123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 |
- #include <linux/mm.h>
- #include <linux/mmzone.h>
- #include <linux/bootmem.h>
- #include <linux/page_ext.h>
- #include <linux/memory.h>
- #include <linux/vmalloc.h>
- #include <linux/kmemleak.h>
- #include <linux/page_owner.h>
- #include <linux/page_idle.h>
- /*
- * struct page extension
- *
- * This is the feature to manage memory for extended data per page.
- *
- * Until now, we must modify struct page itself to store extra data per page.
- * This requires rebuilding the kernel and it is really time consuming process.
- * And, sometimes, rebuild is impossible due to third party module dependency.
- * At last, enlarging struct page could cause un-wanted system behaviour change.
- *
- * This feature is intended to overcome above mentioned problems. This feature
- * allocates memory for extended data per page in certain place rather than
- * the struct page itself. This memory can be accessed by the accessor
- * functions provided by this code. During the boot process, it checks whether
- * allocation of huge chunk of memory is needed or not. If not, it avoids
- * allocating memory at all. With this advantage, we can include this feature
- * into the kernel in default and can avoid rebuild and solve related problems.
- *
- * To help these things to work well, there are two callbacks for clients. One
- * is the need callback which is mandatory if user wants to avoid useless
- * memory allocation at boot-time. The other is optional, init callback, which
- * is used to do proper initialization after memory is allocated.
- *
- * The need callback is used to decide whether extended memory allocation is
- * needed or not. Sometimes users want to deactivate some features in this
- * boot and extra memory would be unneccessary. In this case, to avoid
- * allocating huge chunk of memory, each clients represent their need of
- * extra memory through the need callback. If one of the need callbacks
- * returns true, it means that someone needs extra memory so that
- * page extension core should allocates memory for page extension. If
- * none of need callbacks return true, memory isn't needed at all in this boot
- * and page extension core can skip to allocate memory. As result,
- * none of memory is wasted.
- *
- * The init callback is used to do proper initialization after page extension
- * is completely initialized. In sparse memory system, extra memory is
- * allocated some time later than memmap is allocated. In other words, lifetime
- * of memory for page extension isn't same with memmap for struct page.
- * Therefore, clients can't store extra data until page extension is
- * initialized, even if pages are allocated and used freely. This could
- * cause inadequate state of extra data per page, so, to prevent it, client
- * can utilize this callback to initialize the state of it correctly.
- */
- static struct page_ext_operations *page_ext_ops[] = {
- &debug_guardpage_ops,
- #ifdef CONFIG_PAGE_POISONING
- &page_poisoning_ops,
- #endif
- #ifdef CONFIG_PAGE_OWNER
- &page_owner_ops,
- #endif
- #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
- &page_idle_ops,
- #endif
- };
- static unsigned long total_usage;
- static bool __init invoke_need_callbacks(void)
- {
- int i;
- int entries = ARRAY_SIZE(page_ext_ops);
- for (i = 0; i < entries; i++) {
- if (page_ext_ops[i]->need && page_ext_ops[i]->need())
- return true;
- }
- return false;
- }
- static void __init invoke_init_callbacks(void)
- {
- int i;
- int entries = ARRAY_SIZE(page_ext_ops);
- for (i = 0; i < entries; i++) {
- if (page_ext_ops[i]->init)
- page_ext_ops[i]->init();
- }
- }
- #if !defined(CONFIG_SPARSEMEM)
- void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
- {
- pgdat->node_page_ext = NULL;
- }
- struct page_ext *lookup_page_ext(struct page *page)
- {
- unsigned long pfn = page_to_pfn(page);
- unsigned long offset;
- struct page_ext *base;
- base = NODE_DATA(page_to_nid(page))->node_page_ext;
- /*
- * The sanity checks the page allocator does upon freeing a
- * page can reach here before the page_ext arrays are
- * allocated when feeding a range of pages to the allocator
- * for the first time during bootup or memory hotplug.
- */
- if (unlikely(!base))
- return NULL;
- offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
- MAX_ORDER_NR_PAGES);
- return base + offset;
- }
- static int __init alloc_node_page_ext(int nid)
- {
- struct page_ext *base;
- unsigned long table_size;
- unsigned long nr_pages;
- nr_pages = NODE_DATA(nid)->node_spanned_pages;
- if (!nr_pages)
- return 0;
- /*
- * Need extra space if node range is not aligned with
- * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
- * checks buddy's status, range could be out of exact node range.
- */
- if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
- !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
- nr_pages += MAX_ORDER_NR_PAGES;
- table_size = sizeof(struct page_ext) * nr_pages;
- base = memblock_virt_alloc_try_nid_nopanic(
- table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
- BOOTMEM_ALLOC_ACCESSIBLE, nid);
- if (!base)
- return -ENOMEM;
- NODE_DATA(nid)->node_page_ext = base;
- total_usage += table_size;
- return 0;
- }
- void __init page_ext_init_flatmem(void)
- {
- int nid, fail;
- if (!invoke_need_callbacks())
- return;
- for_each_online_node(nid) {
- fail = alloc_node_page_ext(nid);
- if (fail)
- goto fail;
- }
- pr_info("allocated %ld bytes of page_ext\n", total_usage);
- invoke_init_callbacks();
- return;
- fail:
- pr_crit("allocation of page_ext failed.\n");
- panic("Out of memory");
- }
- #else /* CONFIG_FLAT_NODE_MEM_MAP */
- struct page_ext *lookup_page_ext(struct page *page)
- {
- unsigned long pfn = page_to_pfn(page);
- struct mem_section *section = __pfn_to_section(pfn);
- /*
- * The sanity checks the page allocator does upon freeing a
- * page can reach here before the page_ext arrays are
- * allocated when feeding a range of pages to the allocator
- * for the first time during bootup or memory hotplug.
- */
- if (!section->page_ext)
- return NULL;
- return section->page_ext + pfn;
- }
- static void *__meminit alloc_page_ext(size_t size, int nid)
- {
- gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
- void *addr = NULL;
- addr = alloc_pages_exact_nid(nid, size, flags);
- if (addr) {
- kmemleak_alloc(addr, size, 1, flags);
- return addr;
- }
- if (node_state(nid, N_HIGH_MEMORY))
- addr = vzalloc_node(size, nid);
- else
- addr = vzalloc(size);
- return addr;
- }
- static int __meminit init_section_page_ext(unsigned long pfn, int nid)
- {
- struct mem_section *section;
- struct page_ext *base;
- unsigned long table_size;
- section = __pfn_to_section(pfn);
- if (section->page_ext)
- return 0;
- table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
- base = alloc_page_ext(table_size, nid);
- /*
- * The value stored in section->page_ext is (base - pfn)
- * and it does not point to the memory block allocated above,
- * causing kmemleak false positives.
- */
- kmemleak_not_leak(base);
- if (!base) {
- pr_err("page ext allocation failure\n");
- return -ENOMEM;
- }
- /*
- * The passed "pfn" may not be aligned to SECTION. For the calculation
- * we need to apply a mask.
- */
- pfn &= PAGE_SECTION_MASK;
- section->page_ext = base - pfn;
- total_usage += table_size;
- return 0;
- }
- #ifdef CONFIG_MEMORY_HOTPLUG
- static void free_page_ext(void *addr)
- {
- if (is_vmalloc_addr(addr)) {
- vfree(addr);
- } else {
- struct page *page = virt_to_page(addr);
- size_t table_size;
- table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
- BUG_ON(PageReserved(page));
- kmemleak_free(addr);
- free_pages_exact(addr, table_size);
- }
- }
- static void __free_page_ext(unsigned long pfn)
- {
- struct mem_section *ms;
- struct page_ext *base;
- ms = __pfn_to_section(pfn);
- if (!ms || !ms->page_ext)
- return;
- base = ms->page_ext + pfn;
- free_page_ext(base);
- ms->page_ext = NULL;
- }
- static int __meminit online_page_ext(unsigned long start_pfn,
- unsigned long nr_pages,
- int nid)
- {
- unsigned long start, end, pfn;
- int fail = 0;
- start = SECTION_ALIGN_DOWN(start_pfn);
- end = SECTION_ALIGN_UP(start_pfn + nr_pages);
- if (nid == -1) {
- /*
- * In this case, "nid" already exists and contains valid memory.
- * "start_pfn" passed to us is a pfn which is an arg for
- * online__pages(), and start_pfn should exist.
- */
- nid = pfn_to_nid(start_pfn);
- VM_BUG_ON(!node_state(nid, N_ONLINE));
- }
- for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
- if (!pfn_present(pfn))
- continue;
- fail = init_section_page_ext(pfn, nid);
- }
- if (!fail)
- return 0;
- /* rollback */
- for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
- __free_page_ext(pfn);
- return -ENOMEM;
- }
- static int __meminit offline_page_ext(unsigned long start_pfn,
- unsigned long nr_pages, int nid)
- {
- unsigned long start, end, pfn;
- start = SECTION_ALIGN_DOWN(start_pfn);
- end = SECTION_ALIGN_UP(start_pfn + nr_pages);
- for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
- __free_page_ext(pfn);
- return 0;
- }
- static int __meminit page_ext_callback(struct notifier_block *self,
- unsigned long action, void *arg)
- {
- struct memory_notify *mn = arg;
- int ret = 0;
- switch (action) {
- case MEM_GOING_ONLINE:
- ret = online_page_ext(mn->start_pfn,
- mn->nr_pages, mn->status_change_nid);
- break;
- case MEM_OFFLINE:
- offline_page_ext(mn->start_pfn,
- mn->nr_pages, mn->status_change_nid);
- break;
- case MEM_CANCEL_ONLINE:
- offline_page_ext(mn->start_pfn,
- mn->nr_pages, mn->status_change_nid);
- break;
- case MEM_GOING_OFFLINE:
- break;
- case MEM_ONLINE:
- case MEM_CANCEL_OFFLINE:
- break;
- }
- return notifier_from_errno(ret);
- }
- #endif
- void __init page_ext_init(void)
- {
- unsigned long pfn;
- int nid;
- if (!invoke_need_callbacks())
- return;
- for_each_node_state(nid, N_MEMORY) {
- unsigned long start_pfn, end_pfn;
- start_pfn = node_start_pfn(nid);
- end_pfn = node_end_pfn(nid);
- /*
- * start_pfn and end_pfn may not be aligned to SECTION and the
- * page->flags of out of node pages are not initialized. So we
- * scan [start_pfn, the biggest section's pfn < end_pfn) here.
- */
- for (pfn = start_pfn; pfn < end_pfn;
- pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
- if (!pfn_valid(pfn))
- continue;
- /*
- * Nodes's pfns can be overlapping.
- * We know some arch can have a nodes layout such as
- * -------------pfn-------------->
- * N0 | N1 | N2 | N0 | N1 | N2|....
- */
- if (pfn_to_nid(pfn) != nid)
- continue;
- if (init_section_page_ext(pfn, nid))
- goto oom;
- }
- }
- hotplug_memory_notifier(page_ext_callback, 0);
- pr_info("allocated %ld bytes of page_ext\n", total_usage);
- invoke_init_callbacks();
- return;
- oom:
- panic("Out of memory");
- }
- void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
- {
- }
- #endif
|