fib_frontend.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * IPv4 Forwarding Information Base: FIB frontend.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. */
  15. #include <linux/module.h>
  16. #include <asm/uaccess.h>
  17. #include <linux/bitops.h>
  18. #include <linux/capability.h>
  19. #include <linux/types.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/string.h>
  23. #include <linux/socket.h>
  24. #include <linux/sockios.h>
  25. #include <linux/errno.h>
  26. #include <linux/in.h>
  27. #include <linux/inet.h>
  28. #include <linux/inetdevice.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/if_addr.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/cache.h>
  34. #include <linux/init.h>
  35. #include <linux/list.h>
  36. #include <linux/slab.h>
  37. #include <net/ip.h>
  38. #include <net/protocol.h>
  39. #include <net/route.h>
  40. #include <net/tcp.h>
  41. #include <net/sock.h>
  42. #include <net/arp.h>
  43. #include <net/ip_fib.h>
  44. #include <net/rtnetlink.h>
  45. #include <net/xfrm.h>
  46. #include <net/l3mdev.h>
  47. #include <trace/events/fib.h>
  48. #ifndef CONFIG_IP_MULTIPLE_TABLES
  49. static int __net_init fib4_rules_init(struct net *net)
  50. {
  51. struct fib_table *local_table, *main_table;
  52. main_table = fib_trie_table(RT_TABLE_MAIN, NULL);
  53. if (!main_table)
  54. return -ENOMEM;
  55. local_table = fib_trie_table(RT_TABLE_LOCAL, main_table);
  56. if (!local_table)
  57. goto fail;
  58. hlist_add_head_rcu(&local_table->tb_hlist,
  59. &net->ipv4.fib_table_hash[TABLE_LOCAL_INDEX]);
  60. hlist_add_head_rcu(&main_table->tb_hlist,
  61. &net->ipv4.fib_table_hash[TABLE_MAIN_INDEX]);
  62. return 0;
  63. fail:
  64. fib_free_table(main_table);
  65. return -ENOMEM;
  66. }
  67. #else
  68. struct fib_table *fib_new_table(struct net *net, u32 id)
  69. {
  70. struct fib_table *tb, *alias = NULL;
  71. unsigned int h;
  72. if (id == 0)
  73. id = RT_TABLE_MAIN;
  74. tb = fib_get_table(net, id);
  75. if (tb)
  76. return tb;
  77. if (id == RT_TABLE_LOCAL && !net->ipv4.fib_has_custom_rules)
  78. alias = fib_new_table(net, RT_TABLE_MAIN);
  79. tb = fib_trie_table(id, alias);
  80. if (!tb)
  81. return NULL;
  82. switch (id) {
  83. case RT_TABLE_LOCAL:
  84. rcu_assign_pointer(net->ipv4.fib_local, tb);
  85. break;
  86. case RT_TABLE_MAIN:
  87. rcu_assign_pointer(net->ipv4.fib_main, tb);
  88. break;
  89. case RT_TABLE_DEFAULT:
  90. rcu_assign_pointer(net->ipv4.fib_default, tb);
  91. break;
  92. default:
  93. break;
  94. }
  95. h = id & (FIB_TABLE_HASHSZ - 1);
  96. hlist_add_head_rcu(&tb->tb_hlist, &net->ipv4.fib_table_hash[h]);
  97. return tb;
  98. }
  99. /* caller must hold either rtnl or rcu read lock */
  100. struct fib_table *fib_get_table(struct net *net, u32 id)
  101. {
  102. struct fib_table *tb;
  103. struct hlist_head *head;
  104. unsigned int h;
  105. if (id == 0)
  106. id = RT_TABLE_MAIN;
  107. h = id & (FIB_TABLE_HASHSZ - 1);
  108. head = &net->ipv4.fib_table_hash[h];
  109. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  110. if (tb->tb_id == id)
  111. return tb;
  112. }
  113. return NULL;
  114. }
  115. #endif /* CONFIG_IP_MULTIPLE_TABLES */
  116. static void fib_replace_table(struct net *net, struct fib_table *old,
  117. struct fib_table *new)
  118. {
  119. #ifdef CONFIG_IP_MULTIPLE_TABLES
  120. switch (new->tb_id) {
  121. case RT_TABLE_LOCAL:
  122. rcu_assign_pointer(net->ipv4.fib_local, new);
  123. break;
  124. case RT_TABLE_MAIN:
  125. rcu_assign_pointer(net->ipv4.fib_main, new);
  126. break;
  127. case RT_TABLE_DEFAULT:
  128. rcu_assign_pointer(net->ipv4.fib_default, new);
  129. break;
  130. default:
  131. break;
  132. }
  133. #endif
  134. /* replace the old table in the hlist */
  135. hlist_replace_rcu(&old->tb_hlist, &new->tb_hlist);
  136. }
  137. int fib_unmerge(struct net *net)
  138. {
  139. struct fib_table *old, *new;
  140. /* attempt to fetch local table if it has been allocated */
  141. old = fib_get_table(net, RT_TABLE_LOCAL);
  142. if (!old)
  143. return 0;
  144. new = fib_trie_unmerge(old);
  145. if (!new)
  146. return -ENOMEM;
  147. /* replace merged table with clean table */
  148. if (new != old) {
  149. fib_replace_table(net, old, new);
  150. fib_free_table(old);
  151. }
  152. return 0;
  153. }
  154. static void fib_flush(struct net *net)
  155. {
  156. int flushed = 0;
  157. unsigned int h;
  158. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  159. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  160. struct hlist_node *tmp;
  161. struct fib_table *tb;
  162. hlist_for_each_entry_safe(tb, tmp, head, tb_hlist)
  163. flushed += fib_table_flush(tb, false);
  164. }
  165. if (flushed)
  166. rt_cache_flush(net);
  167. }
  168. void fib_flush_external(struct net *net)
  169. {
  170. struct fib_table *tb;
  171. struct hlist_head *head;
  172. unsigned int h;
  173. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  174. head = &net->ipv4.fib_table_hash[h];
  175. hlist_for_each_entry(tb, head, tb_hlist)
  176. fib_table_flush_external(tb);
  177. }
  178. }
  179. /*
  180. * Find address type as if only "dev" was present in the system. If
  181. * on_dev is NULL then all interfaces are taken into consideration.
  182. */
  183. static inline unsigned int __inet_dev_addr_type(struct net *net,
  184. const struct net_device *dev,
  185. __be32 addr, u32 tb_id)
  186. {
  187. struct flowi4 fl4 = { .daddr = addr };
  188. struct fib_result res;
  189. unsigned int ret = RTN_BROADCAST;
  190. struct fib_table *table;
  191. if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr))
  192. return RTN_BROADCAST;
  193. if (ipv4_is_multicast(addr))
  194. return RTN_MULTICAST;
  195. rcu_read_lock();
  196. table = fib_get_table(net, tb_id);
  197. if (table) {
  198. ret = RTN_UNICAST;
  199. if (!fib_table_lookup(table, &fl4, &res, FIB_LOOKUP_NOREF)) {
  200. if (!dev || dev == res.fi->fib_dev)
  201. ret = res.type;
  202. }
  203. }
  204. rcu_read_unlock();
  205. return ret;
  206. }
  207. unsigned int inet_addr_type_table(struct net *net, __be32 addr, u32 tb_id)
  208. {
  209. return __inet_dev_addr_type(net, NULL, addr, tb_id);
  210. }
  211. EXPORT_SYMBOL(inet_addr_type_table);
  212. unsigned int inet_addr_type(struct net *net, __be32 addr)
  213. {
  214. return __inet_dev_addr_type(net, NULL, addr, RT_TABLE_LOCAL);
  215. }
  216. EXPORT_SYMBOL(inet_addr_type);
  217. unsigned int inet_dev_addr_type(struct net *net, const struct net_device *dev,
  218. __be32 addr)
  219. {
  220. u32 rt_table = l3mdev_fib_table(dev) ? : RT_TABLE_LOCAL;
  221. return __inet_dev_addr_type(net, dev, addr, rt_table);
  222. }
  223. EXPORT_SYMBOL(inet_dev_addr_type);
  224. /* inet_addr_type with dev == NULL but using the table from a dev
  225. * if one is associated
  226. */
  227. unsigned int inet_addr_type_dev_table(struct net *net,
  228. const struct net_device *dev,
  229. __be32 addr)
  230. {
  231. u32 rt_table = l3mdev_fib_table(dev) ? : RT_TABLE_LOCAL;
  232. return __inet_dev_addr_type(net, NULL, addr, rt_table);
  233. }
  234. EXPORT_SYMBOL(inet_addr_type_dev_table);
  235. __be32 fib_compute_spec_dst(struct sk_buff *skb)
  236. {
  237. struct net_device *dev = skb->dev;
  238. struct in_device *in_dev;
  239. struct fib_result res;
  240. struct rtable *rt;
  241. struct net *net;
  242. int scope;
  243. rt = skb_rtable(skb);
  244. if ((rt->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST | RTCF_LOCAL)) ==
  245. RTCF_LOCAL)
  246. return ip_hdr(skb)->daddr;
  247. in_dev = __in_dev_get_rcu(dev);
  248. net = dev_net(dev);
  249. scope = RT_SCOPE_UNIVERSE;
  250. if (!ipv4_is_zeronet(ip_hdr(skb)->saddr)) {
  251. bool vmark = in_dev && IN_DEV_SRC_VMARK(in_dev);
  252. struct flowi4 fl4 = {
  253. .flowi4_iif = LOOPBACK_IFINDEX,
  254. .flowi4_oif = l3mdev_master_ifindex_rcu(dev),
  255. .daddr = ip_hdr(skb)->saddr,
  256. .flowi4_tos = RT_TOS(ip_hdr(skb)->tos),
  257. .flowi4_scope = scope,
  258. .flowi4_mark = vmark ? skb->mark : 0,
  259. };
  260. if (!fib_lookup(net, &fl4, &res, 0))
  261. return FIB_RES_PREFSRC(net, res);
  262. } else {
  263. scope = RT_SCOPE_LINK;
  264. }
  265. return inet_select_addr(dev, ip_hdr(skb)->saddr, scope);
  266. }
  267. /* Given (packet source, input interface) and optional (dst, oif, tos):
  268. * - (main) check, that source is valid i.e. not broadcast or our local
  269. * address.
  270. * - figure out what "logical" interface this packet arrived
  271. * and calculate "specific destination" address.
  272. * - check, that packet arrived from expected physical interface.
  273. * called with rcu_read_lock()
  274. */
  275. static int __fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
  276. u8 tos, int oif, struct net_device *dev,
  277. int rpf, struct in_device *idev, u32 *itag)
  278. {
  279. int ret, no_addr;
  280. struct fib_result res;
  281. struct flowi4 fl4;
  282. struct net *net;
  283. bool dev_match;
  284. fl4.flowi4_oif = 0;
  285. fl4.flowi4_iif = l3mdev_master_ifindex_rcu(dev);
  286. if (!fl4.flowi4_iif)
  287. fl4.flowi4_iif = oif ? : LOOPBACK_IFINDEX;
  288. fl4.daddr = src;
  289. fl4.saddr = dst;
  290. fl4.flowi4_tos = tos;
  291. fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
  292. fl4.flowi4_tun_key.tun_id = 0;
  293. fl4.flowi4_flags = 0;
  294. no_addr = idev->ifa_list == NULL;
  295. fl4.flowi4_mark = IN_DEV_SRC_VMARK(idev) ? skb->mark : 0;
  296. trace_fib_validate_source(dev, &fl4);
  297. net = dev_net(dev);
  298. if (fib_lookup(net, &fl4, &res, 0))
  299. goto last_resort;
  300. if (res.type != RTN_UNICAST &&
  301. (res.type != RTN_LOCAL || !IN_DEV_ACCEPT_LOCAL(idev)))
  302. goto e_inval;
  303. if (!rpf && !fib_num_tclassid_users(dev_net(dev)) &&
  304. (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev)))
  305. goto last_resort;
  306. fib_combine_itag(itag, &res);
  307. dev_match = false;
  308. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  309. for (ret = 0; ret < res.fi->fib_nhs; ret++) {
  310. struct fib_nh *nh = &res.fi->fib_nh[ret];
  311. if (nh->nh_dev == dev) {
  312. dev_match = true;
  313. break;
  314. } else if (l3mdev_master_ifindex_rcu(nh->nh_dev) == dev->ifindex) {
  315. dev_match = true;
  316. break;
  317. }
  318. }
  319. #else
  320. if (FIB_RES_DEV(res) == dev)
  321. dev_match = true;
  322. #endif
  323. if (dev_match) {
  324. ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
  325. return ret;
  326. }
  327. if (no_addr)
  328. goto last_resort;
  329. if (rpf == 1)
  330. goto e_rpf;
  331. fl4.flowi4_oif = dev->ifindex;
  332. ret = 0;
  333. if (fib_lookup(net, &fl4, &res, FIB_LOOKUP_IGNORE_LINKSTATE) == 0) {
  334. if (res.type == RTN_UNICAST)
  335. ret = FIB_RES_NH(res).nh_scope >= RT_SCOPE_HOST;
  336. }
  337. return ret;
  338. last_resort:
  339. if (rpf)
  340. goto e_rpf;
  341. *itag = 0;
  342. return 0;
  343. e_inval:
  344. return -EINVAL;
  345. e_rpf:
  346. return -EXDEV;
  347. }
  348. /* Ignore rp_filter for packets protected by IPsec. */
  349. int fib_validate_source(struct sk_buff *skb, __be32 src, __be32 dst,
  350. u8 tos, int oif, struct net_device *dev,
  351. struct in_device *idev, u32 *itag)
  352. {
  353. int r = secpath_exists(skb) ? 0 : IN_DEV_RPFILTER(idev);
  354. if (!r && !fib_num_tclassid_users(dev_net(dev)) &&
  355. IN_DEV_ACCEPT_LOCAL(idev) &&
  356. (dev->ifindex != oif || !IN_DEV_TX_REDIRECTS(idev))) {
  357. *itag = 0;
  358. return 0;
  359. }
  360. return __fib_validate_source(skb, src, dst, tos, oif, dev, r, idev, itag);
  361. }
  362. static inline __be32 sk_extract_addr(struct sockaddr *addr)
  363. {
  364. return ((struct sockaddr_in *) addr)->sin_addr.s_addr;
  365. }
  366. static int put_rtax(struct nlattr *mx, int len, int type, u32 value)
  367. {
  368. struct nlattr *nla;
  369. nla = (struct nlattr *) ((char *) mx + len);
  370. nla->nla_type = type;
  371. nla->nla_len = nla_attr_size(4);
  372. *(u32 *) nla_data(nla) = value;
  373. return len + nla_total_size(4);
  374. }
  375. static int rtentry_to_fib_config(struct net *net, int cmd, struct rtentry *rt,
  376. struct fib_config *cfg)
  377. {
  378. __be32 addr;
  379. int plen;
  380. memset(cfg, 0, sizeof(*cfg));
  381. cfg->fc_nlinfo.nl_net = net;
  382. if (rt->rt_dst.sa_family != AF_INET)
  383. return -EAFNOSUPPORT;
  384. /*
  385. * Check mask for validity:
  386. * a) it must be contiguous.
  387. * b) destination must have all host bits clear.
  388. * c) if application forgot to set correct family (AF_INET),
  389. * reject request unless it is absolutely clear i.e.
  390. * both family and mask are zero.
  391. */
  392. plen = 32;
  393. addr = sk_extract_addr(&rt->rt_dst);
  394. if (!(rt->rt_flags & RTF_HOST)) {
  395. __be32 mask = sk_extract_addr(&rt->rt_genmask);
  396. if (rt->rt_genmask.sa_family != AF_INET) {
  397. if (mask || rt->rt_genmask.sa_family)
  398. return -EAFNOSUPPORT;
  399. }
  400. if (bad_mask(mask, addr))
  401. return -EINVAL;
  402. plen = inet_mask_len(mask);
  403. }
  404. cfg->fc_dst_len = plen;
  405. cfg->fc_dst = addr;
  406. if (cmd != SIOCDELRT) {
  407. cfg->fc_nlflags = NLM_F_CREATE;
  408. cfg->fc_protocol = RTPROT_BOOT;
  409. }
  410. if (rt->rt_metric)
  411. cfg->fc_priority = rt->rt_metric - 1;
  412. if (rt->rt_flags & RTF_REJECT) {
  413. cfg->fc_scope = RT_SCOPE_HOST;
  414. cfg->fc_type = RTN_UNREACHABLE;
  415. return 0;
  416. }
  417. cfg->fc_scope = RT_SCOPE_NOWHERE;
  418. cfg->fc_type = RTN_UNICAST;
  419. if (rt->rt_dev) {
  420. char *colon;
  421. struct net_device *dev;
  422. char devname[IFNAMSIZ];
  423. if (copy_from_user(devname, rt->rt_dev, IFNAMSIZ-1))
  424. return -EFAULT;
  425. devname[IFNAMSIZ-1] = 0;
  426. colon = strchr(devname, ':');
  427. if (colon)
  428. *colon = 0;
  429. dev = __dev_get_by_name(net, devname);
  430. if (!dev)
  431. return -ENODEV;
  432. cfg->fc_oif = dev->ifindex;
  433. if (colon) {
  434. struct in_ifaddr *ifa;
  435. struct in_device *in_dev = __in_dev_get_rtnl(dev);
  436. if (!in_dev)
  437. return -ENODEV;
  438. *colon = ':';
  439. for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
  440. if (strcmp(ifa->ifa_label, devname) == 0)
  441. break;
  442. if (!ifa)
  443. return -ENODEV;
  444. cfg->fc_prefsrc = ifa->ifa_local;
  445. }
  446. }
  447. addr = sk_extract_addr(&rt->rt_gateway);
  448. if (rt->rt_gateway.sa_family == AF_INET && addr) {
  449. unsigned int addr_type;
  450. cfg->fc_gw = addr;
  451. addr_type = inet_addr_type_table(net, addr, cfg->fc_table);
  452. if (rt->rt_flags & RTF_GATEWAY &&
  453. addr_type == RTN_UNICAST)
  454. cfg->fc_scope = RT_SCOPE_UNIVERSE;
  455. }
  456. if (cmd == SIOCDELRT)
  457. return 0;
  458. if (rt->rt_flags & RTF_GATEWAY && !cfg->fc_gw)
  459. return -EINVAL;
  460. if (cfg->fc_scope == RT_SCOPE_NOWHERE)
  461. cfg->fc_scope = RT_SCOPE_LINK;
  462. if (rt->rt_flags & (RTF_MTU | RTF_WINDOW | RTF_IRTT)) {
  463. struct nlattr *mx;
  464. int len = 0;
  465. mx = kzalloc(3 * nla_total_size(4), GFP_KERNEL);
  466. if (!mx)
  467. return -ENOMEM;
  468. if (rt->rt_flags & RTF_MTU)
  469. len = put_rtax(mx, len, RTAX_ADVMSS, rt->rt_mtu - 40);
  470. if (rt->rt_flags & RTF_WINDOW)
  471. len = put_rtax(mx, len, RTAX_WINDOW, rt->rt_window);
  472. if (rt->rt_flags & RTF_IRTT)
  473. len = put_rtax(mx, len, RTAX_RTT, rt->rt_irtt << 3);
  474. cfg->fc_mx = mx;
  475. cfg->fc_mx_len = len;
  476. }
  477. return 0;
  478. }
  479. /*
  480. * Handle IP routing ioctl calls.
  481. * These are used to manipulate the routing tables
  482. */
  483. int ip_rt_ioctl(struct net *net, unsigned int cmd, void __user *arg)
  484. {
  485. struct fib_config cfg;
  486. struct rtentry rt;
  487. int err;
  488. switch (cmd) {
  489. case SIOCADDRT: /* Add a route */
  490. case SIOCDELRT: /* Delete a route */
  491. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  492. return -EPERM;
  493. if (copy_from_user(&rt, arg, sizeof(rt)))
  494. return -EFAULT;
  495. rtnl_lock();
  496. err = rtentry_to_fib_config(net, cmd, &rt, &cfg);
  497. if (err == 0) {
  498. struct fib_table *tb;
  499. if (cmd == SIOCDELRT) {
  500. tb = fib_get_table(net, cfg.fc_table);
  501. if (tb)
  502. err = fib_table_delete(tb, &cfg);
  503. else
  504. err = -ESRCH;
  505. } else {
  506. tb = fib_new_table(net, cfg.fc_table);
  507. if (tb)
  508. err = fib_table_insert(tb, &cfg);
  509. else
  510. err = -ENOBUFS;
  511. }
  512. /* allocated by rtentry_to_fib_config() */
  513. kfree(cfg.fc_mx);
  514. }
  515. rtnl_unlock();
  516. return err;
  517. }
  518. return -EINVAL;
  519. }
  520. const struct nla_policy rtm_ipv4_policy[RTA_MAX + 1] = {
  521. [RTA_DST] = { .type = NLA_U32 },
  522. [RTA_SRC] = { .type = NLA_U32 },
  523. [RTA_IIF] = { .type = NLA_U32 },
  524. [RTA_OIF] = { .type = NLA_U32 },
  525. [RTA_GATEWAY] = { .type = NLA_U32 },
  526. [RTA_PRIORITY] = { .type = NLA_U32 },
  527. [RTA_PREFSRC] = { .type = NLA_U32 },
  528. [RTA_METRICS] = { .type = NLA_NESTED },
  529. [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
  530. [RTA_FLOW] = { .type = NLA_U32 },
  531. [RTA_ENCAP_TYPE] = { .type = NLA_U16 },
  532. [RTA_ENCAP] = { .type = NLA_NESTED },
  533. };
  534. static int rtm_to_fib_config(struct net *net, struct sk_buff *skb,
  535. struct nlmsghdr *nlh, struct fib_config *cfg)
  536. {
  537. struct nlattr *attr;
  538. int err, remaining;
  539. struct rtmsg *rtm;
  540. err = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipv4_policy);
  541. if (err < 0)
  542. goto errout;
  543. memset(cfg, 0, sizeof(*cfg));
  544. rtm = nlmsg_data(nlh);
  545. cfg->fc_dst_len = rtm->rtm_dst_len;
  546. cfg->fc_tos = rtm->rtm_tos;
  547. cfg->fc_table = rtm->rtm_table;
  548. cfg->fc_protocol = rtm->rtm_protocol;
  549. cfg->fc_scope = rtm->rtm_scope;
  550. cfg->fc_type = rtm->rtm_type;
  551. cfg->fc_flags = rtm->rtm_flags;
  552. cfg->fc_nlflags = nlh->nlmsg_flags;
  553. cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid;
  554. cfg->fc_nlinfo.nlh = nlh;
  555. cfg->fc_nlinfo.nl_net = net;
  556. if (cfg->fc_type > RTN_MAX) {
  557. err = -EINVAL;
  558. goto errout;
  559. }
  560. nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), remaining) {
  561. switch (nla_type(attr)) {
  562. case RTA_DST:
  563. cfg->fc_dst = nla_get_be32(attr);
  564. break;
  565. case RTA_OIF:
  566. cfg->fc_oif = nla_get_u32(attr);
  567. break;
  568. case RTA_GATEWAY:
  569. cfg->fc_gw = nla_get_be32(attr);
  570. break;
  571. case RTA_PRIORITY:
  572. cfg->fc_priority = nla_get_u32(attr);
  573. break;
  574. case RTA_PREFSRC:
  575. cfg->fc_prefsrc = nla_get_be32(attr);
  576. break;
  577. case RTA_METRICS:
  578. cfg->fc_mx = nla_data(attr);
  579. cfg->fc_mx_len = nla_len(attr);
  580. break;
  581. case RTA_MULTIPATH:
  582. cfg->fc_mp = nla_data(attr);
  583. cfg->fc_mp_len = nla_len(attr);
  584. break;
  585. case RTA_FLOW:
  586. cfg->fc_flow = nla_get_u32(attr);
  587. break;
  588. case RTA_TABLE:
  589. cfg->fc_table = nla_get_u32(attr);
  590. break;
  591. case RTA_ENCAP:
  592. cfg->fc_encap = attr;
  593. break;
  594. case RTA_ENCAP_TYPE:
  595. cfg->fc_encap_type = nla_get_u16(attr);
  596. break;
  597. }
  598. }
  599. return 0;
  600. errout:
  601. return err;
  602. }
  603. static int inet_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh)
  604. {
  605. struct net *net = sock_net(skb->sk);
  606. struct fib_config cfg;
  607. struct fib_table *tb;
  608. int err;
  609. err = rtm_to_fib_config(net, skb, nlh, &cfg);
  610. if (err < 0)
  611. goto errout;
  612. tb = fib_get_table(net, cfg.fc_table);
  613. if (!tb) {
  614. err = -ESRCH;
  615. goto errout;
  616. }
  617. err = fib_table_delete(tb, &cfg);
  618. errout:
  619. return err;
  620. }
  621. static int inet_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh)
  622. {
  623. struct net *net = sock_net(skb->sk);
  624. struct fib_config cfg;
  625. struct fib_table *tb;
  626. int err;
  627. err = rtm_to_fib_config(net, skb, nlh, &cfg);
  628. if (err < 0)
  629. goto errout;
  630. tb = fib_new_table(net, cfg.fc_table);
  631. if (!tb) {
  632. err = -ENOBUFS;
  633. goto errout;
  634. }
  635. err = fib_table_insert(tb, &cfg);
  636. errout:
  637. return err;
  638. }
  639. static int inet_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
  640. {
  641. struct net *net = sock_net(skb->sk);
  642. unsigned int h, s_h;
  643. unsigned int e = 0, s_e;
  644. struct fib_table *tb;
  645. struct hlist_head *head;
  646. int dumped = 0, err;
  647. if (nlmsg_len(cb->nlh) >= sizeof(struct rtmsg) &&
  648. ((struct rtmsg *) nlmsg_data(cb->nlh))->rtm_flags & RTM_F_CLONED)
  649. return skb->len;
  650. s_h = cb->args[0];
  651. s_e = cb->args[1];
  652. rcu_read_lock();
  653. for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
  654. e = 0;
  655. head = &net->ipv4.fib_table_hash[h];
  656. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  657. if (e < s_e)
  658. goto next;
  659. if (dumped)
  660. memset(&cb->args[2], 0, sizeof(cb->args) -
  661. 2 * sizeof(cb->args[0]));
  662. err = fib_table_dump(tb, skb, cb);
  663. if (err < 0) {
  664. if (likely(skb->len))
  665. goto out;
  666. goto out_err;
  667. }
  668. dumped = 1;
  669. next:
  670. e++;
  671. }
  672. }
  673. out:
  674. err = skb->len;
  675. out_err:
  676. rcu_read_unlock();
  677. cb->args[1] = e;
  678. cb->args[0] = h;
  679. return err;
  680. }
  681. /* Prepare and feed intra-kernel routing request.
  682. * Really, it should be netlink message, but :-( netlink
  683. * can be not configured, so that we feed it directly
  684. * to fib engine. It is legal, because all events occur
  685. * only when netlink is already locked.
  686. */
  687. static void fib_magic(int cmd, int type, __be32 dst, int dst_len, struct in_ifaddr *ifa)
  688. {
  689. struct net *net = dev_net(ifa->ifa_dev->dev);
  690. u32 tb_id = l3mdev_fib_table(ifa->ifa_dev->dev);
  691. struct fib_table *tb;
  692. struct fib_config cfg = {
  693. .fc_protocol = RTPROT_KERNEL,
  694. .fc_type = type,
  695. .fc_dst = dst,
  696. .fc_dst_len = dst_len,
  697. .fc_prefsrc = ifa->ifa_local,
  698. .fc_oif = ifa->ifa_dev->dev->ifindex,
  699. .fc_nlflags = NLM_F_CREATE | NLM_F_APPEND,
  700. .fc_nlinfo = {
  701. .nl_net = net,
  702. },
  703. };
  704. if (!tb_id)
  705. tb_id = (type == RTN_UNICAST) ? RT_TABLE_MAIN : RT_TABLE_LOCAL;
  706. tb = fib_new_table(net, tb_id);
  707. if (!tb)
  708. return;
  709. cfg.fc_table = tb->tb_id;
  710. if (type != RTN_LOCAL)
  711. cfg.fc_scope = RT_SCOPE_LINK;
  712. else
  713. cfg.fc_scope = RT_SCOPE_HOST;
  714. if (cmd == RTM_NEWROUTE)
  715. fib_table_insert(tb, &cfg);
  716. else
  717. fib_table_delete(tb, &cfg);
  718. }
  719. void fib_add_ifaddr(struct in_ifaddr *ifa)
  720. {
  721. struct in_device *in_dev = ifa->ifa_dev;
  722. struct net_device *dev = in_dev->dev;
  723. struct in_ifaddr *prim = ifa;
  724. __be32 mask = ifa->ifa_mask;
  725. __be32 addr = ifa->ifa_local;
  726. __be32 prefix = ifa->ifa_address & mask;
  727. if (ifa->ifa_flags & IFA_F_SECONDARY) {
  728. prim = inet_ifa_byprefix(in_dev, prefix, mask);
  729. if (!prim) {
  730. pr_warn("%s: bug: prim == NULL\n", __func__);
  731. return;
  732. }
  733. }
  734. fib_magic(RTM_NEWROUTE, RTN_LOCAL, addr, 32, prim);
  735. if (!(dev->flags & IFF_UP))
  736. return;
  737. /* Add broadcast address, if it is explicitly assigned. */
  738. if (ifa->ifa_broadcast && ifa->ifa_broadcast != htonl(0xFFFFFFFF))
  739. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
  740. if (!ipv4_is_zeronet(prefix) && !(ifa->ifa_flags & IFA_F_SECONDARY) &&
  741. (prefix != addr || ifa->ifa_prefixlen < 32)) {
  742. if (!(ifa->ifa_flags & IFA_F_NOPREFIXROUTE))
  743. fib_magic(RTM_NEWROUTE,
  744. dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
  745. prefix, ifa->ifa_prefixlen, prim);
  746. /* Add network specific broadcasts, when it takes a sense */
  747. if (ifa->ifa_prefixlen < 31) {
  748. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix, 32, prim);
  749. fib_magic(RTM_NEWROUTE, RTN_BROADCAST, prefix | ~mask,
  750. 32, prim);
  751. }
  752. }
  753. }
  754. /* Delete primary or secondary address.
  755. * Optionally, on secondary address promotion consider the addresses
  756. * from subnet iprim as deleted, even if they are in device list.
  757. * In this case the secondary ifa can be in device list.
  758. */
  759. void fib_del_ifaddr(struct in_ifaddr *ifa, struct in_ifaddr *iprim)
  760. {
  761. struct in_device *in_dev = ifa->ifa_dev;
  762. struct net_device *dev = in_dev->dev;
  763. struct in_ifaddr *ifa1;
  764. struct in_ifaddr *prim = ifa, *prim1 = NULL;
  765. __be32 brd = ifa->ifa_address | ~ifa->ifa_mask;
  766. __be32 any = ifa->ifa_address & ifa->ifa_mask;
  767. #define LOCAL_OK 1
  768. #define BRD_OK 2
  769. #define BRD0_OK 4
  770. #define BRD1_OK 8
  771. unsigned int ok = 0;
  772. int subnet = 0; /* Primary network */
  773. int gone = 1; /* Address is missing */
  774. int same_prefsrc = 0; /* Another primary with same IP */
  775. if (ifa->ifa_flags & IFA_F_SECONDARY) {
  776. prim = inet_ifa_byprefix(in_dev, any, ifa->ifa_mask);
  777. if (!prim) {
  778. /* if the device has been deleted, we don't perform
  779. * address promotion
  780. */
  781. if (!in_dev->dead)
  782. pr_warn("%s: bug: prim == NULL\n", __func__);
  783. return;
  784. }
  785. if (iprim && iprim != prim) {
  786. pr_warn("%s: bug: iprim != prim\n", __func__);
  787. return;
  788. }
  789. } else if (!ipv4_is_zeronet(any) &&
  790. (any != ifa->ifa_local || ifa->ifa_prefixlen < 32)) {
  791. if (!(ifa->ifa_flags & IFA_F_NOPREFIXROUTE))
  792. fib_magic(RTM_DELROUTE,
  793. dev->flags & IFF_LOOPBACK ? RTN_LOCAL : RTN_UNICAST,
  794. any, ifa->ifa_prefixlen, prim);
  795. subnet = 1;
  796. }
  797. if (in_dev->dead)
  798. goto no_promotions;
  799. /* Deletion is more complicated than add.
  800. * We should take care of not to delete too much :-)
  801. *
  802. * Scan address list to be sure that addresses are really gone.
  803. */
  804. for (ifa1 = in_dev->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
  805. if (ifa1 == ifa) {
  806. /* promotion, keep the IP */
  807. gone = 0;
  808. continue;
  809. }
  810. /* Ignore IFAs from our subnet */
  811. if (iprim && ifa1->ifa_mask == iprim->ifa_mask &&
  812. inet_ifa_match(ifa1->ifa_address, iprim))
  813. continue;
  814. /* Ignore ifa1 if it uses different primary IP (prefsrc) */
  815. if (ifa1->ifa_flags & IFA_F_SECONDARY) {
  816. /* Another address from our subnet? */
  817. if (ifa1->ifa_mask == prim->ifa_mask &&
  818. inet_ifa_match(ifa1->ifa_address, prim))
  819. prim1 = prim;
  820. else {
  821. /* We reached the secondaries, so
  822. * same_prefsrc should be determined.
  823. */
  824. if (!same_prefsrc)
  825. continue;
  826. /* Search new prim1 if ifa1 is not
  827. * using the current prim1
  828. */
  829. if (!prim1 ||
  830. ifa1->ifa_mask != prim1->ifa_mask ||
  831. !inet_ifa_match(ifa1->ifa_address, prim1))
  832. prim1 = inet_ifa_byprefix(in_dev,
  833. ifa1->ifa_address,
  834. ifa1->ifa_mask);
  835. if (!prim1)
  836. continue;
  837. if (prim1->ifa_local != prim->ifa_local)
  838. continue;
  839. }
  840. } else {
  841. if (prim->ifa_local != ifa1->ifa_local)
  842. continue;
  843. prim1 = ifa1;
  844. if (prim != prim1)
  845. same_prefsrc = 1;
  846. }
  847. if (ifa->ifa_local == ifa1->ifa_local)
  848. ok |= LOCAL_OK;
  849. if (ifa->ifa_broadcast == ifa1->ifa_broadcast)
  850. ok |= BRD_OK;
  851. if (brd == ifa1->ifa_broadcast)
  852. ok |= BRD1_OK;
  853. if (any == ifa1->ifa_broadcast)
  854. ok |= BRD0_OK;
  855. /* primary has network specific broadcasts */
  856. if (prim1 == ifa1 && ifa1->ifa_prefixlen < 31) {
  857. __be32 brd1 = ifa1->ifa_address | ~ifa1->ifa_mask;
  858. __be32 any1 = ifa1->ifa_address & ifa1->ifa_mask;
  859. if (!ipv4_is_zeronet(any1)) {
  860. if (ifa->ifa_broadcast == brd1 ||
  861. ifa->ifa_broadcast == any1)
  862. ok |= BRD_OK;
  863. if (brd == brd1 || brd == any1)
  864. ok |= BRD1_OK;
  865. if (any == brd1 || any == any1)
  866. ok |= BRD0_OK;
  867. }
  868. }
  869. }
  870. no_promotions:
  871. if (!(ok & BRD_OK))
  872. fib_magic(RTM_DELROUTE, RTN_BROADCAST, ifa->ifa_broadcast, 32, prim);
  873. if (subnet && ifa->ifa_prefixlen < 31) {
  874. if (!(ok & BRD1_OK))
  875. fib_magic(RTM_DELROUTE, RTN_BROADCAST, brd, 32, prim);
  876. if (!(ok & BRD0_OK))
  877. fib_magic(RTM_DELROUTE, RTN_BROADCAST, any, 32, prim);
  878. }
  879. if (!(ok & LOCAL_OK)) {
  880. unsigned int addr_type;
  881. fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 32, prim);
  882. /* Check, that this local address finally disappeared. */
  883. addr_type = inet_addr_type_dev_table(dev_net(dev), dev,
  884. ifa->ifa_local);
  885. if (gone && addr_type != RTN_LOCAL) {
  886. /* And the last, but not the least thing.
  887. * We must flush stray FIB entries.
  888. *
  889. * First of all, we scan fib_info list searching
  890. * for stray nexthop entries, then ignite fib_flush.
  891. */
  892. if (fib_sync_down_addr(dev_net(dev), ifa->ifa_local))
  893. fib_flush(dev_net(dev));
  894. }
  895. }
  896. #undef LOCAL_OK
  897. #undef BRD_OK
  898. #undef BRD0_OK
  899. #undef BRD1_OK
  900. }
  901. static void nl_fib_lookup(struct net *net, struct fib_result_nl *frn)
  902. {
  903. struct fib_result res;
  904. struct flowi4 fl4 = {
  905. .flowi4_mark = frn->fl_mark,
  906. .daddr = frn->fl_addr,
  907. .flowi4_tos = frn->fl_tos,
  908. .flowi4_scope = frn->fl_scope,
  909. };
  910. struct fib_table *tb;
  911. rcu_read_lock();
  912. tb = fib_get_table(net, frn->tb_id_in);
  913. frn->err = -ENOENT;
  914. if (tb) {
  915. local_bh_disable();
  916. frn->tb_id = tb->tb_id;
  917. frn->err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
  918. if (!frn->err) {
  919. frn->prefixlen = res.prefixlen;
  920. frn->nh_sel = res.nh_sel;
  921. frn->type = res.type;
  922. frn->scope = res.scope;
  923. }
  924. local_bh_enable();
  925. }
  926. rcu_read_unlock();
  927. }
  928. static void nl_fib_input(struct sk_buff *skb)
  929. {
  930. struct net *net;
  931. struct fib_result_nl *frn;
  932. struct nlmsghdr *nlh;
  933. u32 portid;
  934. net = sock_net(skb->sk);
  935. nlh = nlmsg_hdr(skb);
  936. if (skb->len < nlmsg_total_size(sizeof(*frn)) ||
  937. skb->len < nlh->nlmsg_len ||
  938. nlmsg_len(nlh) < sizeof(*frn))
  939. return;
  940. skb = netlink_skb_clone(skb, GFP_KERNEL);
  941. if (!skb)
  942. return;
  943. nlh = nlmsg_hdr(skb);
  944. frn = (struct fib_result_nl *) nlmsg_data(nlh);
  945. nl_fib_lookup(net, frn);
  946. portid = NETLINK_CB(skb).portid; /* netlink portid */
  947. NETLINK_CB(skb).portid = 0; /* from kernel */
  948. NETLINK_CB(skb).dst_group = 0; /* unicast */
  949. netlink_unicast(net->ipv4.fibnl, skb, portid, MSG_DONTWAIT);
  950. }
  951. static int __net_init nl_fib_lookup_init(struct net *net)
  952. {
  953. struct sock *sk;
  954. struct netlink_kernel_cfg cfg = {
  955. .input = nl_fib_input,
  956. };
  957. sk = netlink_kernel_create(net, NETLINK_FIB_LOOKUP, &cfg);
  958. if (!sk)
  959. return -EAFNOSUPPORT;
  960. net->ipv4.fibnl = sk;
  961. return 0;
  962. }
  963. static void nl_fib_lookup_exit(struct net *net)
  964. {
  965. netlink_kernel_release(net->ipv4.fibnl);
  966. net->ipv4.fibnl = NULL;
  967. }
  968. static void fib_disable_ip(struct net_device *dev, unsigned long event,
  969. bool force)
  970. {
  971. if (fib_sync_down_dev(dev, event, force))
  972. fib_flush(dev_net(dev));
  973. rt_cache_flush(dev_net(dev));
  974. arp_ifdown(dev);
  975. }
  976. static int fib_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
  977. {
  978. struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
  979. struct net_device *dev = ifa->ifa_dev->dev;
  980. struct net *net = dev_net(dev);
  981. switch (event) {
  982. case NETDEV_UP:
  983. fib_add_ifaddr(ifa);
  984. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  985. fib_sync_up(dev, RTNH_F_DEAD);
  986. #endif
  987. atomic_inc(&net->ipv4.dev_addr_genid);
  988. rt_cache_flush(dev_net(dev));
  989. break;
  990. case NETDEV_DOWN:
  991. fib_del_ifaddr(ifa, NULL);
  992. atomic_inc(&net->ipv4.dev_addr_genid);
  993. if (!ifa->ifa_dev->ifa_list) {
  994. /* Last address was deleted from this interface.
  995. * Disable IP.
  996. */
  997. fib_disable_ip(dev, event, true);
  998. } else {
  999. rt_cache_flush(dev_net(dev));
  1000. }
  1001. break;
  1002. }
  1003. return NOTIFY_DONE;
  1004. }
  1005. static int fib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
  1006. {
  1007. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1008. struct netdev_notifier_changeupper_info *upper_info = ptr;
  1009. struct netdev_notifier_info_ext *info_ext = ptr;
  1010. struct in_device *in_dev;
  1011. struct net *net = dev_net(dev);
  1012. unsigned int flags;
  1013. if (event == NETDEV_UNREGISTER) {
  1014. fib_disable_ip(dev, event, true);
  1015. rt_flush_dev(dev);
  1016. return NOTIFY_DONE;
  1017. }
  1018. in_dev = __in_dev_get_rtnl(dev);
  1019. if (!in_dev)
  1020. return NOTIFY_DONE;
  1021. switch (event) {
  1022. case NETDEV_UP:
  1023. for_ifa(in_dev) {
  1024. fib_add_ifaddr(ifa);
  1025. } endfor_ifa(in_dev);
  1026. #ifdef CONFIG_IP_ROUTE_MULTIPATH
  1027. fib_sync_up(dev, RTNH_F_DEAD);
  1028. #endif
  1029. atomic_inc(&net->ipv4.dev_addr_genid);
  1030. rt_cache_flush(net);
  1031. break;
  1032. case NETDEV_DOWN:
  1033. fib_disable_ip(dev, event, false);
  1034. break;
  1035. case NETDEV_CHANGE:
  1036. flags = dev_get_flags(dev);
  1037. if (flags & (IFF_RUNNING | IFF_LOWER_UP))
  1038. fib_sync_up(dev, RTNH_F_LINKDOWN);
  1039. else
  1040. fib_sync_down_dev(dev, event, false);
  1041. rt_cache_flush(net);
  1042. break;
  1043. case NETDEV_CHANGEMTU:
  1044. fib_sync_mtu(dev, info_ext->ext.mtu);
  1045. rt_cache_flush(net);
  1046. break;
  1047. case NETDEV_CHANGEUPPER:
  1048. upper_info = ptr;
  1049. /* flush all routes if dev is linked to or unlinked from
  1050. * an L3 master device (e.g., VRF)
  1051. */
  1052. if (upper_info->upper_dev &&
  1053. netif_is_l3_master(upper_info->upper_dev))
  1054. fib_disable_ip(dev, NETDEV_DOWN, true);
  1055. break;
  1056. }
  1057. return NOTIFY_DONE;
  1058. }
  1059. static struct notifier_block fib_inetaddr_notifier = {
  1060. .notifier_call = fib_inetaddr_event,
  1061. };
  1062. static struct notifier_block fib_netdev_notifier = {
  1063. .notifier_call = fib_netdev_event,
  1064. };
  1065. static int __net_init ip_fib_net_init(struct net *net)
  1066. {
  1067. int err;
  1068. size_t size = sizeof(struct hlist_head) * FIB_TABLE_HASHSZ;
  1069. /* Avoid false sharing : Use at least a full cache line */
  1070. size = max_t(size_t, size, L1_CACHE_BYTES);
  1071. net->ipv4.fib_table_hash = kzalloc(size, GFP_KERNEL);
  1072. if (!net->ipv4.fib_table_hash)
  1073. return -ENOMEM;
  1074. err = fib4_rules_init(net);
  1075. if (err < 0)
  1076. goto fail;
  1077. return 0;
  1078. fail:
  1079. kfree(net->ipv4.fib_table_hash);
  1080. return err;
  1081. }
  1082. static void ip_fib_net_exit(struct net *net)
  1083. {
  1084. int i;
  1085. rtnl_lock();
  1086. #ifdef CONFIG_IP_MULTIPLE_TABLES
  1087. RCU_INIT_POINTER(net->ipv4.fib_local, NULL);
  1088. RCU_INIT_POINTER(net->ipv4.fib_main, NULL);
  1089. RCU_INIT_POINTER(net->ipv4.fib_default, NULL);
  1090. #endif
  1091. /* Destroy the tables in reverse order to guarantee that the
  1092. * local table, ID 255, is destroyed before the main table, ID
  1093. * 254. This is necessary as the local table may contain
  1094. * references to data contained in the main table.
  1095. */
  1096. for (i = FIB_TABLE_HASHSZ - 1; i >= 0; i--) {
  1097. struct hlist_head *head = &net->ipv4.fib_table_hash[i];
  1098. struct hlist_node *tmp;
  1099. struct fib_table *tb;
  1100. hlist_for_each_entry_safe(tb, tmp, head, tb_hlist) {
  1101. hlist_del(&tb->tb_hlist);
  1102. fib_table_flush(tb, true);
  1103. fib_free_table(tb);
  1104. }
  1105. }
  1106. #ifdef CONFIG_IP_MULTIPLE_TABLES
  1107. fib4_rules_exit(net);
  1108. #endif
  1109. rtnl_unlock();
  1110. kfree(net->ipv4.fib_table_hash);
  1111. }
  1112. static int __net_init fib_net_init(struct net *net)
  1113. {
  1114. int error;
  1115. #ifdef CONFIG_IP_ROUTE_CLASSID
  1116. net->ipv4.fib_num_tclassid_users = 0;
  1117. #endif
  1118. error = ip_fib_net_init(net);
  1119. if (error < 0)
  1120. goto out;
  1121. error = nl_fib_lookup_init(net);
  1122. if (error < 0)
  1123. goto out_nlfl;
  1124. error = fib_proc_init(net);
  1125. if (error < 0)
  1126. goto out_proc;
  1127. out:
  1128. return error;
  1129. out_proc:
  1130. nl_fib_lookup_exit(net);
  1131. out_nlfl:
  1132. ip_fib_net_exit(net);
  1133. goto out;
  1134. }
  1135. static void __net_exit fib_net_exit(struct net *net)
  1136. {
  1137. fib_proc_exit(net);
  1138. nl_fib_lookup_exit(net);
  1139. ip_fib_net_exit(net);
  1140. }
  1141. static struct pernet_operations fib_net_ops = {
  1142. .init = fib_net_init,
  1143. .exit = fib_net_exit,
  1144. };
  1145. void __init ip_fib_init(void)
  1146. {
  1147. fib_trie_init();
  1148. register_pernet_subsys(&fib_net_ops);
  1149. register_netdevice_notifier(&fib_netdev_notifier);
  1150. register_inetaddr_notifier(&fib_inetaddr_notifier);
  1151. rtnl_register(PF_INET, RTM_NEWROUTE, inet_rtm_newroute, NULL, NULL);
  1152. rtnl_register(PF_INET, RTM_DELROUTE, inet_rtm_delroute, NULL, NULL);
  1153. rtnl_register(PF_INET, RTM_GETROUTE, NULL, inet_dump_fib, NULL);
  1154. }