compound tails of THP
  5704. * because their page->_count is zero at all time.
  5705. */
  5706. if (!atomic_read(&page->_count)) {
  5707. if (PageBuddy(page))
  5708. iter += (1 << page_order(page)) - 1;
  5709. continue;
  5710. }
  5711. /*
  5712. * The HWPoisoned page may be not in buddy system, and
  5713. * page_count() is not 0.
  5714. */
  5715. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5716. continue;
  5717. if (!PageLRU(page))
  5718. found++;
  5719. /*
  5720. * If there are RECLAIMABLE pages, we need to check
  5721. * it. But now, memory offline itself doesn't call
  5722. * shrink_node_slabs() and it still to be fixed.
  5723. */
  5724. /*
  5725. * If the page is not RAM, page_count()should be 0.
  5726. * we don't need more check. This is an _used_ not-movable page.
  5727. *
  5728. * The problematic thing here is PG_reserved pages. PG_reserved
  5729. * is set to both of a memory hole page and a _used_ kernel
  5730. * page at boot.
  5731. */
  5732. if (found > count)
  5733. return true;
  5734. }
  5735. return false;
  5736. }
  5737. bool is_pageblock_removable_nolock(struct page *page)
  5738. {
  5739. struct zone *zone;
  5740. unsigned long pfn;
  5741. /*
  5742. * We have to be careful here because we are iterating over memory
  5743. * sections which are not zone aware so we might end up outside of
  5744. * the zone but still within the section.
  5745. * We have to take care about the node as well. If the node is offline
  5746. * its NODE_DATA will be NULL - see page_zone.
  5747. */
  5748. if (!node_online(page_to_nid(page)))
  5749. return false;
  5750. zone = page_zone(page);
  5751. pfn = page_to_pfn(page);
  5752. if (!zone_spans_pfn(zone, pfn))
  5753. return false;
  5754. return !has_unmovable_pages(zone, page, 0, true);
  5755. }
  5756. #ifdef CONFIG_CMA
  5757. static unsigned long pfn_max_align_down(unsigned long pfn)
  5758. {
  5759. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5760. pageblock_nr_pages) - 1);
  5761. }
  5762. static unsigned long pfn_max_align_up(unsigned long pfn)
  5763. {
  5764. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5765. pageblock_nr_pages));
  5766. }
  5767. /* [start, end) must belong to a single zone. */
  5768. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5769. unsigned long start, unsigned long end)
  5770. {
  5771. /* This function is based on compact_zone() from compaction.c. */
  5772. unsigned long nr_reclaimed;
  5773. unsigned long pfn = start;
  5774. unsigned int tries = 0;
  5775. int ret = 0;
  5776. migrate_prep();
  5777. while (pfn < end || !list_empty(&cc->migratepages)) {
  5778. if (fatal_signal_pending(current)) {
  5779. ret = -EINTR;
  5780. break;
  5781. }
  5782. if (list_empty(&cc->migratepages)) {
  5783. cc->nr_migratepages = 0;
  5784. pfn = isolate_migratepages_range(cc, pfn, end);
  5785. if (!pfn) {
  5786. ret = -EINTR;
  5787. break;
  5788. }
  5789. tries = 0;
  5790. } else if (++tries == 5) {
  5791. ret = ret < 0 ? ret : -EBUSY;
  5792. break;
  5793. }
  5794. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5795. &cc->migratepages);
  5796. cc->nr_migratepages -= nr_reclaimed;
  5797. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5798. NULL, 0, cc->mode, MR_CMA);
  5799. }
  5800. if (ret < 0) {
  5801. putback_movable_pages(&cc->migratepages);
  5802. return ret;
  5803. }
  5804. return 0;
  5805. }
  5806. /**
  5807. * alloc_contig_range() -- tries to allocate given range of pages
  5808. * @start: start PFN to allocate
  5809. * @end: one-past-the-last PFN to allocate
  5810. * @migratetype: migratetype of the underlaying pageblocks (either
  5811. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5812. * in range must have the same migratetype and it must
  5813. * be either of the two.
  5814. *
  5815. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5816. * aligned, however it's the caller's responsibility to guarantee that
  5817. * we are the only thread that changes migrate type of pageblocks the
  5818. * pages fall in.
  5819. *
  5820. * The PFN range must belong to a single zone.
  5821. *
  5822. * Returns zero on success or negative error code. On success all
  5823. * pages which PFN is in [start, end) are allocated for the caller and
  5824. * need to be freed with free_contig_range().
  5825. */
  5826. int alloc_contig_range(unsigned long start, unsigned long end,
  5827. unsigned migratetype)
  5828. {
  5829. unsigned long outer_start, outer_end;
  5830. unsigned int order;
  5831. int ret = 0;
  5832. struct compact_control cc = {
  5833. .nr_migratepages = 0,
  5834. .order = -1,
  5835. .zone = page_zone(pfn_to_page(start)),
  5836. .mode = MIGRATE_SYNC,
  5837. .ignore_skip_hint = true,
  5838. };
  5839. INIT_LIST_HEAD(&cc.migratepages);
  5840. /*
  5841. * What we do here is we mark all pageblocks in range as
  5842. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5843. * have different sizes, and due to the way page allocator
  5844. * work, we align the range to biggest of the two pages so
  5845. * that page allocator won't try to merge buddies from
  5846. * different pageblocks and change MIGRATE_ISOLATE to some
  5847. * other migration type.
  5848. *
  5849. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5850. * migrate the pages from an unaligned range (ie. pages that
  5851. * we are interested in). This will put all the pages in
  5852. * range back to page allocator as MIGRATE_ISOLATE.
  5853. *
  5854. * When this is done, we take the pages in range from page
  5855. * allocator removing them from the buddy system. This way
  5856. * page allocator will never consider using them.
  5857. *
  5858. * This lets us mark the pageblocks back as
  5859. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5860. * aligned range but not in the unaligned, original range are
  5861. * put back to page allocator so that buddy can use them.
  5862. */
  5863. ret = start_isolate_page_range(pfn_max_align_down(start),
  5864. pfn_max_align_up(end), migratetype,
  5865. false);
  5866. if (ret)
  5867. return ret;
  5868. ret = __alloc_contig_migrate_range(&cc, start, end);
  5869. if (ret)
  5870. goto done;
  5871. /*
  5872. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5873. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5874. * more, all pages in [start, end) are free in page allocator.
  5875. * What we are going to do is to allocate all pages from
  5876. * [start, end) (that is remove them from page allocator).
  5877. *
  5878. * The only problem is that pages at the beginning and at the
  5879. * end of interesting range may be not aligned with pages that
  5880. * page allocator holds, ie. they can be part of higher order
  5881. * pages. Because of this, we reserve the bigger range and
  5882. * once this is done free the pages we are not interested in.
  5883. *
  5884. * We don't have to hold zone->lock here because the pages are
  5885. * isolated thus they won't get removed from buddy.
  5886. */
  5887. lru_add_drain_all();
  5888. drain_all_pages(cc.zone);
  5889. order = 0;
  5890. outer_start = start;
  5891. while (!PageBuddy(pfn_to_page(outer_start))) {
  5892. if (++order >= MAX_ORDER) {
  5893. ret = -EBUSY;
  5894. goto done;
  5895. }
  5896. outer_start &= ~0UL << order;
  5897. }
  5898. /* Make sure the range is really isolated. */
  5899. if (test_pages_isolated(outer_start, end, false)) {
  5900. pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
  5901. __func__, outer_start, end);
  5902. ret = -EBUSY;
  5903. goto done;
  5904. }
  5905. /* Grab isolated pages from freelists. */
  5906. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5907. if (!outer_end) {
  5908. ret = -EBUSY;
  5909. goto done;
  5910. }
  5911. /* Free head and tail (if any) */
  5912. if (start != outer_start)
  5913. free_contig_range(outer_start, start - outer_start);
  5914. if (end != outer_end)
  5915. free_contig_range(end, outer_end - end);
  5916. done:
  5917. undo_isolate_page_range(pfn_max_align_down(start),
  5918. pfn_max_align_up(end), migratetype);
  5919. return ret;
  5920. }
  5921. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5922. {
  5923. unsigned int count = 0;
  5924. for (; nr_pages--; pfn++) {
  5925. struct page *page = pfn_to_page(pfn);
  5926. count += page_count(page) != 1;
  5927. __free_page(page);
  5928. }
  5929. WARN(count != 0, "%d pages are still in use!\n", count);
  5930. }
  5931. #endif
  5932. #ifdef CONFIG_MEMORY_HOTPLUG
  5933. /*
  5934. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5935. * page high values need to be recalulated.
  5936. */
  5937. void __meminit zone_pcp_update(struct zone *zone)
  5938. {
  5939. unsigned cpu;
  5940. mutex_lock(&pcp_batch_high_lock);
  5941. for_each_possible_cpu(cpu)
  5942. pageset_set_high_and_batch(zone,
  5943. per_cpu_ptr(zone->pageset, cpu));
  5944. mutex_unlock(&pcp_batch_high_lock);
  5945. }
  5946. #endif
  5947. void zone_pcp_reset(struct zone *zone)
  5948. {
  5949. unsigned long flags;
  5950. int cpu;
  5951. struct per_cpu_pageset *pset;
  5952. /* avoid races with drain_pages() */
  5953. local_irq_save(flags);
  5954. if (zone->pageset != &boot_pageset) {
  5955. for_each_online_cpu(cpu) {
  5956. pset = per_cpu_ptr(zone->pageset, cpu);
  5957. drain_zonestat(zone, pset);
  5958. }
  5959. free_percpu(zone->pageset);
  5960. zone->pageset = &boot_pageset;
  5961. }
  5962. local_irq_restore(flags);
  5963. }
  5964. #ifdef CONFIG_MEMORY_HOTREMOVE
  5965. /*
  5966. * All pages in the range must be isolated before calling this.
  5967. */
  5968. void
  5969. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5970. {
  5971. struct page *page;
  5972. struct zone *zone;
  5973. unsigned int order, i;
  5974. unsigned long pfn;
  5975. unsigned long flags;
  5976. /* find the first valid pfn */
  5977. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5978. if (pfn_valid(pfn))
  5979. break;
  5980. if (pfn == end_pfn)
  5981. return;
  5982. zone = page_zone(pfn_to_page(pfn));
  5983. spin_lock_irqsave(&zone->lock, flags);
  5984. pfn = start_pfn;
  5985. while (pfn < end_pfn) {
  5986. if (!pfn_valid(pfn)) {
  5987. pfn++;
  5988. continue;
  5989. }
  5990. page = pfn_to_page(pfn);
  5991. /*
  5992. * The HWPoisoned page may be not in buddy system, and
  5993. * page_count() is not 0.
  5994. */
  5995. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5996. pfn++;
  5997. SetPageReserved(page);
  5998. continue;
  5999. }
  6000. BUG_ON(page_count(page));
  6001. BUG_ON(!PageBuddy(page));
  6002. order = page_order(page);
  6003. #ifdef CONFIG_DEBUG_VM
  6004. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  6005. pfn, 1 << order, end_pfn);
  6006. #endif
  6007. list_del(&page->lru);
  6008. rmv_page_order(page);
  6009. zone->free_area[order].nr_free--;
  6010. for (i = 0; i < (1 << order); i++)
  6011. SetPageReserved((page+i));
  6012. pfn += (1 << order);
  6013. }
  6014. spin_unlock_irqrestore(&zone->lock, flags);
  6015. }
  6016. #endif
  6017. #ifdef CONFIG_MEMORY_FAILURE
  6018. bool is_free_buddy_page(struct page *page)
  6019. {
  6020. struct zone *zone = page_zone(page);
  6021. unsigned long pfn = page_to_pfn(page);
  6022. unsigned long flags;
  6023. unsigned int order;
  6024. spin_lock_irqsave(&zone->lock, flags);
  6025. for (order = 0; order < MAX_ORDER; order++) {
  6026. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6027. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6028. break;
  6029. }
  6030. spin_unlock_irqrestore(&zone->lock, flags);
  6031. return order < MAX_ORDER;
  6032. }
  6033. #endif