123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654 |
- /*
- * SLOB Allocator: Simple List Of Blocks
- *
- * Matt Mackall <mpm@selenic.com> 12/30/03
- *
- * NUMA support by Paul Mundt, 2007.
- *
- * How SLOB works:
- *
- * The core of SLOB is a traditional K&R style heap allocator, with
- * support for returning aligned objects. The granularity of this
- * allocator is as little as 2 bytes, however typically most architectures
- * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
- *
- * The slob heap is a set of linked list of pages from alloc_pages(),
- * and within each page, there is a singly-linked list of free blocks
- * (slob_t). The heap is grown on demand. To reduce fragmentation,
- * heap pages are segregated into three lists, with objects less than
- * 256 bytes, objects less than 1024 bytes, and all other objects.
- *
- * Allocation from heap involves first searching for a page with
- * sufficient free blocks (using a next-fit-like approach) followed by
- * a first-fit scan of the page. Deallocation inserts objects back
- * into the free list in address order, so this is effectively an
- * address-ordered first fit.
- *
- * Above this is an implementation of kmalloc/kfree. Blocks returned
- * from kmalloc are prepended with a 4-byte header with the kmalloc size.
- * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
- * alloc_pages() directly, allocating compound pages so the page order
- * does not have to be separately tracked.
- * These objects are detected in kfree() because PageSlab()
- * is false for them.
- *
- * SLAB is emulated on top of SLOB by simply calling constructors and
- * destructors for every SLAB allocation. Objects are returned with the
- * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
- * case the low-level allocator will fragment blocks to create the proper
- * alignment. Again, objects of page-size or greater are allocated by
- * calling alloc_pages(). As SLAB objects know their size, no separate
- * size bookkeeping is necessary and there is essentially no allocation
- * space overhead, and compound pages aren't needed for multi-page
- * allocations.
- *
- * NUMA support in SLOB is fairly simplistic, pushing most of the real
- * logic down to the page allocator, and simply doing the node accounting
- * on the upper levels. In the event that a node id is explicitly
- * provided, __alloc_pages_node() with the specified node id is used
- * instead. The common case (or when the node id isn't explicitly provided)
- * will default to the current node, as per numa_node_id().
- *
- * Node aware pages are still inserted in to the global freelist, and
- * these are scanned for by matching against the node id encoded in the
- * page flags. As a result, block allocations that can be satisfied from
- * the freelist will only be done so on pages residing on the same node,
- * in order to prevent random node placement.
- */
- #include <linux/kernel.h>
- #include <linux/slab.h>
- #include <linux/mm.h>
- #include <linux/swap.h> /* struct reclaim_state */
- #include <linux/cache.h>
- #include <linux/init.h>
- #include <linux/export.h>
- #include <linux/rcupdate.h>
- #include <linux/list.h>
- #include <linux/kmemleak.h>
- #include <trace/events/kmem.h>
- #include <linux/atomic.h>
- #include "slab.h"
- /*
- * slob_block has a field 'units', which indicates size of block if +ve,
- * or offset of next block if -ve (in SLOB_UNITs).
- *
- * Free blocks of size 1 unit simply contain the offset of the next block.
- * Those with larger size contain their size in the first SLOB_UNIT of
- * memory, and the offset of the next free block in the second SLOB_UNIT.
- */
- #if PAGE_SIZE <= (32767 * 2)
- typedef s16 slobidx_t;
- #else
- typedef s32 slobidx_t;
- #endif
- struct slob_block {
- slobidx_t units;
- };
- typedef struct slob_block slob_t;
- /*
- * All partially free slob pages go on these lists.
- */
- #define SLOB_BREAK1 256
- #define SLOB_BREAK2 1024
- static LIST_HEAD(free_slob_small);
- static LIST_HEAD(free_slob_medium);
- static LIST_HEAD(free_slob_large);
- /*
- * slob_page_free: true for pages on free_slob_pages list.
- */
- static inline int slob_page_free(struct page *sp)
- {
- return PageSlobFree(sp);
- }
- static void set_slob_page_free(struct page *sp, struct list_head *list)
- {
- list_add(&sp->lru, list);
- __SetPageSlobFree(sp);
- }
- static inline void clear_slob_page_free(struct page *sp)
- {
- list_del(&sp->lru);
- __ClearPageSlobFree(sp);
- }
- #define SLOB_UNIT sizeof(slob_t)
- #define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
- /*
- * struct slob_rcu is inserted at the tail of allocated slob blocks, which
- * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
- * the block using call_rcu.
- */
- struct slob_rcu {
- struct rcu_head head;
- int size;
- };
- /*
- * slob_lock protects all slob allocator structures.
- */
- static DEFINE_SPINLOCK(slob_lock);
- /*
- * Encode the given size and next info into a free slob block s.
- */
- static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
- {
- slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
- slobidx_t offset = next - base;
- if (size > 1) {
- s[0].units = size;
- s[1].units = offset;
- } else
- s[0].units = -offset;
- }
- /*
- * Return the size of a slob block.
- */
- static slobidx_t slob_units(slob_t *s)
- {
- if (s->units > 0)
- return s->units;
- return 1;
- }
- /*
- * Return the next free slob block pointer after this one.
- */
- static slob_t *slob_next(slob_t *s)
- {
- slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
- slobidx_t next;
- if (s[0].units < 0)
- next = -s[0].units;
- else
- next = s[1].units;
- return base+next;
- }
- /*
- * Returns true if s is the last free block in its page.
- */
- static int slob_last(slob_t *s)
- {
- return !((unsigned long)slob_next(s) & ~PAGE_MASK);
- }
- static void *slob_new_pages(gfp_t gfp, int order, int node)
- {
- void *page;
- #ifdef CONFIG_NUMA
- if (node != NUMA_NO_NODE)
- page = __alloc_pages_node(node, gfp, order);
- else
- #endif
- page = alloc_pages(gfp, order);
- if (!page)
- return NULL;
- return page_address(page);
- }
- static void slob_free_pages(void *b, int order)
- {
- if (current->reclaim_state)
- current->reclaim_state->reclaimed_slab += 1 << order;
- free_pages((unsigned long)b, order);
- }
- /*
- * Allocate a slob block within a given slob_page sp.
- */
- static void *slob_page_alloc(struct page *sp, size_t size, int align)
- {
- slob_t *prev, *cur, *aligned = NULL;
- int delta = 0, units = SLOB_UNITS(size);
- for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
- slobidx_t avail = slob_units(cur);
- if (align) {
- aligned = (slob_t *)ALIGN((unsigned long)cur, align);
- delta = aligned - cur;
- }
- if (avail >= units + delta) { /* room enough? */
- slob_t *next;
- if (delta) { /* need to fragment head to align? */
- next = slob_next(cur);
- set_slob(aligned, avail - delta, next);
- set_slob(cur, delta, aligned);
- prev = cur;
- cur = aligned;
- avail = slob_units(cur);
- }
- next = slob_next(cur);
- if (avail == units) { /* exact fit? unlink. */
- if (prev)
- set_slob(prev, slob_units(prev), next);
- else
- sp->freelist = next;
- } else { /* fragment */
- if (prev)
- set_slob(prev, slob_units(prev), cur + units);
- else
- sp->freelist = cur + units;
- set_slob(cur + units, avail - units, next);
- }
- sp->units -= units;
- if (!sp->units)
- clear_slob_page_free(sp);
- return cur;
- }
- if (slob_last(cur))
- return NULL;
- }
- }
- /*
- * slob_alloc: entry point into the slob allocator.
- */
- static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
- {
- struct page *sp;
- struct list_head *prev;
- struct list_head *slob_list;
- slob_t *b = NULL;
- unsigned long flags;
- if (size < SLOB_BREAK1)
- slob_list = &free_slob_small;
- else if (size < SLOB_BREAK2)
- slob_list = &free_slob_medium;
- else
- slob_list = &free_slob_large;
- spin_lock_irqsave(&slob_lock, flags);
- /* Iterate through each partially free page, try to find room */
- list_for_each_entry(sp, slob_list, lru) {
- #ifdef CONFIG_NUMA
- /*
- * If there's a node specification, search for a partial
- * page with a matching node id in the freelist.
- */
- if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
- continue;
- #endif
- /* Enough room on this page? */
- if (sp->units < SLOB_UNITS(size))
- continue;
- /* Attempt to alloc */
- prev = sp->lru.prev;
- b = slob_page_alloc(sp, size, align);
- if (!b)
- continue;
- /* Improve fragment distribution and reduce our average
- * search time by starting our next search here. (see
- * Knuth vol 1, sec 2.5, pg 449) */
- if (prev != slob_list->prev &&
- slob_list->next != prev->next)
- list_move_tail(slob_list, prev->next);
- break;
- }
- spin_unlock_irqrestore(&slob_lock, flags);
- /* Not enough space: must allocate a new page */
- if (!b) {
- b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
- if (!b)
- return NULL;
- sp = virt_to_page(b);
- __SetPageSlab(sp);
- spin_lock_irqsave(&slob_lock, flags);
- sp->units = SLOB_UNITS(PAGE_SIZE);
- sp->freelist = b;
- INIT_LIST_HEAD(&sp->lru);
- set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
- set_slob_page_free(sp, slob_list);
- b = slob_page_alloc(sp, size, align);
- BUG_ON(!b);
- spin_unlock_irqrestore(&slob_lock, flags);
- }
- if (unlikely((gfp & __GFP_ZERO) && b))
- memset(b, 0, size);
- return b;
- }
- /*
- * slob_free: entry point into the slob allocator.
- */
- static void slob_free(void *block, int size)
- {
- struct page *sp;
- slob_t *prev, *next, *b = (slob_t *)block;
- slobidx_t units;
- unsigned long flags;
- struct list_head *slob_list;
- if (unlikely(ZERO_OR_NULL_PTR(block)))
- return;
- BUG_ON(!size);
- sp = virt_to_page(block);
- units = SLOB_UNITS(size);
- spin_lock_irqsave(&slob_lock, flags);
- if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
- /* Go directly to page allocator. Do not pass slob allocator */
- if (slob_page_free(sp))
- clear_slob_page_free(sp);
- spin_unlock_irqrestore(&slob_lock, flags);
- __ClearPageSlab(sp);
- page_mapcount_reset(sp);
- slob_free_pages(b, 0);
- return;
- }
- if (!slob_page_free(sp)) {
- /* This slob page is about to become partially free. Easy! */
- sp->units = units;
- sp->freelist = b;
- set_slob(b, units,
- (void *)((unsigned long)(b +
- SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
- if (size < SLOB_BREAK1)
- slob_list = &free_slob_small;
- else if (size < SLOB_BREAK2)
- slob_list = &free_slob_medium;
- else
- slob_list = &free_slob_large;
- set_slob_page_free(sp, slob_list);
- goto out;
- }
- /*
- * Otherwise the page is already partially free, so find reinsertion
- * point.
- */
- sp->units += units;
- if (b < (slob_t *)sp->freelist) {
- if (b + units == sp->freelist) {
- units += slob_units(sp->freelist);
- sp->freelist = slob_next(sp->freelist);
- }
- set_slob(b, units, sp->freelist);
- sp->freelist = b;
- } else {
- prev = sp->freelist;
- next = slob_next(prev);
- while (b > next) {
- prev = next;
- next = slob_next(prev);
- }
- if (!slob_last(prev) && b + units == next) {
- units += slob_units(next);
- set_slob(b, units, slob_next(next));
- } else
- set_slob(b, units, next);
- if (prev + slob_units(prev) == b) {
- units = slob_units(b) + slob_units(prev);
- set_slob(prev, units, slob_next(b));
- } else
- set_slob(prev, slob_units(prev), b);
- }
- out:
- spin_unlock_irqrestore(&slob_lock, flags);
- }
- /*
- * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
- */
- static __always_inline void *
- __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
- {
- unsigned int *m;
- int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
- void *ret;
- gfp &= gfp_allowed_mask;
- lockdep_trace_alloc(gfp);
- if (size < PAGE_SIZE - align) {
- if (!size)
- return ZERO_SIZE_PTR;
- m = slob_alloc(size + align, gfp, align, node);
- if (!m)
- return NULL;
- *m = size;
- ret = (void *)m + align;
- trace_kmalloc_node(caller, ret,
- size, size + align, gfp, node);
- } else {
- unsigned int order = get_order(size);
- if (likely(order))
- gfp |= __GFP_COMP;
- ret = slob_new_pages(gfp, order, node);
- trace_kmalloc_node(caller, ret,
- size, PAGE_SIZE << order, gfp, node);
- }
- kmemleak_alloc(ret, size, 1, gfp);
- return ret;
- }
- void *__kmalloc(size_t size, gfp_t gfp)
- {
- return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
- }
- EXPORT_SYMBOL(__kmalloc);
- void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
- {
- return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
- }
- #ifdef CONFIG_NUMA
- void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
- int node, unsigned long caller)
- {
- return __do_kmalloc_node(size, gfp, node, caller);
- }
- #endif
- void kfree(const void *block)
- {
- struct page *sp;
- trace_kfree(_RET_IP_, block);
- if (unlikely(ZERO_OR_NULL_PTR(block)))
- return;
- kmemleak_free(block);
- sp = virt_to_page(block);
- if (PageSlab(sp)) {
- int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
- unsigned int *m = (unsigned int *)(block - align);
- slob_free(m, *m + align);
- } else
- __free_pages(sp, compound_order(sp));
- }
- EXPORT_SYMBOL(kfree);
- /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
- size_t ksize(const void *block)
- {
- struct page *sp;
- int align;
- unsigned int *m;
- BUG_ON(!block);
- if (unlikely(block == ZERO_SIZE_PTR))
- return 0;
- sp = virt_to_page(block);
- if (unlikely(!PageSlab(sp)))
- return PAGE_SIZE << compound_order(sp);
- align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
- m = (unsigned int *)(block - align);
- return SLOB_UNITS(*m) * SLOB_UNIT;
- }
- EXPORT_SYMBOL(ksize);
- int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
- {
- if (flags & SLAB_DESTROY_BY_RCU) {
- /* leave room for rcu footer at the end of object */
- c->size += sizeof(struct slob_rcu);
- }
- c->flags = flags;
- return 0;
- }
- static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
- {
- void *b;
- flags &= gfp_allowed_mask;
- lockdep_trace_alloc(flags);
- if (c->size < PAGE_SIZE) {
- b = slob_alloc(c->size, flags, c->align, node);
- trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
- SLOB_UNITS(c->size) * SLOB_UNIT,
- flags, node);
- } else {
- b = slob_new_pages(flags, get_order(c->size), node);
- trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
- PAGE_SIZE << get_order(c->size),
- flags, node);
- }
- if (b && c->ctor)
- c->ctor(b);
- kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
- return b;
- }
- void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
- {
- return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
- }
- EXPORT_SYMBOL(kmem_cache_alloc);
- #ifdef CONFIG_NUMA
- void *__kmalloc_node(size_t size, gfp_t gfp, int node)
- {
- return __do_kmalloc_node(size, gfp, node, _RET_IP_);
- }
- EXPORT_SYMBOL(__kmalloc_node);
- void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
- {
- return slob_alloc_node(cachep, gfp, node);
- }
- EXPORT_SYMBOL(kmem_cache_alloc_node);
- #endif
- static void __kmem_cache_free(void *b, int size)
- {
- if (size < PAGE_SIZE)
- slob_free(b, size);
- else
- slob_free_pages(b, get_order(size));
- }
- static void kmem_rcu_free(struct rcu_head *head)
- {
- struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
- void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
- __kmem_cache_free(b, slob_rcu->size);
- }
- void kmem_cache_free(struct kmem_cache *c, void *b)
- {
- kmemleak_free_recursive(b, c->flags);
- if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
- struct slob_rcu *slob_rcu;
- slob_rcu = b + (c->size - sizeof(struct slob_rcu));
- slob_rcu->size = c->size;
- call_rcu(&slob_rcu->head, kmem_rcu_free);
- } else {
- __kmem_cache_free(b, c->size);
- }
- trace_kmem_cache_free(_RET_IP_, b);
- }
- EXPORT_SYMBOL(kmem_cache_free);
- void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
- {
- __kmem_cache_free_bulk(s, size, p);
- }
- EXPORT_SYMBOL(kmem_cache_free_bulk);
- int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
- void **p)
- {
- return __kmem_cache_alloc_bulk(s, flags, size, p);
- }
- EXPORT_SYMBOL(kmem_cache_alloc_bulk);
- int __kmem_cache_shutdown(struct kmem_cache *c)
- {
- /* No way to check for remaining objects */
- return 0;
- }
- int __kmem_cache_shrink(struct kmem_cache *d, bool deactivate)
- {
- return 0;
- }
- struct kmem_cache kmem_cache_boot = {
- .name = "kmem_cache",
- .size = sizeof(struct kmem_cache),
- .flags = SLAB_PANIC,
- .align = ARCH_KMALLOC_MINALIGN,
- };
- void __init kmem_cache_init(void)
- {
- kmem_cache = &kmem_cache_boot;
- slab_state = UP;
- }
- void __init kmem_cache_init_late(void)
- {
- slab_state = FULL;
- }
|