page_ext.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. #include <linux/mm.h>
  2. #include <linux/mmzone.h>
  3. #include <linux/bootmem.h>
  4. #include <linux/page_ext.h>
  5. #include <linux/memory.h>
  6. #include <linux/vmalloc.h>
  7. #include <linux/kmemleak.h>
  8. #include <linux/page_owner.h>
  9. #include <linux/page_idle.h>
  10. /*
  11. * struct page extension
  12. *
  13. * This is the feature to manage memory for extended data per page.
  14. *
  15. * Until now, we must modify struct page itself to store extra data per page.
  16. * This requires rebuilding the kernel and it is really time consuming process.
  17. * And, sometimes, rebuild is impossible due to third party module dependency.
  18. * At last, enlarging struct page could cause un-wanted system behaviour change.
  19. *
  20. * This feature is intended to overcome above mentioned problems. This feature
  21. * allocates memory for extended data per page in certain place rather than
  22. * the struct page itself. This memory can be accessed by the accessor
  23. * functions provided by this code. During the boot process, it checks whether
  24. * allocation of huge chunk of memory is needed or not. If not, it avoids
  25. * allocating memory at all. With this advantage, we can include this feature
  26. * into the kernel in default and can avoid rebuild and solve related problems.
  27. *
  28. * To help these things to work well, there are two callbacks for clients. One
  29. * is the need callback which is mandatory if user wants to avoid useless
  30. * memory allocation at boot-time. The other is optional, init callback, which
  31. * is used to do proper initialization after memory is allocated.
  32. *
  33. * The need callback is used to decide whether extended memory allocation is
  34. * needed or not. Sometimes users want to deactivate some features in this
  35. * boot and extra memory would be unneccessary. In this case, to avoid
  36. * allocating huge chunk of memory, each clients represent their need of
  37. * extra memory through the need callback. If one of the need callbacks
  38. * returns true, it means that someone needs extra memory so that
  39. * page extension core should allocates memory for page extension. If
  40. * none of need callbacks return true, memory isn't needed at all in this boot
  41. * and page extension core can skip to allocate memory. As result,
  42. * none of memory is wasted.
  43. *
  44. * The init callback is used to do proper initialization after page extension
  45. * is completely initialized. In sparse memory system, extra memory is
  46. * allocated some time later than memmap is allocated. In other words, lifetime
  47. * of memory for page extension isn't same with memmap for struct page.
  48. * Therefore, clients can't store extra data until page extension is
  49. * initialized, even if pages are allocated and used freely. This could
  50. * cause inadequate state of extra data per page, so, to prevent it, client
  51. * can utilize this callback to initialize the state of it correctly.
  52. */
  53. static struct page_ext_operations *page_ext_ops[] = {
  54. &debug_guardpage_ops,
  55. #ifdef CONFIG_PAGE_POISONING
  56. &page_poisoning_ops,
  57. #endif
  58. #ifdef CONFIG_PAGE_OWNER
  59. &page_owner_ops,
  60. #endif
  61. #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
  62. &page_idle_ops,
  63. #endif
  64. };
  65. static unsigned long total_usage;
  66. static bool __init invoke_need_callbacks(void)
  67. {
  68. int i;
  69. int entries = ARRAY_SIZE(page_ext_ops);
  70. for (i = 0; i < entries; i++) {
  71. if (page_ext_ops[i]->need && page_ext_ops[i]->need())
  72. return true;
  73. }
  74. return false;
  75. }
  76. static void __init invoke_init_callbacks(void)
  77. {
  78. int i;
  79. int entries = ARRAY_SIZE(page_ext_ops);
  80. for (i = 0; i < entries; i++) {
  81. if (page_ext_ops[i]->init)
  82. page_ext_ops[i]->init();
  83. }
  84. }
  85. #if !defined(CONFIG_SPARSEMEM)
  86. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  87. {
  88. pgdat->node_page_ext = NULL;
  89. }
  90. struct page_ext *lookup_page_ext(struct page *page)
  91. {
  92. unsigned long pfn = page_to_pfn(page);
  93. unsigned long offset;
  94. struct page_ext *base;
  95. base = NODE_DATA(page_to_nid(page))->node_page_ext;
  96. /*
  97. * The sanity checks the page allocator does upon freeing a
  98. * page can reach here before the page_ext arrays are
  99. * allocated when feeding a range of pages to the allocator
  100. * for the first time during bootup or memory hotplug.
  101. */
  102. if (unlikely(!base))
  103. return NULL;
  104. offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
  105. MAX_ORDER_NR_PAGES);
  106. return base + offset;
  107. }
  108. static int __init alloc_node_page_ext(int nid)
  109. {
  110. struct page_ext *base;
  111. unsigned long table_size;
  112. unsigned long nr_pages;
  113. nr_pages = NODE_DATA(nid)->node_spanned_pages;
  114. if (!nr_pages)
  115. return 0;
  116. /*
  117. * Need extra space if node range is not aligned with
  118. * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
  119. * checks buddy's status, range could be out of exact node range.
  120. */
  121. if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
  122. !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
  123. nr_pages += MAX_ORDER_NR_PAGES;
  124. table_size = sizeof(struct page_ext) * nr_pages;
  125. base = memblock_virt_alloc_try_nid_nopanic(
  126. table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  127. BOOTMEM_ALLOC_ACCESSIBLE, nid);
  128. if (!base)
  129. return -ENOMEM;
  130. NODE_DATA(nid)->node_page_ext = base;
  131. total_usage += table_size;
  132. return 0;
  133. }
  134. void __init page_ext_init_flatmem(void)
  135. {
  136. int nid, fail;
  137. if (!invoke_need_callbacks())
  138. return;
  139. for_each_online_node(nid) {
  140. fail = alloc_node_page_ext(nid);
  141. if (fail)
  142. goto fail;
  143. }
  144. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  145. invoke_init_callbacks();
  146. return;
  147. fail:
  148. pr_crit("allocation of page_ext failed.\n");
  149. panic("Out of memory");
  150. }
  151. #else /* CONFIG_FLAT_NODE_MEM_MAP */
  152. struct page_ext *lookup_page_ext(struct page *page)
  153. {
  154. unsigned long pfn = page_to_pfn(page);
  155. struct mem_section *section = __pfn_to_section(pfn);
  156. /*
  157. * The sanity checks the page allocator does upon freeing a
  158. * page can reach here before the page_ext arrays are
  159. * allocated when feeding a range of pages to the allocator
  160. * for the first time during bootup or memory hotplug.
  161. */
  162. if (!section->page_ext)
  163. return NULL;
  164. return section->page_ext + pfn;
  165. }
  166. static void *__meminit alloc_page_ext(size_t size, int nid)
  167. {
  168. gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
  169. void *addr = NULL;
  170. addr = alloc_pages_exact_nid(nid, size, flags);
  171. if (addr) {
  172. kmemleak_alloc(addr, size, 1, flags);
  173. return addr;
  174. }
  175. if (node_state(nid, N_HIGH_MEMORY))
  176. addr = vzalloc_node(size, nid);
  177. else
  178. addr = vzalloc(size);
  179. return addr;
  180. }
  181. static int __meminit init_section_page_ext(unsigned long pfn, int nid)
  182. {
  183. struct mem_section *section;
  184. struct page_ext *base;
  185. unsigned long table_size;
  186. section = __pfn_to_section(pfn);
  187. if (section->page_ext)
  188. return 0;
  189. table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
  190. base = alloc_page_ext(table_size, nid);
  191. /*
  192. * The value stored in section->page_ext is (base - pfn)
  193. * and it does not point to the memory block allocated above,
  194. * causing kmemleak false positives.
  195. */
  196. kmemleak_not_leak(base);
  197. if (!base) {
  198. pr_err("page ext allocation failure\n");
  199. return -ENOMEM;
  200. }
  201. /*
  202. * The passed "pfn" may not be aligned to SECTION. For the calculation
  203. * we need to apply a mask.
  204. */
  205. pfn &= PAGE_SECTION_MASK;
  206. section->page_ext = base - pfn;
  207. total_usage += table_size;
  208. return 0;
  209. }
  210. #ifdef CONFIG_MEMORY_HOTPLUG
  211. static void free_page_ext(void *addr)
  212. {
  213. if (is_vmalloc_addr(addr)) {
  214. vfree(addr);
  215. } else {
  216. struct page *page = virt_to_page(addr);
  217. size_t table_size;
  218. table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
  219. BUG_ON(PageReserved(page));
  220. kmemleak_free(addr);
  221. free_pages_exact(addr, table_size);
  222. }
  223. }
  224. static void __free_page_ext(unsigned long pfn)
  225. {
  226. struct mem_section *ms;
  227. struct page_ext *base;
  228. ms = __pfn_to_section(pfn);
  229. if (!ms || !ms->page_ext)
  230. return;
  231. base = ms->page_ext + pfn;
  232. free_page_ext(base);
  233. ms->page_ext = NULL;
  234. }
  235. static int __meminit online_page_ext(unsigned long start_pfn,
  236. unsigned long nr_pages,
  237. int nid)
  238. {
  239. unsigned long start, end, pfn;
  240. int fail = 0;
  241. start = SECTION_ALIGN_DOWN(start_pfn);
  242. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  243. if (nid == -1) {
  244. /*
  245. * In this case, "nid" already exists and contains valid memory.
  246. * "start_pfn" passed to us is a pfn which is an arg for
  247. * online__pages(), and start_pfn should exist.
  248. */
  249. nid = pfn_to_nid(start_pfn);
  250. VM_BUG_ON(!node_state(nid, N_ONLINE));
  251. }
  252. for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
  253. if (!pfn_present(pfn))
  254. continue;
  255. fail = init_section_page_ext(pfn, nid);
  256. }
  257. if (!fail)
  258. return 0;
  259. /* rollback */
  260. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  261. __free_page_ext(pfn);
  262. return -ENOMEM;
  263. }
  264. static int __meminit offline_page_ext(unsigned long start_pfn,
  265. unsigned long nr_pages, int nid)
  266. {
  267. unsigned long start, end, pfn;
  268. start = SECTION_ALIGN_DOWN(start_pfn);
  269. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  270. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  271. __free_page_ext(pfn);
  272. return 0;
  273. }
  274. static int __meminit page_ext_callback(struct notifier_block *self,
  275. unsigned long action, void *arg)
  276. {
  277. struct memory_notify *mn = arg;
  278. int ret = 0;
  279. switch (action) {
  280. case MEM_GOING_ONLINE:
  281. ret = online_page_ext(mn->start_pfn,
  282. mn->nr_pages, mn->status_change_nid);
  283. break;
  284. case MEM_OFFLINE:
  285. offline_page_ext(mn->start_pfn,
  286. mn->nr_pages, mn->status_change_nid);
  287. break;
  288. case MEM_CANCEL_ONLINE:
  289. offline_page_ext(mn->start_pfn,
  290. mn->nr_pages, mn->status_change_nid);
  291. break;
  292. case MEM_GOING_OFFLINE:
  293. break;
  294. case MEM_ONLINE:
  295. case MEM_CANCEL_OFFLINE:
  296. break;
  297. }
  298. return notifier_from_errno(ret);
  299. }
  300. #endif
  301. void __init page_ext_init(void)
  302. {
  303. unsigned long pfn;
  304. int nid;
  305. if (!invoke_need_callbacks())
  306. return;
  307. for_each_node_state(nid, N_MEMORY) {
  308. unsigned long start_pfn, end_pfn;
  309. start_pfn = node_start_pfn(nid);
  310. end_pfn = node_end_pfn(nid);
  311. /*
  312. * start_pfn and end_pfn may not be aligned to SECTION and the
  313. * page->flags of out of node pages are not initialized. So we
  314. * scan [start_pfn, the biggest section's pfn < end_pfn) here.
  315. */
  316. for (pfn = start_pfn; pfn < end_pfn;
  317. pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
  318. if (!pfn_valid(pfn))
  319. continue;
  320. /*
  321. * Nodes's pfns can be overlapping.
  322. * We know some arch can have a nodes layout such as
  323. * -------------pfn-------------->
  324. * N0 | N1 | N2 | N0 | N1 | N2|....
  325. */
  326. if (pfn_to_nid(pfn) != nid)
  327. continue;
  328. if (init_section_page_ext(pfn, nid))
  329. goto oom;
  330. }
  331. }
  332. hotplug_memory_notifier(page_ext_callback, 0);
  333. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  334. invoke_init_callbacks();
  335. return;
  336. oom:
  337. panic("Out of memory");
  338. }
  339. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  340. {
  341. }
  342. #endif