tcp_input.c 183 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_timestamps __read_mostly = 1;
  76. int sysctl_tcp_window_scaling __read_mostly = 1;
  77. int sysctl_tcp_sack __read_mostly = 1;
  78. int sysctl_tcp_fack __read_mostly = 1;
  79. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  80. int sysctl_tcp_max_reordering __read_mostly = 300;
  81. EXPORT_SYMBOL(sysctl_tcp_reordering);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. /* rfc5961 challenge ack rate limiting */
  87. int sysctl_tcp_challenge_ack_limit = 1000;
  88. int sysctl_tcp_stdurg __read_mostly;
  89. int sysctl_tcp_rfc1337 __read_mostly;
  90. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  91. int sysctl_tcp_frto __read_mostly = 2;
  92. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  93. int sysctl_tcp_thin_dupack __read_mostly;
  94. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  95. int sysctl_tcp_early_retrans __read_mostly = 3;
  96. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  97. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  98. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  99. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  100. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  101. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  102. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  103. #define FLAG_ECE 0x40 /* ECE in this ACK */
  104. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  105. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  106. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  107. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  108. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  109. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  110. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  111. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  112. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  113. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  114. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  115. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  116. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  117. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  118. /* Adapt the MSS value used to make delayed ack decision to the
  119. * real world.
  120. */
  121. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  122. {
  123. struct inet_connection_sock *icsk = inet_csk(sk);
  124. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  125. unsigned int len;
  126. icsk->icsk_ack.last_seg_size = 0;
  127. /* skb->len may jitter because of SACKs, even if peer
  128. * sends good full-sized frames.
  129. */
  130. len = skb_shinfo(skb)->gso_size ? : skb->len;
  131. if (len >= icsk->icsk_ack.rcv_mss) {
  132. icsk->icsk_ack.rcv_mss = len;
  133. } else {
  134. /* Otherwise, we make more careful check taking into account,
  135. * that SACKs block is variable.
  136. *
  137. * "len" is invariant segment length, including TCP header.
  138. */
  139. len += skb->data - skb_transport_header(skb);
  140. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  141. /* If PSH is not set, packet should be
  142. * full sized, provided peer TCP is not badly broken.
  143. * This observation (if it is correct 8)) allows
  144. * to handle super-low mtu links fairly.
  145. */
  146. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  147. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  148. /* Subtract also invariant (if peer is RFC compliant),
  149. * tcp header plus fixed timestamp option length.
  150. * Resulting "len" is MSS free of SACK jitter.
  151. */
  152. len -= tcp_sk(sk)->tcp_header_len;
  153. icsk->icsk_ack.last_seg_size = len;
  154. if (len == lss) {
  155. icsk->icsk_ack.rcv_mss = len;
  156. return;
  157. }
  158. }
  159. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  160. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  161. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  162. }
  163. }
  164. static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
  165. {
  166. struct inet_connection_sock *icsk = inet_csk(sk);
  167. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  168. if (quickacks == 0)
  169. quickacks = 2;
  170. quickacks = min(quickacks, max_quickacks);
  171. if (quickacks > icsk->icsk_ack.quick)
  172. icsk->icsk_ack.quick = quickacks;
  173. }
  174. void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
  175. {
  176. struct inet_connection_sock *icsk = inet_csk(sk);
  177. tcp_incr_quickack(sk, max_quickacks);
  178. icsk->icsk_ack.pingpong = 0;
  179. icsk->icsk_ack.ato = TCP_ATO_MIN;
  180. }
  181. EXPORT_SYMBOL(tcp_enter_quickack_mode);
  182. /* Send ACKs quickly, if "quick" count is not exhausted
  183. * and the session is not interactive.
  184. */
  185. static bool tcp_in_quickack_mode(struct sock *sk)
  186. {
  187. const struct inet_connection_sock *icsk = inet_csk(sk);
  188. const struct dst_entry *dst = __sk_dst_get(sk);
  189. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  190. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  191. }
  192. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  193. {
  194. if (tp->ecn_flags & TCP_ECN_OK)
  195. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  196. }
  197. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  198. {
  199. if (tcp_hdr(skb)->cwr)
  200. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  201. }
  202. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  203. {
  204. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  205. }
  206. static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
  207. {
  208. struct tcp_sock *tp = tcp_sk(sk);
  209. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  210. case INET_ECN_NOT_ECT:
  211. /* Funny extension: if ECT is not set on a segment,
  212. * and we already seen ECT on a previous segment,
  213. * it is probably a retransmit.
  214. */
  215. if (tp->ecn_flags & TCP_ECN_SEEN)
  216. tcp_enter_quickack_mode(sk, 2);
  217. break;
  218. case INET_ECN_CE:
  219. if (tcp_ca_needs_ecn(sk))
  220. tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
  221. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  222. /* Better not delay acks, sender can have a very low cwnd */
  223. tcp_enter_quickack_mode(sk, 2);
  224. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  225. }
  226. tp->ecn_flags |= TCP_ECN_SEEN;
  227. break;
  228. default:
  229. if (tcp_ca_needs_ecn(sk))
  230. tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
  231. tp->ecn_flags |= TCP_ECN_SEEN;
  232. break;
  233. }
  234. }
  235. static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
  236. {
  237. if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
  238. __tcp_ecn_check_ce(sk, skb);
  239. }
  240. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  241. {
  242. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  243. tp->ecn_flags &= ~TCP_ECN_OK;
  244. }
  245. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  246. {
  247. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  248. tp->ecn_flags &= ~TCP_ECN_OK;
  249. }
  250. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  251. {
  252. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  253. return true;
  254. return false;
  255. }
  256. /* Buffer size and advertised window tuning.
  257. *
  258. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  259. */
  260. static void tcp_sndbuf_expand(struct sock *sk)
  261. {
  262. const struct tcp_sock *tp = tcp_sk(sk);
  263. int sndmem, per_mss;
  264. u32 nr_segs;
  265. /* Worst case is non GSO/TSO : each frame consumes one skb
  266. * and skb->head is kmalloced using power of two area of memory
  267. */
  268. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  269. MAX_TCP_HEADER +
  270. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  271. per_mss = roundup_pow_of_two(per_mss) +
  272. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  273. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  274. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  275. /* Fast Recovery (RFC 5681 3.2) :
  276. * Cubic needs 1.7 factor, rounded to 2 to include
  277. * extra cushion (application might react slowly to POLLOUT)
  278. */
  279. sndmem = 2 * nr_segs * per_mss;
  280. if (sk->sk_sndbuf < sndmem)
  281. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  282. }
  283. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  284. *
  285. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  286. * forward and advertised in receiver window (tp->rcv_wnd) and
  287. * "application buffer", required to isolate scheduling/application
  288. * latencies from network.
  289. * window_clamp is maximal advertised window. It can be less than
  290. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  291. * is reserved for "application" buffer. The less window_clamp is
  292. * the smoother our behaviour from viewpoint of network, but the lower
  293. * throughput and the higher sensitivity of the connection to losses. 8)
  294. *
  295. * rcv_ssthresh is more strict window_clamp used at "slow start"
  296. * phase to predict further behaviour of this connection.
  297. * It is used for two goals:
  298. * - to enforce header prediction at sender, even when application
  299. * requires some significant "application buffer". It is check #1.
  300. * - to prevent pruning of receive queue because of misprediction
  301. * of receiver window. Check #2.
  302. *
  303. * The scheme does not work when sender sends good segments opening
  304. * window and then starts to feed us spaghetti. But it should work
  305. * in common situations. Otherwise, we have to rely on queue collapsing.
  306. */
  307. /* Slow part of check#2. */
  308. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  309. {
  310. struct tcp_sock *tp = tcp_sk(sk);
  311. /* Optimize this! */
  312. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  313. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  314. while (tp->rcv_ssthresh <= window) {
  315. if (truesize <= skb->len)
  316. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  317. truesize >>= 1;
  318. window >>= 1;
  319. }
  320. return 0;
  321. }
  322. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  323. {
  324. struct tcp_sock *tp = tcp_sk(sk);
  325. int room;
  326. room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
  327. /* Check #1 */
  328. if (room > 0 && !tcp_under_memory_pressure(sk)) {
  329. int incr;
  330. /* Check #2. Increase window, if skb with such overhead
  331. * will fit to rcvbuf in future.
  332. */
  333. if (tcp_win_from_space(skb->truesize) <= skb->len)
  334. incr = 2 * tp->advmss;
  335. else
  336. incr = __tcp_grow_window(sk, skb);
  337. if (incr) {
  338. incr = max_t(int, incr, 2 * skb->len);
  339. tp->rcv_ssthresh += min(room, incr);
  340. inet_csk(sk)->icsk_ack.quick |= 1;
  341. }
  342. }
  343. }
  344. /* 3. Tuning rcvbuf, when connection enters established state. */
  345. static void tcp_fixup_rcvbuf(struct sock *sk)
  346. {
  347. u32 mss = tcp_sk(sk)->advmss;
  348. int rcvmem;
  349. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  350. tcp_default_init_rwnd(mss);
  351. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  352. * Allow enough cushion so that sender is not limited by our window
  353. */
  354. if (sysctl_tcp_moderate_rcvbuf)
  355. rcvmem <<= 2;
  356. if (sk->sk_rcvbuf < rcvmem)
  357. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  358. }
  359. /* 4. Try to fixup all. It is made immediately after connection enters
  360. * established state.
  361. */
  362. void tcp_init_buffer_space(struct sock *sk)
  363. {
  364. struct tcp_sock *tp = tcp_sk(sk);
  365. int maxwin;
  366. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  367. tcp_fixup_rcvbuf(sk);
  368. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  369. tcp_sndbuf_expand(sk);
  370. tp->rcvq_space.space = tp->rcv_wnd;
  371. tp->rcvq_space.time = tcp_time_stamp;
  372. tp->rcvq_space.seq = tp->copied_seq;
  373. maxwin = tcp_full_space(sk);
  374. if (tp->window_clamp >= maxwin) {
  375. tp->window_clamp = maxwin;
  376. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  377. tp->window_clamp = max(maxwin -
  378. (maxwin >> sysctl_tcp_app_win),
  379. 4 * tp->advmss);
  380. }
  381. /* Force reservation of one segment. */
  382. if (sysctl_tcp_app_win &&
  383. tp->window_clamp > 2 * tp->advmss &&
  384. tp->window_clamp + tp->advmss > maxwin)
  385. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  386. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  387. tp->snd_cwnd_stamp = tcp_time_stamp;
  388. }
  389. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  390. static void tcp_clamp_window(struct sock *sk)
  391. {
  392. struct tcp_sock *tp = tcp_sk(sk);
  393. struct inet_connection_sock *icsk = inet_csk(sk);
  394. icsk->icsk_ack.quick = 0;
  395. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  396. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  397. !tcp_under_memory_pressure(sk) &&
  398. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  399. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  400. sysctl_tcp_rmem[2]);
  401. }
  402. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  403. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  404. }
  405. /* Initialize RCV_MSS value.
  406. * RCV_MSS is an our guess about MSS used by the peer.
  407. * We haven't any direct information about the MSS.
  408. * It's better to underestimate the RCV_MSS rather than overestimate.
  409. * Overestimations make us ACKing less frequently than needed.
  410. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  411. */
  412. void tcp_initialize_rcv_mss(struct sock *sk)
  413. {
  414. const struct tcp_sock *tp = tcp_sk(sk);
  415. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  416. hint = min(hint, tp->rcv_wnd / 2);
  417. hint = min(hint, TCP_MSS_DEFAULT);
  418. hint = max(hint, TCP_MIN_MSS);
  419. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  420. }
  421. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  422. /* Receiver "autotuning" code.
  423. *
  424. * The algorithm for RTT estimation w/o timestamps is based on
  425. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  426. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  427. *
  428. * More detail on this code can be found at
  429. * <http://staff.psc.edu/jheffner/>,
  430. * though this reference is out of date. A new paper
  431. * is pending.
  432. */
  433. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  434. {
  435. u32 new_sample = tp->rcv_rtt_est.rtt;
  436. long m = sample;
  437. if (m == 0)
  438. m = 1;
  439. if (new_sample != 0) {
  440. /* If we sample in larger samples in the non-timestamp
  441. * case, we could grossly overestimate the RTT especially
  442. * with chatty applications or bulk transfer apps which
  443. * are stalled on filesystem I/O.
  444. *
  445. * Also, since we are only going for a minimum in the
  446. * non-timestamp case, we do not smooth things out
  447. * else with timestamps disabled convergence takes too
  448. * long.
  449. */
  450. if (!win_dep) {
  451. m -= (new_sample >> 3);
  452. new_sample += m;
  453. } else {
  454. m <<= 3;
  455. if (m < new_sample)
  456. new_sample = m;
  457. }
  458. } else {
  459. /* No previous measure. */
  460. new_sample = m << 3;
  461. }
  462. if (tp->rcv_rtt_est.rtt != new_sample)
  463. tp->rcv_rtt_est.rtt = new_sample;
  464. }
  465. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  466. {
  467. if (tp->rcv_rtt_est.time == 0)
  468. goto new_measure;
  469. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  470. return;
  471. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  472. new_measure:
  473. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  474. tp->rcv_rtt_est.time = tcp_time_stamp;
  475. }
  476. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  477. const struct sk_buff *skb)
  478. {
  479. struct tcp_sock *tp = tcp_sk(sk);
  480. if (tp->rx_opt.rcv_tsecr &&
  481. (TCP_SKB_CB(skb)->end_seq -
  482. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  483. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  484. }
  485. /*
  486. * This function should be called every time data is copied to user space.
  487. * It calculates the appropriate TCP receive buffer space.
  488. */
  489. void tcp_rcv_space_adjust(struct sock *sk)
  490. {
  491. struct tcp_sock *tp = tcp_sk(sk);
  492. u32 copied;
  493. int time;
  494. time = tcp_time_stamp - tp->rcvq_space.time;
  495. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  496. return;
  497. /* Number of bytes copied to user in last RTT */
  498. copied = tp->copied_seq - tp->rcvq_space.seq;
  499. if (copied <= tp->rcvq_space.space)
  500. goto new_measure;
  501. /* A bit of theory :
  502. * copied = bytes received in previous RTT, our base window
  503. * To cope with packet losses, we need a 2x factor
  504. * To cope with slow start, and sender growing its cwin by 100 %
  505. * every RTT, we need a 4x factor, because the ACK we are sending
  506. * now is for the next RTT, not the current one :
  507. * <prev RTT . ><current RTT .. ><next RTT .... >
  508. */
  509. if (sysctl_tcp_moderate_rcvbuf &&
  510. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  511. int rcvmem, rcvbuf;
  512. u64 rcvwin;
  513. /* minimal window to cope with packet losses, assuming
  514. * steady state. Add some cushion because of small variations.
  515. */
  516. rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
  517. /* If rate increased by 25%,
  518. * assume slow start, rcvwin = 3 * copied
  519. * If rate increased by 50%,
  520. * assume sender can use 2x growth, rcvwin = 4 * copied
  521. */
  522. if (copied >=
  523. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  524. if (copied >=
  525. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  526. rcvwin <<= 1;
  527. else
  528. rcvwin += (rcvwin >> 1);
  529. }
  530. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  531. while (tcp_win_from_space(rcvmem) < tp->advmss)
  532. rcvmem += 128;
  533. do_div(rcvwin, tp->advmss);
  534. rcvbuf = min_t(u64, rcvwin * rcvmem, sysctl_tcp_rmem[2]);
  535. if (rcvbuf > sk->sk_rcvbuf) {
  536. sk->sk_rcvbuf = rcvbuf;
  537. /* Make the window clamp follow along. */
  538. tp->window_clamp = tcp_win_from_space(rcvbuf);
  539. }
  540. }
  541. tp->rcvq_space.space = copied;
  542. new_measure:
  543. tp->rcvq_space.seq = tp->copied_seq;
  544. tp->rcvq_space.time = tcp_time_stamp;
  545. }
  546. /* There is something which you must keep in mind when you analyze the
  547. * behavior of the tp->ato delayed ack timeout interval. When a
  548. * connection starts up, we want to ack as quickly as possible. The
  549. * problem is that "good" TCP's do slow start at the beginning of data
  550. * transmission. The means that until we send the first few ACK's the
  551. * sender will sit on his end and only queue most of his data, because
  552. * he can only send snd_cwnd unacked packets at any given time. For
  553. * each ACK we send, he increments snd_cwnd and transmits more of his
  554. * queue. -DaveM
  555. */
  556. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  557. {
  558. struct tcp_sock *tp = tcp_sk(sk);
  559. struct inet_connection_sock *icsk = inet_csk(sk);
  560. u32 now;
  561. inet_csk_schedule_ack(sk);
  562. tcp_measure_rcv_mss(sk, skb);
  563. tcp_rcv_rtt_measure(tp);
  564. now = tcp_time_stamp;
  565. if (!icsk->icsk_ack.ato) {
  566. /* The _first_ data packet received, initialize
  567. * delayed ACK engine.
  568. */
  569. tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
  570. icsk->icsk_ack.ato = TCP_ATO_MIN;
  571. } else {
  572. int m = now - icsk->icsk_ack.lrcvtime;
  573. if (m <= TCP_ATO_MIN / 2) {
  574. /* The fastest case is the first. */
  575. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  576. } else if (m < icsk->icsk_ack.ato) {
  577. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  578. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  579. icsk->icsk_ack.ato = icsk->icsk_rto;
  580. } else if (m > icsk->icsk_rto) {
  581. /* Too long gap. Apparently sender failed to
  582. * restart window, so that we send ACKs quickly.
  583. */
  584. tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
  585. sk_mem_reclaim(sk);
  586. }
  587. }
  588. icsk->icsk_ack.lrcvtime = now;
  589. tcp_ecn_check_ce(sk, skb);
  590. if (skb->len >= 128)
  591. tcp_grow_window(sk, skb);
  592. }
  593. /* Called to compute a smoothed rtt estimate. The data fed to this
  594. * routine either comes from timestamps, or from segments that were
  595. * known _not_ to have been retransmitted [see Karn/Partridge
  596. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  597. * piece by Van Jacobson.
  598. * NOTE: the next three routines used to be one big routine.
  599. * To save cycles in the RFC 1323 implementation it was better to break
  600. * it up into three procedures. -- erics
  601. */
  602. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  603. {
  604. struct tcp_sock *tp = tcp_sk(sk);
  605. long m = mrtt_us; /* RTT */
  606. u32 srtt = tp->srtt_us;
  607. /* The following amusing code comes from Jacobson's
  608. * article in SIGCOMM '88. Note that rtt and mdev
  609. * are scaled versions of rtt and mean deviation.
  610. * This is designed to be as fast as possible
  611. * m stands for "measurement".
  612. *
  613. * On a 1990 paper the rto value is changed to:
  614. * RTO = rtt + 4 * mdev
  615. *
  616. * Funny. This algorithm seems to be very broken.
  617. * These formulae increase RTO, when it should be decreased, increase
  618. * too slowly, when it should be increased quickly, decrease too quickly
  619. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  620. * does not matter how to _calculate_ it. Seems, it was trap
  621. * that VJ failed to avoid. 8)
  622. */
  623. if (srtt != 0) {
  624. m -= (srtt >> 3); /* m is now error in rtt est */
  625. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  626. if (m < 0) {
  627. m = -m; /* m is now abs(error) */
  628. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  629. /* This is similar to one of Eifel findings.
  630. * Eifel blocks mdev updates when rtt decreases.
  631. * This solution is a bit different: we use finer gain
  632. * for mdev in this case (alpha*beta).
  633. * Like Eifel it also prevents growth of rto,
  634. * but also it limits too fast rto decreases,
  635. * happening in pure Eifel.
  636. */
  637. if (m > 0)
  638. m >>= 3;
  639. } else {
  640. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  641. }
  642. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  643. if (tp->mdev_us > tp->mdev_max_us) {
  644. tp->mdev_max_us = tp->mdev_us;
  645. if (tp->mdev_max_us > tp->rttvar_us)
  646. tp->rttvar_us = tp->mdev_max_us;
  647. }
  648. if (after(tp->snd_una, tp->rtt_seq)) {
  649. if (tp->mdev_max_us < tp->rttvar_us)
  650. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  651. tp->rtt_seq = tp->snd_nxt;
  652. tp->mdev_max_us = tcp_rto_min_us(sk);
  653. }
  654. } else {
  655. /* no previous measure. */
  656. srtt = m << 3; /* take the measured time to be rtt */
  657. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  658. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  659. tp->mdev_max_us = tp->rttvar_us;
  660. tp->rtt_seq = tp->snd_nxt;
  661. }
  662. tp->srtt_us = max(1U, srtt);
  663. }
  664. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  665. * Note: TCP stack does not yet implement pacing.
  666. * FQ packet scheduler can be used to implement cheap but effective
  667. * TCP pacing, to smooth the burst on large writes when packets
  668. * in flight is significantly lower than cwnd (or rwin)
  669. */
  670. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  671. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  672. static void tcp_update_pacing_rate(struct sock *sk)
  673. {
  674. const struct tcp_sock *tp = tcp_sk(sk);
  675. u64 rate;
  676. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  677. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  678. /* current rate is (cwnd * mss) / srtt
  679. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  680. * In Congestion Avoidance phase, set it to 120 % the current rate.
  681. *
  682. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  683. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  684. * end of slow start and should slow down.
  685. */
  686. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  687. rate *= sysctl_tcp_pacing_ss_ratio;
  688. else
  689. rate *= sysctl_tcp_pacing_ca_ratio;
  690. rate *= max(tp->snd_cwnd, tp->packets_out);
  691. if (likely(tp->srtt_us))
  692. do_div(rate, tp->srtt_us);
  693. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  694. * without any lock. We want to make sure compiler wont store
  695. * intermediate values in this location.
  696. */
  697. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  698. sk->sk_max_pacing_rate);
  699. }
  700. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  701. * routine referred to above.
  702. */
  703. static void tcp_set_rto(struct sock *sk)
  704. {
  705. const struct tcp_sock *tp = tcp_sk(sk);
  706. /* Old crap is replaced with new one. 8)
  707. *
  708. * More seriously:
  709. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  710. * It cannot be less due to utterly erratic ACK generation made
  711. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  712. * to do with delayed acks, because at cwnd>2 true delack timeout
  713. * is invisible. Actually, Linux-2.4 also generates erratic
  714. * ACKs in some circumstances.
  715. */
  716. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  717. /* 2. Fixups made earlier cannot be right.
  718. * If we do not estimate RTO correctly without them,
  719. * all the algo is pure shit and should be replaced
  720. * with correct one. It is exactly, which we pretend to do.
  721. */
  722. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  723. * guarantees that rto is higher.
  724. */
  725. tcp_bound_rto(sk);
  726. }
  727. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  728. {
  729. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  730. if (!cwnd)
  731. cwnd = TCP_INIT_CWND;
  732. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  733. }
  734. /*
  735. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  736. * disables it when reordering is detected
  737. */
  738. void tcp_disable_fack(struct tcp_sock *tp)
  739. {
  740. /* RFC3517 uses different metric in lost marker => reset on change */
  741. if (tcp_is_fack(tp))
  742. tp->lost_skb_hint = NULL;
  743. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  744. }
  745. /* Take a notice that peer is sending D-SACKs */
  746. static void tcp_dsack_seen(struct tcp_sock *tp)
  747. {
  748. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  749. }
  750. static void tcp_update_reordering(struct sock *sk, const int metric,
  751. const int ts)
  752. {
  753. struct tcp_sock *tp = tcp_sk(sk);
  754. if (metric > tp->reordering) {
  755. int mib_idx;
  756. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  757. /* This exciting event is worth to be remembered. 8) */
  758. if (ts)
  759. mib_idx = LINUX_MIB_TCPTSREORDER;
  760. else if (tcp_is_reno(tp))
  761. mib_idx = LINUX_MIB_TCPRENOREORDER;
  762. else if (tcp_is_fack(tp))
  763. mib_idx = LINUX_MIB_TCPFACKREORDER;
  764. else
  765. mib_idx = LINUX_MIB_TCPSACKREORDER;
  766. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  767. #if FASTRETRANS_DEBUG > 1
  768. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  769. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  770. tp->reordering,
  771. tp->fackets_out,
  772. tp->sacked_out,
  773. tp->undo_marker ? tp->undo_retrans : 0);
  774. #endif
  775. tcp_disable_fack(tp);
  776. }
  777. if (metric > 0)
  778. tcp_disable_early_retrans(tp);
  779. tp->rack.reord = 1;
  780. }
  781. /* This must be called before lost_out is incremented */
  782. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  783. {
  784. if (!tp->retransmit_skb_hint ||
  785. before(TCP_SKB_CB(skb)->seq,
  786. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  787. tp->retransmit_skb_hint = skb;
  788. if (!tp->lost_out ||
  789. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  790. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  791. }
  792. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  793. {
  794. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  795. tcp_verify_retransmit_hint(tp, skb);
  796. tp->lost_out += tcp_skb_pcount(skb);
  797. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  798. }
  799. }
  800. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  801. {
  802. tcp_verify_retransmit_hint(tp, skb);
  803. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  804. tp->lost_out += tcp_skb_pcount(skb);
  805. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  806. }
  807. }
  808. /* This procedure tags the retransmission queue when SACKs arrive.
  809. *
  810. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  811. * Packets in queue with these bits set are counted in variables
  812. * sacked_out, retrans_out and lost_out, correspondingly.
  813. *
  814. * Valid combinations are:
  815. * Tag InFlight Description
  816. * 0 1 - orig segment is in flight.
  817. * S 0 - nothing flies, orig reached receiver.
  818. * L 0 - nothing flies, orig lost by net.
  819. * R 2 - both orig and retransmit are in flight.
  820. * L|R 1 - orig is lost, retransmit is in flight.
  821. * S|R 1 - orig reached receiver, retrans is still in flight.
  822. * (L|S|R is logically valid, it could occur when L|R is sacked,
  823. * but it is equivalent to plain S and code short-curcuits it to S.
  824. * L|S is logically invalid, it would mean -1 packet in flight 8))
  825. *
  826. * These 6 states form finite state machine, controlled by the following events:
  827. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  828. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  829. * 3. Loss detection event of two flavors:
  830. * A. Scoreboard estimator decided the packet is lost.
  831. * A'. Reno "three dupacks" marks head of queue lost.
  832. * A''. Its FACK modification, head until snd.fack is lost.
  833. * B. SACK arrives sacking SND.NXT at the moment, when the
  834. * segment was retransmitted.
  835. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  836. *
  837. * It is pleasant to note, that state diagram turns out to be commutative,
  838. * so that we are allowed not to be bothered by order of our actions,
  839. * when multiple events arrive simultaneously. (see the function below).
  840. *
  841. * Reordering detection.
  842. * --------------------
  843. * Reordering metric is maximal distance, which a packet can be displaced
  844. * in packet stream. With SACKs we can estimate it:
  845. *
  846. * 1. SACK fills old hole and the corresponding segment was not
  847. * ever retransmitted -> reordering. Alas, we cannot use it
  848. * when segment was retransmitted.
  849. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  850. * for retransmitted and already SACKed segment -> reordering..
  851. * Both of these heuristics are not used in Loss state, when we cannot
  852. * account for retransmits accurately.
  853. *
  854. * SACK block validation.
  855. * ----------------------
  856. *
  857. * SACK block range validation checks that the received SACK block fits to
  858. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  859. * Note that SND.UNA is not included to the range though being valid because
  860. * it means that the receiver is rather inconsistent with itself reporting
  861. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  862. * perfectly valid, however, in light of RFC2018 which explicitly states
  863. * that "SACK block MUST reflect the newest segment. Even if the newest
  864. * segment is going to be discarded ...", not that it looks very clever
  865. * in case of head skb. Due to potentional receiver driven attacks, we
  866. * choose to avoid immediate execution of a walk in write queue due to
  867. * reneging and defer head skb's loss recovery to standard loss recovery
  868. * procedure that will eventually trigger (nothing forbids us doing this).
  869. *
  870. * Implements also blockage to start_seq wrap-around. Problem lies in the
  871. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  872. * there's no guarantee that it will be before snd_nxt (n). The problem
  873. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  874. * wrap (s_w):
  875. *
  876. * <- outs wnd -> <- wrapzone ->
  877. * u e n u_w e_w s n_w
  878. * | | | | | | |
  879. * |<------------+------+----- TCP seqno space --------------+---------->|
  880. * ...-- <2^31 ->| |<--------...
  881. * ...---- >2^31 ------>| |<--------...
  882. *
  883. * Current code wouldn't be vulnerable but it's better still to discard such
  884. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  885. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  886. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  887. * equal to the ideal case (infinite seqno space without wrap caused issues).
  888. *
  889. * With D-SACK the lower bound is extended to cover sequence space below
  890. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  891. * again, D-SACK block must not to go across snd_una (for the same reason as
  892. * for the normal SACK blocks, explained above). But there all simplicity
  893. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  894. * fully below undo_marker they do not affect behavior in anyway and can
  895. * therefore be safely ignored. In rare cases (which are more or less
  896. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  897. * fragmentation and packet reordering past skb's retransmission. To consider
  898. * them correctly, the acceptable range must be extended even more though
  899. * the exact amount is rather hard to quantify. However, tp->max_window can
  900. * be used as an exaggerated estimate.
  901. */
  902. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  903. u32 start_seq, u32 end_seq)
  904. {
  905. /* Too far in future, or reversed (interpretation is ambiguous) */
  906. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  907. return false;
  908. /* Nasty start_seq wrap-around check (see comments above) */
  909. if (!before(start_seq, tp->snd_nxt))
  910. return false;
  911. /* In outstanding window? ...This is valid exit for D-SACKs too.
  912. * start_seq == snd_una is non-sensical (see comments above)
  913. */
  914. if (after(start_seq, tp->snd_una))
  915. return true;
  916. if (!is_dsack || !tp->undo_marker)
  917. return false;
  918. /* ...Then it's D-SACK, and must reside below snd_una completely */
  919. if (after(end_seq, tp->snd_una))
  920. return false;
  921. if (!before(start_seq, tp->undo_marker))
  922. return true;
  923. /* Too old */
  924. if (!after(end_seq, tp->undo_marker))
  925. return false;
  926. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  927. * start_seq < undo_marker and end_seq >= undo_marker.
  928. */
  929. return !before(start_seq, end_seq - tp->max_window);
  930. }
  931. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  932. struct tcp_sack_block_wire *sp, int num_sacks,
  933. u32 prior_snd_una)
  934. {
  935. struct tcp_sock *tp = tcp_sk(sk);
  936. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  937. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  938. bool dup_sack = false;
  939. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  940. dup_sack = true;
  941. tcp_dsack_seen(tp);
  942. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  943. } else if (num_sacks > 1) {
  944. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  945. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  946. if (!after(end_seq_0, end_seq_1) &&
  947. !before(start_seq_0, start_seq_1)) {
  948. dup_sack = true;
  949. tcp_dsack_seen(tp);
  950. NET_INC_STATS_BH(sock_net(sk),
  951. LINUX_MIB_TCPDSACKOFORECV);
  952. }
  953. }
  954. /* D-SACK for already forgotten data... Do dumb counting. */
  955. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  956. !after(end_seq_0, prior_snd_una) &&
  957. after(end_seq_0, tp->undo_marker))
  958. tp->undo_retrans--;
  959. return dup_sack;
  960. }
  961. struct tcp_sacktag_state {
  962. int reord;
  963. int fack_count;
  964. /* Timestamps for earliest and latest never-retransmitted segment
  965. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  966. * but congestion control should still get an accurate delay signal.
  967. */
  968. struct skb_mstamp first_sackt;
  969. struct skb_mstamp last_sackt;
  970. int flag;
  971. };
  972. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  973. * the incoming SACK may not exactly match but we can find smaller MSS
  974. * aligned portion of it that matches. Therefore we might need to fragment
  975. * which may fail and creates some hassle (caller must handle error case
  976. * returns).
  977. *
  978. * FIXME: this could be merged to shift decision code
  979. */
  980. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  981. u32 start_seq, u32 end_seq)
  982. {
  983. int err;
  984. bool in_sack;
  985. unsigned int pkt_len;
  986. unsigned int mss;
  987. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  988. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  989. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  990. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  991. mss = tcp_skb_mss(skb);
  992. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  993. if (!in_sack) {
  994. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  995. if (pkt_len < mss)
  996. pkt_len = mss;
  997. } else {
  998. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  999. if (pkt_len < mss)
  1000. return -EINVAL;
  1001. }
  1002. /* Round if necessary so that SACKs cover only full MSSes
  1003. * and/or the remaining small portion (if present)
  1004. */
  1005. if (pkt_len > mss) {
  1006. unsigned int new_len = (pkt_len / mss) * mss;
  1007. if (!in_sack && new_len < pkt_len)
  1008. new_len += mss;
  1009. pkt_len = new_len;
  1010. }
  1011. if (pkt_len >= skb->len && !in_sack)
  1012. return 0;
  1013. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1014. if (err < 0)
  1015. return err;
  1016. }
  1017. return in_sack;
  1018. }
  1019. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1020. static u8 tcp_sacktag_one(struct sock *sk,
  1021. struct tcp_sacktag_state *state, u8 sacked,
  1022. u32 start_seq, u32 end_seq,
  1023. int dup_sack, int pcount,
  1024. const struct skb_mstamp *xmit_time)
  1025. {
  1026. struct tcp_sock *tp = tcp_sk(sk);
  1027. int fack_count = state->fack_count;
  1028. /* Account D-SACK for retransmitted packet. */
  1029. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1030. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1031. after(end_seq, tp->undo_marker))
  1032. tp->undo_retrans--;
  1033. if (sacked & TCPCB_SACKED_ACKED)
  1034. state->reord = min(fack_count, state->reord);
  1035. }
  1036. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1037. if (!after(end_seq, tp->snd_una))
  1038. return sacked;
  1039. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1040. tcp_rack_advance(tp, xmit_time, sacked);
  1041. if (sacked & TCPCB_SACKED_RETRANS) {
  1042. /* If the segment is not tagged as lost,
  1043. * we do not clear RETRANS, believing
  1044. * that retransmission is still in flight.
  1045. */
  1046. if (sacked & TCPCB_LOST) {
  1047. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1048. tp->lost_out -= pcount;
  1049. tp->retrans_out -= pcount;
  1050. }
  1051. } else {
  1052. if (!(sacked & TCPCB_RETRANS)) {
  1053. /* New sack for not retransmitted frame,
  1054. * which was in hole. It is reordering.
  1055. */
  1056. if (before(start_seq,
  1057. tcp_highest_sack_seq(tp)))
  1058. state->reord = min(fack_count,
  1059. state->reord);
  1060. if (!after(end_seq, tp->high_seq))
  1061. state->flag |= FLAG_ORIG_SACK_ACKED;
  1062. if (state->first_sackt.v64 == 0)
  1063. state->first_sackt = *xmit_time;
  1064. state->last_sackt = *xmit_time;
  1065. }
  1066. if (sacked & TCPCB_LOST) {
  1067. sacked &= ~TCPCB_LOST;
  1068. tp->lost_out -= pcount;
  1069. }
  1070. }
  1071. sacked |= TCPCB_SACKED_ACKED;
  1072. state->flag |= FLAG_DATA_SACKED;
  1073. tp->sacked_out += pcount;
  1074. fack_count += pcount;
  1075. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1076. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1077. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1078. tp->lost_cnt_hint += pcount;
  1079. if (fack_count > tp->fackets_out)
  1080. tp->fackets_out = fack_count;
  1081. }
  1082. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1083. * frames and clear it. undo_retrans is decreased above, L|R frames
  1084. * are accounted above as well.
  1085. */
  1086. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1087. sacked &= ~TCPCB_SACKED_RETRANS;
  1088. tp->retrans_out -= pcount;
  1089. }
  1090. return sacked;
  1091. }
  1092. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1093. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1094. */
  1095. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1096. struct tcp_sacktag_state *state,
  1097. unsigned int pcount, int shifted, int mss,
  1098. bool dup_sack)
  1099. {
  1100. struct tcp_sock *tp = tcp_sk(sk);
  1101. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1102. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1103. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1104. BUG_ON(!pcount);
  1105. /* Adjust counters and hints for the newly sacked sequence
  1106. * range but discard the return value since prev is already
  1107. * marked. We must tag the range first because the seq
  1108. * advancement below implicitly advances
  1109. * tcp_highest_sack_seq() when skb is highest_sack.
  1110. */
  1111. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1112. start_seq, end_seq, dup_sack, pcount,
  1113. &skb->skb_mstamp);
  1114. if (skb == tp->lost_skb_hint)
  1115. tp->lost_cnt_hint += pcount;
  1116. TCP_SKB_CB(prev)->end_seq += shifted;
  1117. TCP_SKB_CB(skb)->seq += shifted;
  1118. tcp_skb_pcount_add(prev, pcount);
  1119. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1120. tcp_skb_pcount_add(skb, -pcount);
  1121. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1122. * in theory this shouldn't be necessary but as long as DSACK
  1123. * code can come after this skb later on it's better to keep
  1124. * setting gso_size to something.
  1125. */
  1126. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1127. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1128. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1129. if (tcp_skb_pcount(skb) <= 1)
  1130. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1131. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1132. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1133. if (skb->len > 0) {
  1134. BUG_ON(!tcp_skb_pcount(skb));
  1135. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1136. return false;
  1137. }
  1138. /* Whole SKB was eaten :-) */
  1139. if (skb == tp->retransmit_skb_hint)
  1140. tp->retransmit_skb_hint = prev;
  1141. if (skb == tp->lost_skb_hint) {
  1142. tp->lost_skb_hint = prev;
  1143. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1144. }
  1145. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1146. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1147. TCP_SKB_CB(prev)->end_seq++;
  1148. if (skb == tcp_highest_sack(sk))
  1149. tcp_advance_highest_sack(sk, skb);
  1150. tcp_unlink_write_queue(skb, sk);
  1151. sk_wmem_free_skb(sk, skb);
  1152. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1153. return true;
  1154. }
  1155. /* I wish gso_size would have a bit more sane initialization than
  1156. * something-or-zero which complicates things
  1157. */
  1158. static int tcp_skb_seglen(const struct sk_buff *skb)
  1159. {
  1160. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1161. }
  1162. /* Shifting pages past head area doesn't work */
  1163. static int skb_can_shift(const struct sk_buff *skb)
  1164. {
  1165. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1166. }
  1167. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1168. * skb.
  1169. */
  1170. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1171. struct tcp_sacktag_state *state,
  1172. u32 start_seq, u32 end_seq,
  1173. bool dup_sack)
  1174. {
  1175. struct tcp_sock *tp = tcp_sk(sk);
  1176. struct sk_buff *prev;
  1177. int mss;
  1178. int pcount = 0;
  1179. int len;
  1180. int in_sack;
  1181. if (!sk_can_gso(sk))
  1182. goto fallback;
  1183. /* Normally R but no L won't result in plain S */
  1184. if (!dup_sack &&
  1185. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1186. goto fallback;
  1187. if (!skb_can_shift(skb))
  1188. goto fallback;
  1189. /* This frame is about to be dropped (was ACKed). */
  1190. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1191. goto fallback;
  1192. /* Can only happen with delayed DSACK + discard craziness */
  1193. if (unlikely(skb == tcp_write_queue_head(sk)))
  1194. goto fallback;
  1195. prev = tcp_write_queue_prev(sk, skb);
  1196. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1197. goto fallback;
  1198. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1199. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1200. if (in_sack) {
  1201. len = skb->len;
  1202. pcount = tcp_skb_pcount(skb);
  1203. mss = tcp_skb_seglen(skb);
  1204. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1205. * drop this restriction as unnecessary
  1206. */
  1207. if (mss != tcp_skb_seglen(prev))
  1208. goto fallback;
  1209. } else {
  1210. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1211. goto noop;
  1212. /* CHECKME: This is non-MSS split case only?, this will
  1213. * cause skipped skbs due to advancing loop btw, original
  1214. * has that feature too
  1215. */
  1216. if (tcp_skb_pcount(skb) <= 1)
  1217. goto noop;
  1218. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1219. if (!in_sack) {
  1220. /* TODO: head merge to next could be attempted here
  1221. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1222. * though it might not be worth of the additional hassle
  1223. *
  1224. * ...we can probably just fallback to what was done
  1225. * previously. We could try merging non-SACKed ones
  1226. * as well but it probably isn't going to buy off
  1227. * because later SACKs might again split them, and
  1228. * it would make skb timestamp tracking considerably
  1229. * harder problem.
  1230. */
  1231. goto fallback;
  1232. }
  1233. len = end_seq - TCP_SKB_CB(skb)->seq;
  1234. BUG_ON(len < 0);
  1235. BUG_ON(len > skb->len);
  1236. /* MSS boundaries should be honoured or else pcount will
  1237. * severely break even though it makes things bit trickier.
  1238. * Optimize common case to avoid most of the divides
  1239. */
  1240. mss = tcp_skb_mss(skb);
  1241. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1242. * drop this restriction as unnecessary
  1243. */
  1244. if (mss != tcp_skb_seglen(prev))
  1245. goto fallback;
  1246. if (len == mss) {
  1247. pcount = 1;
  1248. } else if (len < mss) {
  1249. goto noop;
  1250. } else {
  1251. pcount = len / mss;
  1252. len = pcount * mss;
  1253. }
  1254. }
  1255. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1256. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1257. goto fallback;
  1258. if (!skb_shift(prev, skb, len))
  1259. goto fallback;
  1260. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1261. goto out;
  1262. /* Hole filled allows collapsing with the next as well, this is very
  1263. * useful when hole on every nth skb pattern happens
  1264. */
  1265. if (prev == tcp_write_queue_tail(sk))
  1266. goto out;
  1267. skb = tcp_write_queue_next(sk, prev);
  1268. if (!skb_can_shift(skb) ||
  1269. (skb == tcp_send_head(sk)) ||
  1270. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1271. (mss != tcp_skb_seglen(skb)))
  1272. goto out;
  1273. len = skb->len;
  1274. if (skb_shift(prev, skb, len)) {
  1275. pcount += tcp_skb_pcount(skb);
  1276. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1277. }
  1278. out:
  1279. state->fack_count += pcount;
  1280. return prev;
  1281. noop:
  1282. return skb;
  1283. fallback:
  1284. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1285. return NULL;
  1286. }
  1287. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1288. struct tcp_sack_block *next_dup,
  1289. struct tcp_sacktag_state *state,
  1290. u32 start_seq, u32 end_seq,
  1291. bool dup_sack_in)
  1292. {
  1293. struct tcp_sock *tp = tcp_sk(sk);
  1294. struct sk_buff *tmp;
  1295. tcp_for_write_queue_from(skb, sk) {
  1296. int in_sack = 0;
  1297. bool dup_sack = dup_sack_in;
  1298. if (skb == tcp_send_head(sk))
  1299. break;
  1300. /* queue is in-order => we can short-circuit the walk early */
  1301. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1302. break;
  1303. if (next_dup &&
  1304. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1305. in_sack = tcp_match_skb_to_sack(sk, skb,
  1306. next_dup->start_seq,
  1307. next_dup->end_seq);
  1308. if (in_sack > 0)
  1309. dup_sack = true;
  1310. }
  1311. /* skb reference here is a bit tricky to get right, since
  1312. * shifting can eat and free both this skb and the next,
  1313. * so not even _safe variant of the loop is enough.
  1314. */
  1315. if (in_sack <= 0) {
  1316. tmp = tcp_shift_skb_data(sk, skb, state,
  1317. start_seq, end_seq, dup_sack);
  1318. if (tmp) {
  1319. if (tmp != skb) {
  1320. skb = tmp;
  1321. continue;
  1322. }
  1323. in_sack = 0;
  1324. } else {
  1325. in_sack = tcp_match_skb_to_sack(sk, skb,
  1326. start_seq,
  1327. end_seq);
  1328. }
  1329. }
  1330. if (unlikely(in_sack < 0))
  1331. break;
  1332. if (in_sack) {
  1333. TCP_SKB_CB(skb)->sacked =
  1334. tcp_sacktag_one(sk,
  1335. state,
  1336. TCP_SKB_CB(skb)->sacked,
  1337. TCP_SKB_CB(skb)->seq,
  1338. TCP_SKB_CB(skb)->end_seq,
  1339. dup_sack,
  1340. tcp_skb_pcount(skb),
  1341. &skb->skb_mstamp);
  1342. if (!before(TCP_SKB_CB(skb)->seq,
  1343. tcp_highest_sack_seq(tp)))
  1344. tcp_advance_highest_sack(sk, skb);
  1345. }
  1346. state->fack_count += tcp_skb_pcount(skb);
  1347. }
  1348. return skb;
  1349. }
  1350. /* Avoid all extra work that is being done by sacktag while walking in
  1351. * a normal way
  1352. */
  1353. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1354. struct tcp_sacktag_state *state,
  1355. u32 skip_to_seq)
  1356. {
  1357. tcp_for_write_queue_from(skb, sk) {
  1358. if (skb == tcp_send_head(sk))
  1359. break;
  1360. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1361. break;
  1362. state->fack_count += tcp_skb_pcount(skb);
  1363. }
  1364. return skb;
  1365. }
  1366. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1367. struct sock *sk,
  1368. struct tcp_sack_block *next_dup,
  1369. struct tcp_sacktag_state *state,
  1370. u32 skip_to_seq)
  1371. {
  1372. if (!next_dup)
  1373. return skb;
  1374. if (before(next_dup->start_seq, skip_to_seq)) {
  1375. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1376. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1377. next_dup->start_seq, next_dup->end_seq,
  1378. 1);
  1379. }
  1380. return skb;
  1381. }
  1382. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1383. {
  1384. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1385. }
  1386. static int
  1387. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1388. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1389. {
  1390. struct tcp_sock *tp = tcp_sk(sk);
  1391. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1392. TCP_SKB_CB(ack_skb)->sacked);
  1393. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1394. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1395. struct tcp_sack_block *cache;
  1396. struct sk_buff *skb;
  1397. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1398. int used_sacks;
  1399. bool found_dup_sack = false;
  1400. int i, j;
  1401. int first_sack_index;
  1402. state->flag = 0;
  1403. state->reord = tp->packets_out;
  1404. if (!tp->sacked_out) {
  1405. if (WARN_ON(tp->fackets_out))
  1406. tp->fackets_out = 0;
  1407. tcp_highest_sack_reset(sk);
  1408. }
  1409. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1410. num_sacks, prior_snd_una);
  1411. if (found_dup_sack)
  1412. state->flag |= FLAG_DSACKING_ACK;
  1413. /* Eliminate too old ACKs, but take into
  1414. * account more or less fresh ones, they can
  1415. * contain valid SACK info.
  1416. */
  1417. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1418. return 0;
  1419. if (!tp->packets_out)
  1420. goto out;
  1421. used_sacks = 0;
  1422. first_sack_index = 0;
  1423. for (i = 0; i < num_sacks; i++) {
  1424. bool dup_sack = !i && found_dup_sack;
  1425. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1426. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1427. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1428. sp[used_sacks].start_seq,
  1429. sp[used_sacks].end_seq)) {
  1430. int mib_idx;
  1431. if (dup_sack) {
  1432. if (!tp->undo_marker)
  1433. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1434. else
  1435. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1436. } else {
  1437. /* Don't count olds caused by ACK reordering */
  1438. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1439. !after(sp[used_sacks].end_seq, tp->snd_una))
  1440. continue;
  1441. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1442. }
  1443. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1444. if (i == 0)
  1445. first_sack_index = -1;
  1446. continue;
  1447. }
  1448. /* Ignore very old stuff early */
  1449. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1450. continue;
  1451. used_sacks++;
  1452. }
  1453. /* order SACK blocks to allow in order walk of the retrans queue */
  1454. for (i = used_sacks - 1; i > 0; i--) {
  1455. for (j = 0; j < i; j++) {
  1456. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1457. swap(sp[j], sp[j + 1]);
  1458. /* Track where the first SACK block goes to */
  1459. if (j == first_sack_index)
  1460. first_sack_index = j + 1;
  1461. }
  1462. }
  1463. }
  1464. skb = tcp_write_queue_head(sk);
  1465. state->fack_count = 0;
  1466. i = 0;
  1467. if (!tp->sacked_out) {
  1468. /* It's already past, so skip checking against it */
  1469. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1470. } else {
  1471. cache = tp->recv_sack_cache;
  1472. /* Skip empty blocks in at head of the cache */
  1473. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1474. !cache->end_seq)
  1475. cache++;
  1476. }
  1477. while (i < used_sacks) {
  1478. u32 start_seq = sp[i].start_seq;
  1479. u32 end_seq = sp[i].end_seq;
  1480. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1481. struct tcp_sack_block *next_dup = NULL;
  1482. if (found_dup_sack && ((i + 1) == first_sack_index))
  1483. next_dup = &sp[i + 1];
  1484. /* Skip too early cached blocks */
  1485. while (tcp_sack_cache_ok(tp, cache) &&
  1486. !before(start_seq, cache->end_seq))
  1487. cache++;
  1488. /* Can skip some work by looking recv_sack_cache? */
  1489. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1490. after(end_seq, cache->start_seq)) {
  1491. /* Head todo? */
  1492. if (before(start_seq, cache->start_seq)) {
  1493. skb = tcp_sacktag_skip(skb, sk, state,
  1494. start_seq);
  1495. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1496. state,
  1497. start_seq,
  1498. cache->start_seq,
  1499. dup_sack);
  1500. }
  1501. /* Rest of the block already fully processed? */
  1502. if (!after(end_seq, cache->end_seq))
  1503. goto advance_sp;
  1504. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1505. state,
  1506. cache->end_seq);
  1507. /* ...tail remains todo... */
  1508. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1509. /* ...but better entrypoint exists! */
  1510. skb = tcp_highest_sack(sk);
  1511. if (!skb)
  1512. break;
  1513. state->fack_count = tp->fackets_out;
  1514. cache++;
  1515. goto walk;
  1516. }
  1517. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1518. /* Check overlap against next cached too (past this one already) */
  1519. cache++;
  1520. continue;
  1521. }
  1522. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1523. skb = tcp_highest_sack(sk);
  1524. if (!skb)
  1525. break;
  1526. state->fack_count = tp->fackets_out;
  1527. }
  1528. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1529. walk:
  1530. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1531. start_seq, end_seq, dup_sack);
  1532. advance_sp:
  1533. i++;
  1534. }
  1535. /* Clear the head of the cache sack blocks so we can skip it next time */
  1536. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1537. tp->recv_sack_cache[i].start_seq = 0;
  1538. tp->recv_sack_cache[i].end_seq = 0;
  1539. }
  1540. for (j = 0; j < used_sacks; j++)
  1541. tp->recv_sack_cache[i++] = sp[j];
  1542. if ((state->reord < tp->fackets_out) &&
  1543. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1544. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1545. tcp_verify_left_out(tp);
  1546. out:
  1547. #if FASTRETRANS_DEBUG > 0
  1548. WARN_ON((int)tp->sacked_out < 0);
  1549. WARN_ON((int)tp->lost_out < 0);
  1550. WARN_ON((int)tp->retrans_out < 0);
  1551. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1552. #endif
  1553. return state->flag;
  1554. }
  1555. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1556. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1557. */
  1558. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1559. {
  1560. u32 holes;
  1561. holes = max(tp->lost_out, 1U);
  1562. holes = min(holes, tp->packets_out);
  1563. if ((tp->sacked_out + holes) > tp->packets_out) {
  1564. tp->sacked_out = tp->packets_out - holes;
  1565. return true;
  1566. }
  1567. return false;
  1568. }
  1569. /* If we receive more dupacks than we expected counting segments
  1570. * in assumption of absent reordering, interpret this as reordering.
  1571. * The only another reason could be bug in receiver TCP.
  1572. */
  1573. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1574. {
  1575. struct tcp_sock *tp = tcp_sk(sk);
  1576. if (tcp_limit_reno_sacked(tp))
  1577. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1578. }
  1579. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1580. static void tcp_add_reno_sack(struct sock *sk)
  1581. {
  1582. struct tcp_sock *tp = tcp_sk(sk);
  1583. tp->sacked_out++;
  1584. tcp_check_reno_reordering(sk, 0);
  1585. tcp_verify_left_out(tp);
  1586. }
  1587. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1588. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1589. {
  1590. struct tcp_sock *tp = tcp_sk(sk);
  1591. if (acked > 0) {
  1592. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1593. if (acked - 1 >= tp->sacked_out)
  1594. tp->sacked_out = 0;
  1595. else
  1596. tp->sacked_out -= acked - 1;
  1597. }
  1598. tcp_check_reno_reordering(sk, acked);
  1599. tcp_verify_left_out(tp);
  1600. }
  1601. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1602. {
  1603. tp->sacked_out = 0;
  1604. }
  1605. void tcp_clear_retrans(struct tcp_sock *tp)
  1606. {
  1607. tp->retrans_out = 0;
  1608. tp->lost_out = 0;
  1609. tp->undo_marker = 0;
  1610. tp->undo_retrans = -1;
  1611. tp->fackets_out = 0;
  1612. tp->sacked_out = 0;
  1613. }
  1614. static inline void tcp_init_undo(struct tcp_sock *tp)
  1615. {
  1616. tp->undo_marker = tp->snd_una;
  1617. /* Retransmission still in flight may cause DSACKs later. */
  1618. tp->undo_retrans = tp->retrans_out ? : -1;
  1619. }
  1620. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1621. * and reset tags completely, otherwise preserve SACKs. If receiver
  1622. * dropped its ofo queue, we will know this due to reneging detection.
  1623. */
  1624. void tcp_enter_loss(struct sock *sk)
  1625. {
  1626. const struct inet_connection_sock *icsk = inet_csk(sk);
  1627. struct tcp_sock *tp = tcp_sk(sk);
  1628. struct sk_buff *skb;
  1629. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1630. bool is_reneg; /* is receiver reneging on SACKs? */
  1631. /* Reduce ssthresh if it has not yet been made inside this window. */
  1632. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1633. !after(tp->high_seq, tp->snd_una) ||
  1634. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1635. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1636. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1637. tcp_ca_event(sk, CA_EVENT_LOSS);
  1638. tcp_init_undo(tp);
  1639. }
  1640. tp->snd_cwnd = 1;
  1641. tp->snd_cwnd_cnt = 0;
  1642. tp->snd_cwnd_stamp = tcp_time_stamp;
  1643. tp->retrans_out = 0;
  1644. tp->lost_out = 0;
  1645. if (tcp_is_reno(tp))
  1646. tcp_reset_reno_sack(tp);
  1647. skb = tcp_write_queue_head(sk);
  1648. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1649. if (is_reneg) {
  1650. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1651. tp->sacked_out = 0;
  1652. tp->fackets_out = 0;
  1653. }
  1654. tcp_clear_all_retrans_hints(tp);
  1655. tcp_for_write_queue(skb, sk) {
  1656. if (skb == tcp_send_head(sk))
  1657. break;
  1658. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1659. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
  1660. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1661. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1662. tp->lost_out += tcp_skb_pcount(skb);
  1663. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1664. }
  1665. }
  1666. tcp_verify_left_out(tp);
  1667. /* Timeout in disordered state after receiving substantial DUPACKs
  1668. * suggests that the degree of reordering is over-estimated.
  1669. */
  1670. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1671. tp->sacked_out >= sysctl_tcp_reordering)
  1672. tp->reordering = min_t(unsigned int, tp->reordering,
  1673. sysctl_tcp_reordering);
  1674. tcp_set_ca_state(sk, TCP_CA_Loss);
  1675. tp->high_seq = tp->snd_nxt;
  1676. tcp_ecn_queue_cwr(tp);
  1677. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1678. * loss recovery is underway except recurring timeout(s) on
  1679. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1680. */
  1681. tp->frto = sysctl_tcp_frto &&
  1682. (new_recovery || icsk->icsk_retransmits) &&
  1683. !inet_csk(sk)->icsk_mtup.probe_size;
  1684. }
  1685. /* If ACK arrived pointing to a remembered SACK, it means that our
  1686. * remembered SACKs do not reflect real state of receiver i.e.
  1687. * receiver _host_ is heavily congested (or buggy).
  1688. *
  1689. * To avoid big spurious retransmission bursts due to transient SACK
  1690. * scoreboard oddities that look like reneging, we give the receiver a
  1691. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1692. * restore sanity to the SACK scoreboard. If the apparent reneging
  1693. * persists until this RTO then we'll clear the SACK scoreboard.
  1694. */
  1695. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1696. {
  1697. if (flag & FLAG_SACK_RENEGING) {
  1698. struct tcp_sock *tp = tcp_sk(sk);
  1699. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1700. msecs_to_jiffies(10));
  1701. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1702. delay, TCP_RTO_MAX);
  1703. return true;
  1704. }
  1705. return false;
  1706. }
  1707. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1708. {
  1709. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1710. }
  1711. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1712. * counter when SACK is enabled (without SACK, sacked_out is used for
  1713. * that purpose).
  1714. *
  1715. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1716. * segments up to the highest received SACK block so far and holes in
  1717. * between them.
  1718. *
  1719. * With reordering, holes may still be in flight, so RFC3517 recovery
  1720. * uses pure sacked_out (total number of SACKed segments) even though
  1721. * it violates the RFC that uses duplicate ACKs, often these are equal
  1722. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1723. * they differ. Since neither occurs due to loss, TCP should really
  1724. * ignore them.
  1725. */
  1726. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1727. {
  1728. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1729. }
  1730. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1731. {
  1732. struct tcp_sock *tp = tcp_sk(sk);
  1733. unsigned long delay;
  1734. /* Delay early retransmit and entering fast recovery for
  1735. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1736. * available, or RTO is scheduled to fire first.
  1737. */
  1738. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1739. (flag & FLAG_ECE) || !tp->srtt_us)
  1740. return false;
  1741. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1742. msecs_to_jiffies(2));
  1743. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1744. return false;
  1745. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1746. TCP_RTO_MAX);
  1747. return true;
  1748. }
  1749. /* Linux NewReno/SACK/FACK/ECN state machine.
  1750. * --------------------------------------
  1751. *
  1752. * "Open" Normal state, no dubious events, fast path.
  1753. * "Disorder" In all the respects it is "Open",
  1754. * but requires a bit more attention. It is entered when
  1755. * we see some SACKs or dupacks. It is split of "Open"
  1756. * mainly to move some processing from fast path to slow one.
  1757. * "CWR" CWND was reduced due to some Congestion Notification event.
  1758. * It can be ECN, ICMP source quench, local device congestion.
  1759. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1760. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1761. *
  1762. * tcp_fastretrans_alert() is entered:
  1763. * - each incoming ACK, if state is not "Open"
  1764. * - when arrived ACK is unusual, namely:
  1765. * * SACK
  1766. * * Duplicate ACK.
  1767. * * ECN ECE.
  1768. *
  1769. * Counting packets in flight is pretty simple.
  1770. *
  1771. * in_flight = packets_out - left_out + retrans_out
  1772. *
  1773. * packets_out is SND.NXT-SND.UNA counted in packets.
  1774. *
  1775. * retrans_out is number of retransmitted segments.
  1776. *
  1777. * left_out is number of segments left network, but not ACKed yet.
  1778. *
  1779. * left_out = sacked_out + lost_out
  1780. *
  1781. * sacked_out: Packets, which arrived to receiver out of order
  1782. * and hence not ACKed. With SACKs this number is simply
  1783. * amount of SACKed data. Even without SACKs
  1784. * it is easy to give pretty reliable estimate of this number,
  1785. * counting duplicate ACKs.
  1786. *
  1787. * lost_out: Packets lost by network. TCP has no explicit
  1788. * "loss notification" feedback from network (for now).
  1789. * It means that this number can be only _guessed_.
  1790. * Actually, it is the heuristics to predict lossage that
  1791. * distinguishes different algorithms.
  1792. *
  1793. * F.e. after RTO, when all the queue is considered as lost,
  1794. * lost_out = packets_out and in_flight = retrans_out.
  1795. *
  1796. * Essentially, we have now two algorithms counting
  1797. * lost packets.
  1798. *
  1799. * FACK: It is the simplest heuristics. As soon as we decided
  1800. * that something is lost, we decide that _all_ not SACKed
  1801. * packets until the most forward SACK are lost. I.e.
  1802. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1803. * It is absolutely correct estimate, if network does not reorder
  1804. * packets. And it loses any connection to reality when reordering
  1805. * takes place. We use FACK by default until reordering
  1806. * is suspected on the path to this destination.
  1807. *
  1808. * NewReno: when Recovery is entered, we assume that one segment
  1809. * is lost (classic Reno). While we are in Recovery and
  1810. * a partial ACK arrives, we assume that one more packet
  1811. * is lost (NewReno). This heuristics are the same in NewReno
  1812. * and SACK.
  1813. *
  1814. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1815. * deflation etc. CWND is real congestion window, never inflated, changes
  1816. * only according to classic VJ rules.
  1817. *
  1818. * Really tricky (and requiring careful tuning) part of algorithm
  1819. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1820. * The first determines the moment _when_ we should reduce CWND and,
  1821. * hence, slow down forward transmission. In fact, it determines the moment
  1822. * when we decide that hole is caused by loss, rather than by a reorder.
  1823. *
  1824. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1825. * holes, caused by lost packets.
  1826. *
  1827. * And the most logically complicated part of algorithm is undo
  1828. * heuristics. We detect false retransmits due to both too early
  1829. * fast retransmit (reordering) and underestimated RTO, analyzing
  1830. * timestamps and D-SACKs. When we detect that some segments were
  1831. * retransmitted by mistake and CWND reduction was wrong, we undo
  1832. * window reduction and abort recovery phase. This logic is hidden
  1833. * inside several functions named tcp_try_undo_<something>.
  1834. */
  1835. /* This function decides, when we should leave Disordered state
  1836. * and enter Recovery phase, reducing congestion window.
  1837. *
  1838. * Main question: may we further continue forward transmission
  1839. * with the same cwnd?
  1840. */
  1841. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1842. {
  1843. struct tcp_sock *tp = tcp_sk(sk);
  1844. __u32 packets_out;
  1845. /* Trick#1: The loss is proven. */
  1846. if (tp->lost_out)
  1847. return true;
  1848. /* Not-A-Trick#2 : Classic rule... */
  1849. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1850. return true;
  1851. /* Trick#4: It is still not OK... But will it be useful to delay
  1852. * recovery more?
  1853. */
  1854. packets_out = tp->packets_out;
  1855. if (packets_out <= tp->reordering &&
  1856. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1857. !tcp_may_send_now(sk)) {
  1858. /* We have nothing to send. This connection is limited
  1859. * either by receiver window or by application.
  1860. */
  1861. return true;
  1862. }
  1863. /* If a thin stream is detected, retransmit after first
  1864. * received dupack. Employ only if SACK is supported in order
  1865. * to avoid possible corner-case series of spurious retransmissions
  1866. * Use only if there are no unsent data.
  1867. */
  1868. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1869. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1870. tcp_is_sack(tp) && !tcp_send_head(sk))
  1871. return true;
  1872. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1873. * retransmissions due to small network reorderings, we implement
  1874. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1875. * interval if appropriate.
  1876. */
  1877. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1878. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1879. !tcp_may_send_now(sk))
  1880. return !tcp_pause_early_retransmit(sk, flag);
  1881. return false;
  1882. }
  1883. /* Detect loss in event "A" above by marking head of queue up as lost.
  1884. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1885. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1886. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1887. * the maximum SACKed segments to pass before reaching this limit.
  1888. */
  1889. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1890. {
  1891. struct tcp_sock *tp = tcp_sk(sk);
  1892. struct sk_buff *skb;
  1893. int cnt, oldcnt, lost;
  1894. unsigned int mss;
  1895. /* Use SACK to deduce losses of new sequences sent during recovery */
  1896. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1897. WARN_ON(packets > tp->packets_out);
  1898. if (tp->lost_skb_hint) {
  1899. skb = tp->lost_skb_hint;
  1900. cnt = tp->lost_cnt_hint;
  1901. /* Head already handled? */
  1902. if (mark_head && skb != tcp_write_queue_head(sk))
  1903. return;
  1904. } else {
  1905. skb = tcp_write_queue_head(sk);
  1906. cnt = 0;
  1907. }
  1908. tcp_for_write_queue_from(skb, sk) {
  1909. if (skb == tcp_send_head(sk))
  1910. break;
  1911. /* TODO: do this better */
  1912. /* this is not the most efficient way to do this... */
  1913. tp->lost_skb_hint = skb;
  1914. tp->lost_cnt_hint = cnt;
  1915. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1916. break;
  1917. oldcnt = cnt;
  1918. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1919. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1920. cnt += tcp_skb_pcount(skb);
  1921. if (cnt > packets) {
  1922. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1923. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1924. (oldcnt >= packets))
  1925. break;
  1926. mss = tcp_skb_mss(skb);
  1927. /* If needed, chop off the prefix to mark as lost. */
  1928. lost = (packets - oldcnt) * mss;
  1929. if (lost < skb->len &&
  1930. tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
  1931. break;
  1932. cnt = packets;
  1933. }
  1934. tcp_skb_mark_lost(tp, skb);
  1935. if (mark_head)
  1936. break;
  1937. }
  1938. tcp_verify_left_out(tp);
  1939. }
  1940. /* Account newly detected lost packet(s) */
  1941. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1942. {
  1943. struct tcp_sock *tp = tcp_sk(sk);
  1944. if (tcp_is_reno(tp)) {
  1945. tcp_mark_head_lost(sk, 1, 1);
  1946. } else if (tcp_is_fack(tp)) {
  1947. int lost = tp->fackets_out - tp->reordering;
  1948. if (lost <= 0)
  1949. lost = 1;
  1950. tcp_mark_head_lost(sk, lost, 0);
  1951. } else {
  1952. int sacked_upto = tp->sacked_out - tp->reordering;
  1953. if (sacked_upto >= 0)
  1954. tcp_mark_head_lost(sk, sacked_upto, 0);
  1955. else if (fast_rexmit)
  1956. tcp_mark_head_lost(sk, 1, 1);
  1957. }
  1958. }
  1959. /* CWND moderation, preventing bursts due to too big ACKs
  1960. * in dubious situations.
  1961. */
  1962. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1963. {
  1964. tp->snd_cwnd = min(tp->snd_cwnd,
  1965. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  1966. tp->snd_cwnd_stamp = tcp_time_stamp;
  1967. }
  1968. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1969. {
  1970. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1971. before(tp->rx_opt.rcv_tsecr, when);
  1972. }
  1973. /* skb is spurious retransmitted if the returned timestamp echo
  1974. * reply is prior to the skb transmission time
  1975. */
  1976. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1977. const struct sk_buff *skb)
  1978. {
  1979. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1980. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1981. }
  1982. /* Nothing was retransmitted or returned timestamp is less
  1983. * than timestamp of the first retransmission.
  1984. */
  1985. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1986. {
  1987. return !tp->retrans_stamp ||
  1988. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  1989. }
  1990. /* Undo procedures. */
  1991. /* We can clear retrans_stamp when there are no retransmissions in the
  1992. * window. It would seem that it is trivially available for us in
  1993. * tp->retrans_out, however, that kind of assumptions doesn't consider
  1994. * what will happen if errors occur when sending retransmission for the
  1995. * second time. ...It could the that such segment has only
  1996. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  1997. * the head skb is enough except for some reneging corner cases that
  1998. * are not worth the effort.
  1999. *
  2000. * Main reason for all this complexity is the fact that connection dying
  2001. * time now depends on the validity of the retrans_stamp, in particular,
  2002. * that successive retransmissions of a segment must not advance
  2003. * retrans_stamp under any conditions.
  2004. */
  2005. static bool tcp_any_retrans_done(const struct sock *sk)
  2006. {
  2007. const struct tcp_sock *tp = tcp_sk(sk);
  2008. struct sk_buff *skb;
  2009. if (tp->retrans_out)
  2010. return true;
  2011. skb = tcp_write_queue_head(sk);
  2012. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2013. return true;
  2014. return false;
  2015. }
  2016. #if FASTRETRANS_DEBUG > 1
  2017. static void DBGUNDO(struct sock *sk, const char *msg)
  2018. {
  2019. struct tcp_sock *tp = tcp_sk(sk);
  2020. struct inet_sock *inet = inet_sk(sk);
  2021. if (sk->sk_family == AF_INET) {
  2022. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2023. msg,
  2024. &inet->inet_daddr, ntohs(inet->inet_dport),
  2025. tp->snd_cwnd, tcp_left_out(tp),
  2026. tp->snd_ssthresh, tp->prior_ssthresh,
  2027. tp->packets_out);
  2028. }
  2029. #if IS_ENABLED(CONFIG_IPV6)
  2030. else if (sk->sk_family == AF_INET6) {
  2031. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2032. msg,
  2033. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2034. tp->snd_cwnd, tcp_left_out(tp),
  2035. tp->snd_ssthresh, tp->prior_ssthresh,
  2036. tp->packets_out);
  2037. }
  2038. #endif
  2039. }
  2040. #else
  2041. #define DBGUNDO(x...) do { } while (0)
  2042. #endif
  2043. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2044. {
  2045. struct tcp_sock *tp = tcp_sk(sk);
  2046. if (unmark_loss) {
  2047. struct sk_buff *skb;
  2048. tcp_for_write_queue(skb, sk) {
  2049. if (skb == tcp_send_head(sk))
  2050. break;
  2051. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2052. }
  2053. tp->lost_out = 0;
  2054. tcp_clear_all_retrans_hints(tp);
  2055. }
  2056. if (tp->prior_ssthresh) {
  2057. const struct inet_connection_sock *icsk = inet_csk(sk);
  2058. if (icsk->icsk_ca_ops->undo_cwnd)
  2059. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2060. else
  2061. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2062. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2063. tp->snd_ssthresh = tp->prior_ssthresh;
  2064. tcp_ecn_withdraw_cwr(tp);
  2065. }
  2066. } else {
  2067. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2068. }
  2069. tp->snd_cwnd_stamp = tcp_time_stamp;
  2070. tp->undo_marker = 0;
  2071. }
  2072. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2073. {
  2074. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2075. }
  2076. /* People celebrate: "We love our President!" */
  2077. static bool tcp_try_undo_recovery(struct sock *sk)
  2078. {
  2079. struct tcp_sock *tp = tcp_sk(sk);
  2080. if (tcp_may_undo(tp)) {
  2081. int mib_idx;
  2082. /* Happy end! We did not retransmit anything
  2083. * or our original transmission succeeded.
  2084. */
  2085. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2086. tcp_undo_cwnd_reduction(sk, false);
  2087. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2088. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2089. else
  2090. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2091. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2092. }
  2093. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2094. /* Hold old state until something *above* high_seq
  2095. * is ACKed. For Reno it is MUST to prevent false
  2096. * fast retransmits (RFC2582). SACK TCP is safe. */
  2097. tcp_moderate_cwnd(tp);
  2098. if (!tcp_any_retrans_done(sk))
  2099. tp->retrans_stamp = 0;
  2100. return true;
  2101. }
  2102. tcp_set_ca_state(sk, TCP_CA_Open);
  2103. return false;
  2104. }
  2105. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2106. static bool tcp_try_undo_dsack(struct sock *sk)
  2107. {
  2108. struct tcp_sock *tp = tcp_sk(sk);
  2109. if (tp->undo_marker && !tp->undo_retrans) {
  2110. DBGUNDO(sk, "D-SACK");
  2111. tcp_undo_cwnd_reduction(sk, false);
  2112. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2113. return true;
  2114. }
  2115. return false;
  2116. }
  2117. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2118. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2119. {
  2120. struct tcp_sock *tp = tcp_sk(sk);
  2121. if (frto_undo || tcp_may_undo(tp)) {
  2122. tcp_undo_cwnd_reduction(sk, true);
  2123. DBGUNDO(sk, "partial loss");
  2124. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2125. if (frto_undo)
  2126. NET_INC_STATS_BH(sock_net(sk),
  2127. LINUX_MIB_TCPSPURIOUSRTOS);
  2128. inet_csk(sk)->icsk_retransmits = 0;
  2129. if (frto_undo || tcp_is_sack(tp))
  2130. tcp_set_ca_state(sk, TCP_CA_Open);
  2131. return true;
  2132. }
  2133. return false;
  2134. }
  2135. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2136. * It computes the number of packets to send (sndcnt) based on packets newly
  2137. * delivered:
  2138. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2139. * cwnd reductions across a full RTT.
  2140. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2141. * But when the retransmits are acked without further losses, PRR
  2142. * slow starts cwnd up to ssthresh to speed up the recovery.
  2143. */
  2144. static void tcp_init_cwnd_reduction(struct sock *sk)
  2145. {
  2146. struct tcp_sock *tp = tcp_sk(sk);
  2147. tp->high_seq = tp->snd_nxt;
  2148. tp->tlp_high_seq = 0;
  2149. tp->snd_cwnd_cnt = 0;
  2150. tp->prior_cwnd = tp->snd_cwnd;
  2151. tp->prr_delivered = 0;
  2152. tp->prr_out = 0;
  2153. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2154. tcp_ecn_queue_cwr(tp);
  2155. }
  2156. static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
  2157. int fast_rexmit, int flag)
  2158. {
  2159. struct tcp_sock *tp = tcp_sk(sk);
  2160. int sndcnt = 0;
  2161. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2162. int newly_acked_sacked = prior_unsacked -
  2163. (tp->packets_out - tp->sacked_out);
  2164. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2165. return;
  2166. tp->prr_delivered += newly_acked_sacked;
  2167. if (delta < 0) {
  2168. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2169. tp->prior_cwnd - 1;
  2170. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2171. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2172. !(flag & FLAG_LOST_RETRANS)) {
  2173. sndcnt = min_t(int, delta,
  2174. max_t(int, tp->prr_delivered - tp->prr_out,
  2175. newly_acked_sacked) + 1);
  2176. } else {
  2177. sndcnt = min(delta, newly_acked_sacked);
  2178. }
  2179. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2180. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2181. }
  2182. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2183. {
  2184. struct tcp_sock *tp = tcp_sk(sk);
  2185. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2186. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2187. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2188. tp->snd_cwnd = tp->snd_ssthresh;
  2189. tp->snd_cwnd_stamp = tcp_time_stamp;
  2190. }
  2191. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2192. }
  2193. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2194. void tcp_enter_cwr(struct sock *sk)
  2195. {
  2196. struct tcp_sock *tp = tcp_sk(sk);
  2197. tp->prior_ssthresh = 0;
  2198. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2199. tp->undo_marker = 0;
  2200. tcp_init_cwnd_reduction(sk);
  2201. tcp_set_ca_state(sk, TCP_CA_CWR);
  2202. }
  2203. }
  2204. EXPORT_SYMBOL(tcp_enter_cwr);
  2205. static void tcp_try_keep_open(struct sock *sk)
  2206. {
  2207. struct tcp_sock *tp = tcp_sk(sk);
  2208. int state = TCP_CA_Open;
  2209. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2210. state = TCP_CA_Disorder;
  2211. if (inet_csk(sk)->icsk_ca_state != state) {
  2212. tcp_set_ca_state(sk, state);
  2213. tp->high_seq = tp->snd_nxt;
  2214. }
  2215. }
  2216. static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
  2217. {
  2218. struct tcp_sock *tp = tcp_sk(sk);
  2219. tcp_verify_left_out(tp);
  2220. if (!tcp_any_retrans_done(sk))
  2221. tp->retrans_stamp = 0;
  2222. if (flag & FLAG_ECE)
  2223. tcp_enter_cwr(sk);
  2224. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2225. tcp_try_keep_open(sk);
  2226. } else {
  2227. tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
  2228. }
  2229. }
  2230. static void tcp_mtup_probe_failed(struct sock *sk)
  2231. {
  2232. struct inet_connection_sock *icsk = inet_csk(sk);
  2233. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2234. icsk->icsk_mtup.probe_size = 0;
  2235. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2236. }
  2237. static void tcp_mtup_probe_success(struct sock *sk)
  2238. {
  2239. struct tcp_sock *tp = tcp_sk(sk);
  2240. struct inet_connection_sock *icsk = inet_csk(sk);
  2241. /* FIXME: breaks with very large cwnd */
  2242. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2243. tp->snd_cwnd = tp->snd_cwnd *
  2244. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2245. icsk->icsk_mtup.probe_size;
  2246. tp->snd_cwnd_cnt = 0;
  2247. tp->snd_cwnd_stamp = tcp_time_stamp;
  2248. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2249. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2250. icsk->icsk_mtup.probe_size = 0;
  2251. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2252. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2253. }
  2254. /* Do a simple retransmit without using the backoff mechanisms in
  2255. * tcp_timer. This is used for path mtu discovery.
  2256. * The socket is already locked here.
  2257. */
  2258. void tcp_simple_retransmit(struct sock *sk)
  2259. {
  2260. const struct inet_connection_sock *icsk = inet_csk(sk);
  2261. struct tcp_sock *tp = tcp_sk(sk);
  2262. struct sk_buff *skb;
  2263. unsigned int mss = tcp_current_mss(sk);
  2264. u32 prior_lost = tp->lost_out;
  2265. tcp_for_write_queue(skb, sk) {
  2266. if (skb == tcp_send_head(sk))
  2267. break;
  2268. if (tcp_skb_seglen(skb) > mss &&
  2269. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2270. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2271. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2272. tp->retrans_out -= tcp_skb_pcount(skb);
  2273. }
  2274. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2275. }
  2276. }
  2277. tcp_clear_retrans_hints_partial(tp);
  2278. if (prior_lost == tp->lost_out)
  2279. return;
  2280. if (tcp_is_reno(tp))
  2281. tcp_limit_reno_sacked(tp);
  2282. tcp_verify_left_out(tp);
  2283. /* Don't muck with the congestion window here.
  2284. * Reason is that we do not increase amount of _data_
  2285. * in network, but units changed and effective
  2286. * cwnd/ssthresh really reduced now.
  2287. */
  2288. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2289. tp->high_seq = tp->snd_nxt;
  2290. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2291. tp->prior_ssthresh = 0;
  2292. tp->undo_marker = 0;
  2293. tcp_set_ca_state(sk, TCP_CA_Loss);
  2294. }
  2295. tcp_xmit_retransmit_queue(sk);
  2296. }
  2297. EXPORT_SYMBOL(tcp_simple_retransmit);
  2298. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2299. {
  2300. struct tcp_sock *tp = tcp_sk(sk);
  2301. int mib_idx;
  2302. if (tcp_is_reno(tp))
  2303. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2304. else
  2305. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2306. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2307. tp->prior_ssthresh = 0;
  2308. tcp_init_undo(tp);
  2309. if (!tcp_in_cwnd_reduction(sk)) {
  2310. if (!ece_ack)
  2311. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2312. tcp_init_cwnd_reduction(sk);
  2313. }
  2314. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2315. }
  2316. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2317. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2318. */
  2319. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2320. {
  2321. struct tcp_sock *tp = tcp_sk(sk);
  2322. bool recovered = !before(tp->snd_una, tp->high_seq);
  2323. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2324. tcp_try_undo_loss(sk, false))
  2325. return;
  2326. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2327. /* Step 3.b. A timeout is spurious if not all data are
  2328. * lost, i.e., never-retransmitted data are (s)acked.
  2329. */
  2330. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2331. tcp_try_undo_loss(sk, true))
  2332. return;
  2333. if (after(tp->snd_nxt, tp->high_seq)) {
  2334. if (flag & FLAG_DATA_SACKED || is_dupack)
  2335. tp->frto = 0; /* Step 3.a. loss was real */
  2336. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2337. tp->high_seq = tp->snd_nxt;
  2338. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2339. TCP_NAGLE_OFF);
  2340. if (after(tp->snd_nxt, tp->high_seq))
  2341. return; /* Step 2.b */
  2342. tp->frto = 0;
  2343. }
  2344. }
  2345. if (recovered) {
  2346. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2347. tcp_try_undo_recovery(sk);
  2348. return;
  2349. }
  2350. if (tcp_is_reno(tp)) {
  2351. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2352. * delivered. Lower inflight to clock out (re)tranmissions.
  2353. */
  2354. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2355. tcp_add_reno_sack(sk);
  2356. else if (flag & FLAG_SND_UNA_ADVANCED)
  2357. tcp_reset_reno_sack(tp);
  2358. }
  2359. tcp_xmit_retransmit_queue(sk);
  2360. }
  2361. /* Undo during fast recovery after partial ACK. */
  2362. static bool tcp_try_undo_partial(struct sock *sk, const int acked,
  2363. const int prior_unsacked, int flag)
  2364. {
  2365. struct tcp_sock *tp = tcp_sk(sk);
  2366. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2367. /* Plain luck! Hole if filled with delayed
  2368. * packet, rather than with a retransmit.
  2369. */
  2370. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2371. /* We are getting evidence that the reordering degree is higher
  2372. * than we realized. If there are no retransmits out then we
  2373. * can undo. Otherwise we clock out new packets but do not
  2374. * mark more packets lost or retransmit more.
  2375. */
  2376. if (tp->retrans_out) {
  2377. tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
  2378. return true;
  2379. }
  2380. if (!tcp_any_retrans_done(sk))
  2381. tp->retrans_stamp = 0;
  2382. DBGUNDO(sk, "partial recovery");
  2383. tcp_undo_cwnd_reduction(sk, true);
  2384. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2385. tcp_try_keep_open(sk);
  2386. return true;
  2387. }
  2388. return false;
  2389. }
  2390. /* Process an event, which can update packets-in-flight not trivially.
  2391. * Main goal of this function is to calculate new estimate for left_out,
  2392. * taking into account both packets sitting in receiver's buffer and
  2393. * packets lost by network.
  2394. *
  2395. * Besides that it does CWND reduction, when packet loss is detected
  2396. * and changes state of machine.
  2397. *
  2398. * It does _not_ decide what to send, it is made in function
  2399. * tcp_xmit_retransmit_queue().
  2400. */
  2401. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2402. const int prior_unsacked,
  2403. bool is_dupack, int flag)
  2404. {
  2405. struct inet_connection_sock *icsk = inet_csk(sk);
  2406. struct tcp_sock *tp = tcp_sk(sk);
  2407. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2408. (tcp_fackets_out(tp) > tp->reordering));
  2409. int fast_rexmit = 0;
  2410. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2411. tp->sacked_out = 0;
  2412. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2413. tp->fackets_out = 0;
  2414. /* Now state machine starts.
  2415. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2416. if (flag & FLAG_ECE)
  2417. tp->prior_ssthresh = 0;
  2418. /* B. In all the states check for reneging SACKs. */
  2419. if (tcp_check_sack_reneging(sk, flag))
  2420. return;
  2421. /* C. Check consistency of the current state. */
  2422. tcp_verify_left_out(tp);
  2423. /* D. Check state exit conditions. State can be terminated
  2424. * when high_seq is ACKed. */
  2425. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2426. WARN_ON(tp->retrans_out != 0);
  2427. tp->retrans_stamp = 0;
  2428. } else if (!before(tp->snd_una, tp->high_seq)) {
  2429. switch (icsk->icsk_ca_state) {
  2430. case TCP_CA_CWR:
  2431. /* CWR is to be held something *above* high_seq
  2432. * is ACKed for CWR bit to reach receiver. */
  2433. if (tp->snd_una != tp->high_seq) {
  2434. tcp_end_cwnd_reduction(sk);
  2435. tcp_set_ca_state(sk, TCP_CA_Open);
  2436. }
  2437. break;
  2438. case TCP_CA_Recovery:
  2439. if (tcp_is_reno(tp))
  2440. tcp_reset_reno_sack(tp);
  2441. if (tcp_try_undo_recovery(sk))
  2442. return;
  2443. tcp_end_cwnd_reduction(sk);
  2444. break;
  2445. }
  2446. }
  2447. /* Use RACK to detect loss */
  2448. if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
  2449. tcp_rack_mark_lost(sk))
  2450. flag |= FLAG_LOST_RETRANS;
  2451. /* E. Process state. */
  2452. switch (icsk->icsk_ca_state) {
  2453. case TCP_CA_Recovery:
  2454. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2455. if (tcp_is_reno(tp) && is_dupack)
  2456. tcp_add_reno_sack(sk);
  2457. } else {
  2458. if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag))
  2459. return;
  2460. /* Partial ACK arrived. Force fast retransmit. */
  2461. do_lost = tcp_is_reno(tp) ||
  2462. tcp_fackets_out(tp) > tp->reordering;
  2463. }
  2464. if (tcp_try_undo_dsack(sk)) {
  2465. tcp_try_keep_open(sk);
  2466. return;
  2467. }
  2468. break;
  2469. case TCP_CA_Loss:
  2470. tcp_process_loss(sk, flag, is_dupack);
  2471. if (icsk->icsk_ca_state != TCP_CA_Open &&
  2472. !(flag & FLAG_LOST_RETRANS))
  2473. return;
  2474. /* Change state if cwnd is undone or retransmits are lost */
  2475. default:
  2476. if (tcp_is_reno(tp)) {
  2477. if (flag & FLAG_SND_UNA_ADVANCED)
  2478. tcp_reset_reno_sack(tp);
  2479. if (is_dupack)
  2480. tcp_add_reno_sack(sk);
  2481. }
  2482. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2483. tcp_try_undo_dsack(sk);
  2484. if (!tcp_time_to_recover(sk, flag)) {
  2485. tcp_try_to_open(sk, flag, prior_unsacked);
  2486. return;
  2487. }
  2488. /* MTU probe failure: don't reduce cwnd */
  2489. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2490. icsk->icsk_mtup.probe_size &&
  2491. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2492. tcp_mtup_probe_failed(sk);
  2493. /* Restores the reduction we did in tcp_mtup_probe() */
  2494. tp->snd_cwnd++;
  2495. tcp_simple_retransmit(sk);
  2496. return;
  2497. }
  2498. /* Otherwise enter Recovery state */
  2499. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2500. fast_rexmit = 1;
  2501. }
  2502. if (do_lost)
  2503. tcp_update_scoreboard(sk, fast_rexmit);
  2504. tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag);
  2505. tcp_xmit_retransmit_queue(sk);
  2506. }
  2507. /* Kathleen Nichols' algorithm for tracking the minimum value of
  2508. * a data stream over some fixed time interval. (E.g., the minimum
  2509. * RTT over the past five minutes.) It uses constant space and constant
  2510. * time per update yet almost always delivers the same minimum as an
  2511. * implementation that has to keep all the data in the window.
  2512. *
  2513. * The algorithm keeps track of the best, 2nd best & 3rd best min
  2514. * values, maintaining an invariant that the measurement time of the
  2515. * n'th best >= n-1'th best. It also makes sure that the three values
  2516. * are widely separated in the time window since that bounds the worse
  2517. * case error when that data is monotonically increasing over the window.
  2518. *
  2519. * Upon getting a new min, we can forget everything earlier because it
  2520. * has no value - the new min is <= everything else in the window by
  2521. * definition and it's the most recent. So we restart fresh on every new min
  2522. * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
  2523. * best.
  2524. */
  2525. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2526. {
  2527. const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2528. struct rtt_meas *m = tcp_sk(sk)->rtt_min;
  2529. struct rtt_meas rttm = { .rtt = (rtt_us ? : 1), .ts = now };
  2530. u32 elapsed;
  2531. /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
  2532. if (unlikely(rttm.rtt <= m[0].rtt))
  2533. m[0] = m[1] = m[2] = rttm;
  2534. else if (rttm.rtt <= m[1].rtt)
  2535. m[1] = m[2] = rttm;
  2536. else if (rttm.rtt <= m[2].rtt)
  2537. m[2] = rttm;
  2538. elapsed = now - m[0].ts;
  2539. if (unlikely(elapsed > wlen)) {
  2540. /* Passed entire window without a new min so make 2nd choice
  2541. * the new min & 3rd choice the new 2nd. So forth and so on.
  2542. */
  2543. m[0] = m[1];
  2544. m[1] = m[2];
  2545. m[2] = rttm;
  2546. if (now - m[0].ts > wlen) {
  2547. m[0] = m[1];
  2548. m[1] = rttm;
  2549. if (now - m[0].ts > wlen)
  2550. m[0] = rttm;
  2551. }
  2552. } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
  2553. /* Passed a quarter of the window without a new min so
  2554. * take 2nd choice from the 2nd quarter of the window.
  2555. */
  2556. m[2] = m[1] = rttm;
  2557. } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
  2558. /* Passed half the window without a new min so take the 3rd
  2559. * choice from the last half of the window.
  2560. */
  2561. m[2] = rttm;
  2562. }
  2563. }
  2564. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2565. long seq_rtt_us, long sack_rtt_us,
  2566. long ca_rtt_us)
  2567. {
  2568. const struct tcp_sock *tp = tcp_sk(sk);
  2569. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2570. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2571. * Karn's algorithm forbids taking RTT if some retransmitted data
  2572. * is acked (RFC6298).
  2573. */
  2574. if (seq_rtt_us < 0)
  2575. seq_rtt_us = sack_rtt_us;
  2576. /* RTTM Rule: A TSecr value received in a segment is used to
  2577. * update the averaged RTT measurement only if the segment
  2578. * acknowledges some new data, i.e., only if it advances the
  2579. * left edge of the send window.
  2580. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2581. */
  2582. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2583. flag & FLAG_ACKED)
  2584. seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
  2585. tp->rx_opt.rcv_tsecr);
  2586. if (seq_rtt_us < 0)
  2587. return false;
  2588. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2589. * always taken together with ACK, SACK, or TS-opts. Any negative
  2590. * values will be skipped with the seq_rtt_us < 0 check above.
  2591. */
  2592. tcp_update_rtt_min(sk, ca_rtt_us);
  2593. tcp_rtt_estimator(sk, seq_rtt_us);
  2594. tcp_set_rto(sk);
  2595. /* RFC6298: only reset backoff on valid RTT measurement. */
  2596. inet_csk(sk)->icsk_backoff = 0;
  2597. return true;
  2598. }
  2599. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2600. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2601. {
  2602. long rtt_us = -1L;
  2603. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
  2604. struct skb_mstamp now;
  2605. skb_mstamp_get(&now);
  2606. rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
  2607. }
  2608. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
  2609. }
  2610. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2611. {
  2612. const struct inet_connection_sock *icsk = inet_csk(sk);
  2613. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2614. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2615. }
  2616. /* Restart timer after forward progress on connection.
  2617. * RFC2988 recommends to restart timer to now+rto.
  2618. */
  2619. void tcp_rearm_rto(struct sock *sk)
  2620. {
  2621. const struct inet_connection_sock *icsk = inet_csk(sk);
  2622. struct tcp_sock *tp = tcp_sk(sk);
  2623. /* If the retrans timer is currently being used by Fast Open
  2624. * for SYN-ACK retrans purpose, stay put.
  2625. */
  2626. if (tp->fastopen_rsk)
  2627. return;
  2628. if (!tp->packets_out) {
  2629. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2630. } else {
  2631. u32 rto = inet_csk(sk)->icsk_rto;
  2632. /* Offset the time elapsed after installing regular RTO */
  2633. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2634. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2635. struct sk_buff *skb = tcp_write_queue_head(sk);
  2636. const u32 rto_time_stamp =
  2637. tcp_skb_timestamp(skb) + rto;
  2638. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2639. /* delta may not be positive if the socket is locked
  2640. * when the retrans timer fires and is rescheduled.
  2641. */
  2642. rto = max(delta, 1);
  2643. }
  2644. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2645. TCP_RTO_MAX);
  2646. }
  2647. }
  2648. /* This function is called when the delayed ER timer fires. TCP enters
  2649. * fast recovery and performs fast-retransmit.
  2650. */
  2651. void tcp_resume_early_retransmit(struct sock *sk)
  2652. {
  2653. struct tcp_sock *tp = tcp_sk(sk);
  2654. tcp_rearm_rto(sk);
  2655. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2656. if (!tp->do_early_retrans)
  2657. return;
  2658. tcp_enter_recovery(sk, false);
  2659. tcp_update_scoreboard(sk, 1);
  2660. tcp_xmit_retransmit_queue(sk);
  2661. }
  2662. /* If we get here, the whole TSO packet has not been acked. */
  2663. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2664. {
  2665. struct tcp_sock *tp = tcp_sk(sk);
  2666. u32 packets_acked;
  2667. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2668. packets_acked = tcp_skb_pcount(skb);
  2669. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2670. return 0;
  2671. packets_acked -= tcp_skb_pcount(skb);
  2672. if (packets_acked) {
  2673. BUG_ON(tcp_skb_pcount(skb) == 0);
  2674. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2675. }
  2676. return packets_acked;
  2677. }
  2678. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2679. u32 prior_snd_una)
  2680. {
  2681. const struct skb_shared_info *shinfo;
  2682. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2683. if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
  2684. return;
  2685. shinfo = skb_shinfo(skb);
  2686. if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
  2687. between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
  2688. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2689. }
  2690. /* Remove acknowledged frames from the retransmission queue. If our packet
  2691. * is before the ack sequence we can discard it as it's confirmed to have
  2692. * arrived at the other end.
  2693. */
  2694. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2695. u32 prior_snd_una,
  2696. struct tcp_sacktag_state *sack)
  2697. {
  2698. const struct inet_connection_sock *icsk = inet_csk(sk);
  2699. struct skb_mstamp first_ackt, last_ackt, now;
  2700. struct tcp_sock *tp = tcp_sk(sk);
  2701. u32 prior_sacked = tp->sacked_out;
  2702. u32 reord = tp->packets_out;
  2703. bool fully_acked = true;
  2704. long sack_rtt_us = -1L;
  2705. long seq_rtt_us = -1L;
  2706. long ca_rtt_us = -1L;
  2707. struct sk_buff *skb;
  2708. u32 pkts_acked = 0;
  2709. bool rtt_update;
  2710. int flag = 0;
  2711. first_ackt.v64 = 0;
  2712. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2713. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2714. u8 sacked = scb->sacked;
  2715. u32 acked_pcount;
  2716. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2717. /* Determine how many packets and what bytes were acked, tso and else */
  2718. if (after(scb->end_seq, tp->snd_una)) {
  2719. if (tcp_skb_pcount(skb) == 1 ||
  2720. !after(tp->snd_una, scb->seq))
  2721. break;
  2722. acked_pcount = tcp_tso_acked(sk, skb);
  2723. if (!acked_pcount)
  2724. break;
  2725. fully_acked = false;
  2726. } else {
  2727. /* Speedup tcp_unlink_write_queue() and next loop */
  2728. prefetchw(skb->next);
  2729. acked_pcount = tcp_skb_pcount(skb);
  2730. }
  2731. if (unlikely(sacked & TCPCB_RETRANS)) {
  2732. if (sacked & TCPCB_SACKED_RETRANS)
  2733. tp->retrans_out -= acked_pcount;
  2734. flag |= FLAG_RETRANS_DATA_ACKED;
  2735. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2736. last_ackt = skb->skb_mstamp;
  2737. WARN_ON_ONCE(last_ackt.v64 == 0);
  2738. if (!first_ackt.v64)
  2739. first_ackt = last_ackt;
  2740. reord = min(pkts_acked, reord);
  2741. if (!after(scb->end_seq, tp->high_seq))
  2742. flag |= FLAG_ORIG_SACK_ACKED;
  2743. }
  2744. if (sacked & TCPCB_SACKED_ACKED)
  2745. tp->sacked_out -= acked_pcount;
  2746. else if (tcp_is_sack(tp) && !tcp_skb_spurious_retrans(tp, skb))
  2747. tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
  2748. if (sacked & TCPCB_LOST)
  2749. tp->lost_out -= acked_pcount;
  2750. tp->packets_out -= acked_pcount;
  2751. pkts_acked += acked_pcount;
  2752. /* Initial outgoing SYN's get put onto the write_queue
  2753. * just like anything else we transmit. It is not
  2754. * true data, and if we misinform our callers that
  2755. * this ACK acks real data, we will erroneously exit
  2756. * connection startup slow start one packet too
  2757. * quickly. This is severely frowned upon behavior.
  2758. */
  2759. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2760. flag |= FLAG_DATA_ACKED;
  2761. } else {
  2762. flag |= FLAG_SYN_ACKED;
  2763. tp->retrans_stamp = 0;
  2764. }
  2765. if (!fully_acked)
  2766. break;
  2767. tcp_unlink_write_queue(skb, sk);
  2768. sk_wmem_free_skb(sk, skb);
  2769. if (unlikely(skb == tp->retransmit_skb_hint))
  2770. tp->retransmit_skb_hint = NULL;
  2771. if (unlikely(skb == tp->lost_skb_hint))
  2772. tp->lost_skb_hint = NULL;
  2773. }
  2774. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2775. tp->snd_up = tp->snd_una;
  2776. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2777. flag |= FLAG_SACK_RENEGING;
  2778. skb_mstamp_get(&now);
  2779. if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2780. seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
  2781. ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
  2782. }
  2783. if (sack->first_sackt.v64) {
  2784. sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
  2785. ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
  2786. }
  2787. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2788. ca_rtt_us);
  2789. if (flag & FLAG_ACKED) {
  2790. tcp_rearm_rto(sk);
  2791. if (unlikely(icsk->icsk_mtup.probe_size &&
  2792. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2793. tcp_mtup_probe_success(sk);
  2794. }
  2795. if (tcp_is_reno(tp)) {
  2796. tcp_remove_reno_sacks(sk, pkts_acked);
  2797. /* If any of the cumulatively ACKed segments was
  2798. * retransmitted, non-SACK case cannot confirm that
  2799. * progress was due to original transmission due to
  2800. * lack of TCPCB_SACKED_ACKED bits even if some of
  2801. * the packets may have been never retransmitted.
  2802. */
  2803. if (flag & FLAG_RETRANS_DATA_ACKED)
  2804. flag &= ~FLAG_ORIG_SACK_ACKED;
  2805. } else {
  2806. int delta;
  2807. /* Non-retransmitted hole got filled? That's reordering */
  2808. if (reord < prior_fackets && reord <= tp->fackets_out)
  2809. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2810. delta = tcp_is_fack(tp) ? pkts_acked :
  2811. prior_sacked - tp->sacked_out;
  2812. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2813. }
  2814. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2815. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2816. sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
  2817. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2818. * after when the head was last (re)transmitted. Otherwise the
  2819. * timeout may continue to extend in loss recovery.
  2820. */
  2821. tcp_rearm_rto(sk);
  2822. }
  2823. if (icsk->icsk_ca_ops->pkts_acked)
  2824. icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
  2825. #if FASTRETRANS_DEBUG > 0
  2826. WARN_ON((int)tp->sacked_out < 0);
  2827. WARN_ON((int)tp->lost_out < 0);
  2828. WARN_ON((int)tp->retrans_out < 0);
  2829. if (!tp->packets_out && tcp_is_sack(tp)) {
  2830. icsk = inet_csk(sk);
  2831. if (tp->lost_out) {
  2832. pr_debug("Leak l=%u %d\n",
  2833. tp->lost_out, icsk->icsk_ca_state);
  2834. tp->lost_out = 0;
  2835. }
  2836. if (tp->sacked_out) {
  2837. pr_debug("Leak s=%u %d\n",
  2838. tp->sacked_out, icsk->icsk_ca_state);
  2839. tp->sacked_out = 0;
  2840. }
  2841. if (tp->retrans_out) {
  2842. pr_debug("Leak r=%u %d\n",
  2843. tp->retrans_out, icsk->icsk_ca_state);
  2844. tp->retrans_out = 0;
  2845. }
  2846. }
  2847. #endif
  2848. return flag;
  2849. }
  2850. static void tcp_ack_probe(struct sock *sk)
  2851. {
  2852. const struct tcp_sock *tp = tcp_sk(sk);
  2853. struct inet_connection_sock *icsk = inet_csk(sk);
  2854. /* Was it a usable window open? */
  2855. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2856. icsk->icsk_backoff = 0;
  2857. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2858. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2859. * This function is not for random using!
  2860. */
  2861. } else {
  2862. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2863. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2864. when, TCP_RTO_MAX);
  2865. }
  2866. }
  2867. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2868. {
  2869. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2870. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2871. }
  2872. /* Decide wheather to run the increase function of congestion control. */
  2873. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2874. {
  2875. if (tcp_in_cwnd_reduction(sk))
  2876. return false;
  2877. /* If reordering is high then always grow cwnd whenever data is
  2878. * delivered regardless of its ordering. Otherwise stay conservative
  2879. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2880. * new SACK or ECE mark may first advance cwnd here and later reduce
  2881. * cwnd in tcp_fastretrans_alert() based on more states.
  2882. */
  2883. if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
  2884. return flag & FLAG_FORWARD_PROGRESS;
  2885. return flag & FLAG_DATA_ACKED;
  2886. }
  2887. /* Check that window update is acceptable.
  2888. * The function assumes that snd_una<=ack<=snd_next.
  2889. */
  2890. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2891. const u32 ack, const u32 ack_seq,
  2892. const u32 nwin)
  2893. {
  2894. return after(ack, tp->snd_una) ||
  2895. after(ack_seq, tp->snd_wl1) ||
  2896. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2897. }
  2898. /* If we update tp->snd_una, also update tp->bytes_acked */
  2899. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2900. {
  2901. u32 delta = ack - tp->snd_una;
  2902. u64_stats_update_begin(&tp->syncp);
  2903. tp->bytes_acked += delta;
  2904. u64_stats_update_end(&tp->syncp);
  2905. tp->snd_una = ack;
  2906. }
  2907. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2908. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2909. {
  2910. u32 delta = seq - tp->rcv_nxt;
  2911. u64_stats_update_begin(&tp->syncp);
  2912. tp->bytes_received += delta;
  2913. u64_stats_update_end(&tp->syncp);
  2914. tp->rcv_nxt = seq;
  2915. }
  2916. /* Update our send window.
  2917. *
  2918. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2919. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2920. */
  2921. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2922. u32 ack_seq)
  2923. {
  2924. struct tcp_sock *tp = tcp_sk(sk);
  2925. int flag = 0;
  2926. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2927. if (likely(!tcp_hdr(skb)->syn))
  2928. nwin <<= tp->rx_opt.snd_wscale;
  2929. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2930. flag |= FLAG_WIN_UPDATE;
  2931. tcp_update_wl(tp, ack_seq);
  2932. if (tp->snd_wnd != nwin) {
  2933. tp->snd_wnd = nwin;
  2934. /* Note, it is the only place, where
  2935. * fast path is recovered for sending TCP.
  2936. */
  2937. tp->pred_flags = 0;
  2938. tcp_fast_path_check(sk);
  2939. if (tcp_send_head(sk))
  2940. tcp_slow_start_after_idle_check(sk);
  2941. if (nwin > tp->max_window) {
  2942. tp->max_window = nwin;
  2943. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2944. }
  2945. }
  2946. }
  2947. tcp_snd_una_update(tp, ack);
  2948. return flag;
  2949. }
  2950. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2951. u32 *last_oow_ack_time)
  2952. {
  2953. if (*last_oow_ack_time) {
  2954. s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
  2955. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2956. NET_INC_STATS_BH(net, mib_idx);
  2957. return true; /* rate-limited: don't send yet! */
  2958. }
  2959. }
  2960. *last_oow_ack_time = tcp_time_stamp;
  2961. return false; /* not rate-limited: go ahead, send dupack now! */
  2962. }
  2963. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2964. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2965. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2966. * attacks that send repeated SYNs or ACKs for the same connection. To
  2967. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2968. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2969. */
  2970. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2971. int mib_idx, u32 *last_oow_ack_time)
  2972. {
  2973. /* Data packets without SYNs are not likely part of an ACK loop. */
  2974. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2975. !tcp_hdr(skb)->syn)
  2976. return false;
  2977. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2978. }
  2979. /* RFC 5961 7 [ACK Throttling] */
  2980. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2981. {
  2982. /* unprotected vars, we dont care of overwrites */
  2983. static u32 challenge_timestamp;
  2984. static unsigned int challenge_count;
  2985. struct tcp_sock *tp = tcp_sk(sk);
  2986. u32 count, now;
  2987. /* First check our per-socket dupack rate limit. */
  2988. if (__tcp_oow_rate_limited(sock_net(sk),
  2989. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2990. &tp->last_oow_ack_time))
  2991. return;
  2992. /* Then check host-wide RFC 5961 rate limit. */
  2993. now = jiffies / HZ;
  2994. if (now != challenge_timestamp) {
  2995. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  2996. challenge_timestamp = now;
  2997. WRITE_ONCE(challenge_count, half +
  2998. prandom_u32_max(sysctl_tcp_challenge_ack_limit));
  2999. }
  3000. count = READ_ONCE(challenge_count);
  3001. if (count > 0) {
  3002. WRITE_ONCE(challenge_count, count - 1);
  3003. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3004. tcp_send_ack(sk);
  3005. }
  3006. }
  3007. static void tcp_store_ts_recent(struct tcp_sock *tp)
  3008. {
  3009. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3010. tp->rx_opt.ts_recent_stamp = get_seconds();
  3011. }
  3012. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3013. {
  3014. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3015. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3016. * extra check below makes sure this can only happen
  3017. * for pure ACK frames. -DaveM
  3018. *
  3019. * Not only, also it occurs for expired timestamps.
  3020. */
  3021. if (tcp_paws_check(&tp->rx_opt, 0))
  3022. tcp_store_ts_recent(tp);
  3023. }
  3024. }
  3025. /* This routine deals with acks during a TLP episode.
  3026. * We mark the end of a TLP episode on receiving TLP dupack or when
  3027. * ack is after tlp_high_seq.
  3028. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3029. */
  3030. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3031. {
  3032. struct tcp_sock *tp = tcp_sk(sk);
  3033. if (before(ack, tp->tlp_high_seq))
  3034. return;
  3035. if (flag & FLAG_DSACKING_ACK) {
  3036. /* This DSACK means original and TLP probe arrived; no loss */
  3037. tp->tlp_high_seq = 0;
  3038. } else if (after(ack, tp->tlp_high_seq)) {
  3039. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3040. * tlp_high_seq in tcp_init_cwnd_reduction()
  3041. */
  3042. tcp_init_cwnd_reduction(sk);
  3043. tcp_set_ca_state(sk, TCP_CA_CWR);
  3044. tcp_end_cwnd_reduction(sk);
  3045. tcp_try_keep_open(sk);
  3046. NET_INC_STATS_BH(sock_net(sk),
  3047. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3048. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3049. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3050. /* Pure dupack: original and TLP probe arrived; no loss */
  3051. tp->tlp_high_seq = 0;
  3052. }
  3053. }
  3054. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3055. {
  3056. const struct inet_connection_sock *icsk = inet_csk(sk);
  3057. if (icsk->icsk_ca_ops->in_ack_event)
  3058. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3059. }
  3060. /* This routine deals with incoming acks, but not outgoing ones. */
  3061. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3062. {
  3063. struct inet_connection_sock *icsk = inet_csk(sk);
  3064. struct tcp_sock *tp = tcp_sk(sk);
  3065. struct tcp_sacktag_state sack_state;
  3066. u32 prior_snd_una = tp->snd_una;
  3067. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3068. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3069. bool is_dupack = false;
  3070. u32 prior_fackets;
  3071. int prior_packets = tp->packets_out;
  3072. const int prior_unsacked = tp->packets_out - tp->sacked_out;
  3073. int acked = 0; /* Number of packets newly acked */
  3074. sack_state.first_sackt.v64 = 0;
  3075. /* We very likely will need to access write queue head. */
  3076. prefetchw(sk->sk_write_queue.next);
  3077. /* If the ack is older than previous acks
  3078. * then we can probably ignore it.
  3079. */
  3080. if (before(ack, prior_snd_una)) {
  3081. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3082. if (before(ack, prior_snd_una - tp->max_window)) {
  3083. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3084. tcp_send_challenge_ack(sk, skb);
  3085. return -1;
  3086. }
  3087. goto old_ack;
  3088. }
  3089. /* If the ack includes data we haven't sent yet, discard
  3090. * this segment (RFC793 Section 3.9).
  3091. */
  3092. if (after(ack, tp->snd_nxt))
  3093. goto invalid_ack;
  3094. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  3095. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  3096. tcp_rearm_rto(sk);
  3097. if (after(ack, prior_snd_una)) {
  3098. flag |= FLAG_SND_UNA_ADVANCED;
  3099. icsk->icsk_retransmits = 0;
  3100. }
  3101. prior_fackets = tp->fackets_out;
  3102. /* ts_recent update must be made after we are sure that the packet
  3103. * is in window.
  3104. */
  3105. if (flag & FLAG_UPDATE_TS_RECENT)
  3106. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3107. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3108. /* Window is constant, pure forward advance.
  3109. * No more checks are required.
  3110. * Note, we use the fact that SND.UNA>=SND.WL2.
  3111. */
  3112. tcp_update_wl(tp, ack_seq);
  3113. tcp_snd_una_update(tp, ack);
  3114. flag |= FLAG_WIN_UPDATE;
  3115. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3116. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3117. } else {
  3118. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3119. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3120. flag |= FLAG_DATA;
  3121. else
  3122. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3123. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3124. if (TCP_SKB_CB(skb)->sacked)
  3125. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3126. &sack_state);
  3127. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3128. flag |= FLAG_ECE;
  3129. ack_ev_flags |= CA_ACK_ECE;
  3130. }
  3131. if (flag & FLAG_WIN_UPDATE)
  3132. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3133. tcp_in_ack_event(sk, ack_ev_flags);
  3134. }
  3135. /* We passed data and got it acked, remove any soft error
  3136. * log. Something worked...
  3137. */
  3138. sk->sk_err_soft = 0;
  3139. icsk->icsk_probes_out = 0;
  3140. tp->rcv_tstamp = tcp_time_stamp;
  3141. if (!prior_packets)
  3142. goto no_queue;
  3143. /* See if we can take anything off of the retransmit queue. */
  3144. acked = tp->packets_out;
  3145. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
  3146. &sack_state);
  3147. acked -= tp->packets_out;
  3148. if (tcp_ack_is_dubious(sk, flag)) {
  3149. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3150. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3151. is_dupack, flag);
  3152. }
  3153. if (tp->tlp_high_seq)
  3154. tcp_process_tlp_ack(sk, ack, flag);
  3155. /* Advance cwnd if state allows */
  3156. if (tcp_may_raise_cwnd(sk, flag))
  3157. tcp_cong_avoid(sk, ack, acked);
  3158. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3159. struct dst_entry *dst = __sk_dst_get(sk);
  3160. if (dst)
  3161. dst_confirm(dst);
  3162. }
  3163. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3164. tcp_schedule_loss_probe(sk);
  3165. tcp_update_pacing_rate(sk);
  3166. return 1;
  3167. no_queue:
  3168. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3169. if (flag & FLAG_DSACKING_ACK)
  3170. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3171. is_dupack, flag);
  3172. /* If this ack opens up a zero window, clear backoff. It was
  3173. * being used to time the probes, and is probably far higher than
  3174. * it needs to be for normal retransmission.
  3175. */
  3176. if (tcp_send_head(sk))
  3177. tcp_ack_probe(sk);
  3178. if (tp->tlp_high_seq)
  3179. tcp_process_tlp_ack(sk, ack, flag);
  3180. return 1;
  3181. invalid_ack:
  3182. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3183. return -1;
  3184. old_ack:
  3185. /* If data was SACKed, tag it and see if we should send more data.
  3186. * If data was DSACKed, see if we can undo a cwnd reduction.
  3187. */
  3188. if (TCP_SKB_CB(skb)->sacked) {
  3189. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3190. &sack_state);
  3191. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3192. is_dupack, flag);
  3193. }
  3194. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3195. return 0;
  3196. }
  3197. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3198. bool syn, struct tcp_fastopen_cookie *foc,
  3199. bool exp_opt)
  3200. {
  3201. /* Valid only in SYN or SYN-ACK with an even length. */
  3202. if (!foc || !syn || len < 0 || (len & 1))
  3203. return;
  3204. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3205. len <= TCP_FASTOPEN_COOKIE_MAX)
  3206. memcpy(foc->val, cookie, len);
  3207. else if (len != 0)
  3208. len = -1;
  3209. foc->len = len;
  3210. foc->exp = exp_opt;
  3211. }
  3212. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3213. * But, this can also be called on packets in the established flow when
  3214. * the fast version below fails.
  3215. */
  3216. void tcp_parse_options(const struct sk_buff *skb,
  3217. struct tcp_options_received *opt_rx, int estab,
  3218. struct tcp_fastopen_cookie *foc)
  3219. {
  3220. const unsigned char *ptr;
  3221. const struct tcphdr *th = tcp_hdr(skb);
  3222. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3223. ptr = (const unsigned char *)(th + 1);
  3224. opt_rx->saw_tstamp = 0;
  3225. while (length > 0) {
  3226. int opcode = *ptr++;
  3227. int opsize;
  3228. switch (opcode) {
  3229. case TCPOPT_EOL:
  3230. return;
  3231. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3232. length--;
  3233. continue;
  3234. default:
  3235. opsize = *ptr++;
  3236. if (opsize < 2) /* "silly options" */
  3237. return;
  3238. if (opsize > length)
  3239. return; /* don't parse partial options */
  3240. switch (opcode) {
  3241. case TCPOPT_MSS:
  3242. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3243. u16 in_mss = get_unaligned_be16(ptr);
  3244. if (in_mss) {
  3245. if (opt_rx->user_mss &&
  3246. opt_rx->user_mss < in_mss)
  3247. in_mss = opt_rx->user_mss;
  3248. opt_rx->mss_clamp = in_mss;
  3249. }
  3250. }
  3251. break;
  3252. case TCPOPT_WINDOW:
  3253. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3254. !estab && sysctl_tcp_window_scaling) {
  3255. __u8 snd_wscale = *(__u8 *)ptr;
  3256. opt_rx->wscale_ok = 1;
  3257. if (snd_wscale > 14) {
  3258. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3259. __func__,
  3260. snd_wscale);
  3261. snd_wscale = 14;
  3262. }
  3263. opt_rx->snd_wscale = snd_wscale;
  3264. }
  3265. break;
  3266. case TCPOPT_TIMESTAMP:
  3267. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3268. ((estab && opt_rx->tstamp_ok) ||
  3269. (!estab && sysctl_tcp_timestamps))) {
  3270. opt_rx->saw_tstamp = 1;
  3271. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3272. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3273. }
  3274. break;
  3275. case TCPOPT_SACK_PERM:
  3276. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3277. !estab && sysctl_tcp_sack) {
  3278. opt_rx->sack_ok = TCP_SACK_SEEN;
  3279. tcp_sack_reset(opt_rx);
  3280. }
  3281. break;
  3282. case TCPOPT_SACK:
  3283. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3284. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3285. opt_rx->sack_ok) {
  3286. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3287. }
  3288. break;
  3289. #ifdef CONFIG_TCP_MD5SIG
  3290. case TCPOPT_MD5SIG:
  3291. /*
  3292. * The MD5 Hash has already been
  3293. * checked (see tcp_v{4,6}_do_rcv()).
  3294. */
  3295. break;
  3296. #endif
  3297. case TCPOPT_FASTOPEN:
  3298. tcp_parse_fastopen_option(
  3299. opsize - TCPOLEN_FASTOPEN_BASE,
  3300. ptr, th->syn, foc, false);
  3301. break;
  3302. case TCPOPT_EXP:
  3303. /* Fast Open option shares code 254 using a
  3304. * 16 bits magic number.
  3305. */
  3306. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3307. get_unaligned_be16(ptr) ==
  3308. TCPOPT_FASTOPEN_MAGIC)
  3309. tcp_parse_fastopen_option(opsize -
  3310. TCPOLEN_EXP_FASTOPEN_BASE,
  3311. ptr + 2, th->syn, foc, true);
  3312. break;
  3313. }
  3314. ptr += opsize-2;
  3315. length -= opsize;
  3316. }
  3317. }
  3318. }
  3319. EXPORT_SYMBOL(tcp_parse_options);
  3320. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3321. {
  3322. const __be32 *ptr = (const __be32 *)(th + 1);
  3323. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3324. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3325. tp->rx_opt.saw_tstamp = 1;
  3326. ++ptr;
  3327. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3328. ++ptr;
  3329. if (*ptr)
  3330. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3331. else
  3332. tp->rx_opt.rcv_tsecr = 0;
  3333. return true;
  3334. }
  3335. return false;
  3336. }
  3337. /* Fast parse options. This hopes to only see timestamps.
  3338. * If it is wrong it falls back on tcp_parse_options().
  3339. */
  3340. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3341. const struct tcphdr *th, struct tcp_sock *tp)
  3342. {
  3343. /* In the spirit of fast parsing, compare doff directly to constant
  3344. * values. Because equality is used, short doff can be ignored here.
  3345. */
  3346. if (th->doff == (sizeof(*th) / 4)) {
  3347. tp->rx_opt.saw_tstamp = 0;
  3348. return false;
  3349. } else if (tp->rx_opt.tstamp_ok &&
  3350. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3351. if (tcp_parse_aligned_timestamp(tp, th))
  3352. return true;
  3353. }
  3354. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3355. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3356. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3357. return true;
  3358. }
  3359. #ifdef CONFIG_TCP_MD5SIG
  3360. /*
  3361. * Parse MD5 Signature option
  3362. */
  3363. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3364. {
  3365. int length = (th->doff << 2) - sizeof(*th);
  3366. const u8 *ptr = (const u8 *)(th + 1);
  3367. /* If not enough data remaining, we can short cut */
  3368. while (length >= TCPOLEN_MD5SIG) {
  3369. int opcode = *ptr++;
  3370. int opsize;
  3371. switch (opcode) {
  3372. case TCPOPT_EOL:
  3373. return NULL;
  3374. case TCPOPT_NOP:
  3375. length--;
  3376. continue;
  3377. default:
  3378. opsize = *ptr++;
  3379. if (opsize < 2 || opsize > length)
  3380. return NULL;
  3381. if (opcode == TCPOPT_MD5SIG)
  3382. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3383. }
  3384. ptr += opsize - 2;
  3385. length -= opsize;
  3386. }
  3387. return NULL;
  3388. }
  3389. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3390. #endif
  3391. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3392. *
  3393. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3394. * it can pass through stack. So, the following predicate verifies that
  3395. * this segment is not used for anything but congestion avoidance or
  3396. * fast retransmit. Moreover, we even are able to eliminate most of such
  3397. * second order effects, if we apply some small "replay" window (~RTO)
  3398. * to timestamp space.
  3399. *
  3400. * All these measures still do not guarantee that we reject wrapped ACKs
  3401. * on networks with high bandwidth, when sequence space is recycled fastly,
  3402. * but it guarantees that such events will be very rare and do not affect
  3403. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3404. * buggy extension.
  3405. *
  3406. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3407. * states that events when retransmit arrives after original data are rare.
  3408. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3409. * the biggest problem on large power networks even with minor reordering.
  3410. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3411. * up to bandwidth of 18Gigabit/sec. 8) ]
  3412. */
  3413. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3414. {
  3415. const struct tcp_sock *tp = tcp_sk(sk);
  3416. const struct tcphdr *th = tcp_hdr(skb);
  3417. u32 seq = TCP_SKB_CB(skb)->seq;
  3418. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3419. return (/* 1. Pure ACK with correct sequence number. */
  3420. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3421. /* 2. ... and duplicate ACK. */
  3422. ack == tp->snd_una &&
  3423. /* 3. ... and does not update window. */
  3424. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3425. /* 4. ... and sits in replay window. */
  3426. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3427. }
  3428. static inline bool tcp_paws_discard(const struct sock *sk,
  3429. const struct sk_buff *skb)
  3430. {
  3431. const struct tcp_sock *tp = tcp_sk(sk);
  3432. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3433. !tcp_disordered_ack(sk, skb);
  3434. }
  3435. /* Check segment sequence number for validity.
  3436. *
  3437. * Segment controls are considered valid, if the segment
  3438. * fits to the window after truncation to the window. Acceptability
  3439. * of data (and SYN, FIN, of course) is checked separately.
  3440. * See tcp_data_queue(), for example.
  3441. *
  3442. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3443. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3444. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3445. * (borrowed from freebsd)
  3446. */
  3447. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3448. {
  3449. return !before(end_seq, tp->rcv_wup) &&
  3450. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3451. }
  3452. /* When we get a reset we do this. */
  3453. void tcp_reset(struct sock *sk)
  3454. {
  3455. /* We want the right error as BSD sees it (and indeed as we do). */
  3456. switch (sk->sk_state) {
  3457. case TCP_SYN_SENT:
  3458. sk->sk_err = ECONNREFUSED;
  3459. break;
  3460. case TCP_CLOSE_WAIT:
  3461. sk->sk_err = EPIPE;
  3462. break;
  3463. case TCP_CLOSE:
  3464. return;
  3465. default:
  3466. sk->sk_err = ECONNRESET;
  3467. }
  3468. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3469. smp_wmb();
  3470. if (!sock_flag(sk, SOCK_DEAD))
  3471. sk->sk_error_report(sk);
  3472. tcp_done(sk);
  3473. }
  3474. /*
  3475. * Process the FIN bit. This now behaves as it is supposed to work
  3476. * and the FIN takes effect when it is validly part of sequence
  3477. * space. Not before when we get holes.
  3478. *
  3479. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3480. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3481. * TIME-WAIT)
  3482. *
  3483. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3484. * close and we go into CLOSING (and later onto TIME-WAIT)
  3485. *
  3486. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3487. */
  3488. static void tcp_fin(struct sock *sk)
  3489. {
  3490. struct tcp_sock *tp = tcp_sk(sk);
  3491. inet_csk_schedule_ack(sk);
  3492. sk->sk_shutdown |= RCV_SHUTDOWN;
  3493. sock_set_flag(sk, SOCK_DONE);
  3494. switch (sk->sk_state) {
  3495. case TCP_SYN_RECV:
  3496. case TCP_ESTABLISHED:
  3497. /* Move to CLOSE_WAIT */
  3498. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3499. inet_csk(sk)->icsk_ack.pingpong = 1;
  3500. break;
  3501. case TCP_CLOSE_WAIT:
  3502. case TCP_CLOSING:
  3503. /* Received a retransmission of the FIN, do
  3504. * nothing.
  3505. */
  3506. break;
  3507. case TCP_LAST_ACK:
  3508. /* RFC793: Remain in the LAST-ACK state. */
  3509. break;
  3510. case TCP_FIN_WAIT1:
  3511. /* This case occurs when a simultaneous close
  3512. * happens, we must ack the received FIN and
  3513. * enter the CLOSING state.
  3514. */
  3515. tcp_send_ack(sk);
  3516. tcp_set_state(sk, TCP_CLOSING);
  3517. break;
  3518. case TCP_FIN_WAIT2:
  3519. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3520. tcp_send_ack(sk);
  3521. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3522. break;
  3523. default:
  3524. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3525. * cases we should never reach this piece of code.
  3526. */
  3527. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3528. __func__, sk->sk_state);
  3529. break;
  3530. }
  3531. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3532. * Probably, we should reset in this case. For now drop them.
  3533. */
  3534. skb_rbtree_purge(&tp->out_of_order_queue);
  3535. if (tcp_is_sack(tp))
  3536. tcp_sack_reset(&tp->rx_opt);
  3537. sk_mem_reclaim(sk);
  3538. if (!sock_flag(sk, SOCK_DEAD)) {
  3539. sk->sk_state_change(sk);
  3540. /* Do not send POLL_HUP for half duplex close. */
  3541. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3542. sk->sk_state == TCP_CLOSE)
  3543. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3544. else
  3545. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3546. }
  3547. }
  3548. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3549. u32 end_seq)
  3550. {
  3551. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3552. if (before(seq, sp->start_seq))
  3553. sp->start_seq = seq;
  3554. if (after(end_seq, sp->end_seq))
  3555. sp->end_seq = end_seq;
  3556. return true;
  3557. }
  3558. return false;
  3559. }
  3560. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3561. {
  3562. struct tcp_sock *tp = tcp_sk(sk);
  3563. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3564. int mib_idx;
  3565. if (before(seq, tp->rcv_nxt))
  3566. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3567. else
  3568. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3569. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3570. tp->rx_opt.dsack = 1;
  3571. tp->duplicate_sack[0].start_seq = seq;
  3572. tp->duplicate_sack[0].end_seq = end_seq;
  3573. }
  3574. }
  3575. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3576. {
  3577. struct tcp_sock *tp = tcp_sk(sk);
  3578. if (!tp->rx_opt.dsack)
  3579. tcp_dsack_set(sk, seq, end_seq);
  3580. else
  3581. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3582. }
  3583. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3584. {
  3585. struct tcp_sock *tp = tcp_sk(sk);
  3586. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3587. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3588. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3589. tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
  3590. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3591. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3592. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3593. end_seq = tp->rcv_nxt;
  3594. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3595. }
  3596. }
  3597. tcp_send_ack(sk);
  3598. }
  3599. /* These routines update the SACK block as out-of-order packets arrive or
  3600. * in-order packets close up the sequence space.
  3601. */
  3602. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3603. {
  3604. int this_sack;
  3605. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3606. struct tcp_sack_block *swalk = sp + 1;
  3607. /* See if the recent change to the first SACK eats into
  3608. * or hits the sequence space of other SACK blocks, if so coalesce.
  3609. */
  3610. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3611. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3612. int i;
  3613. /* Zap SWALK, by moving every further SACK up by one slot.
  3614. * Decrease num_sacks.
  3615. */
  3616. tp->rx_opt.num_sacks--;
  3617. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3618. sp[i] = sp[i + 1];
  3619. continue;
  3620. }
  3621. this_sack++, swalk++;
  3622. }
  3623. }
  3624. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3625. {
  3626. struct tcp_sock *tp = tcp_sk(sk);
  3627. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3628. int cur_sacks = tp->rx_opt.num_sacks;
  3629. int this_sack;
  3630. if (!cur_sacks)
  3631. goto new_sack;
  3632. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3633. if (tcp_sack_extend(sp, seq, end_seq)) {
  3634. /* Rotate this_sack to the first one. */
  3635. for (; this_sack > 0; this_sack--, sp--)
  3636. swap(*sp, *(sp - 1));
  3637. if (cur_sacks > 1)
  3638. tcp_sack_maybe_coalesce(tp);
  3639. return;
  3640. }
  3641. }
  3642. /* Could not find an adjacent existing SACK, build a new one,
  3643. * put it at the front, and shift everyone else down. We
  3644. * always know there is at least one SACK present already here.
  3645. *
  3646. * If the sack array is full, forget about the last one.
  3647. */
  3648. if (this_sack >= TCP_NUM_SACKS) {
  3649. this_sack--;
  3650. tp->rx_opt.num_sacks--;
  3651. sp--;
  3652. }
  3653. for (; this_sack > 0; this_sack--, sp--)
  3654. *sp = *(sp - 1);
  3655. new_sack:
  3656. /* Build the new head SACK, and we're done. */
  3657. sp->start_seq = seq;
  3658. sp->end_seq = end_seq;
  3659. tp->rx_opt.num_sacks++;
  3660. }
  3661. /* RCV.NXT advances, some SACKs should be eaten. */
  3662. static void tcp_sack_remove(struct tcp_sock *tp)
  3663. {
  3664. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3665. int num_sacks = tp->rx_opt.num_sacks;
  3666. int this_sack;
  3667. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3668. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3669. tp->rx_opt.num_sacks = 0;
  3670. return;
  3671. }
  3672. for (this_sack = 0; this_sack < num_sacks;) {
  3673. /* Check if the start of the sack is covered by RCV.NXT. */
  3674. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3675. int i;
  3676. /* RCV.NXT must cover all the block! */
  3677. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3678. /* Zap this SACK, by moving forward any other SACKS. */
  3679. for (i = this_sack+1; i < num_sacks; i++)
  3680. tp->selective_acks[i-1] = tp->selective_acks[i];
  3681. num_sacks--;
  3682. continue;
  3683. }
  3684. this_sack++;
  3685. sp++;
  3686. }
  3687. tp->rx_opt.num_sacks = num_sacks;
  3688. }
  3689. /**
  3690. * tcp_try_coalesce - try to merge skb to prior one
  3691. * @sk: socket
  3692. * @to: prior buffer
  3693. * @from: buffer to add in queue
  3694. * @fragstolen: pointer to boolean
  3695. *
  3696. * Before queueing skb @from after @to, try to merge them
  3697. * to reduce overall memory use and queue lengths, if cost is small.
  3698. * Packets in ofo or receive queues can stay a long time.
  3699. * Better try to coalesce them right now to avoid future collapses.
  3700. * Returns true if caller should free @from instead of queueing it
  3701. */
  3702. static bool tcp_try_coalesce(struct sock *sk,
  3703. struct sk_buff *to,
  3704. struct sk_buff *from,
  3705. bool *fragstolen)
  3706. {
  3707. int delta;
  3708. *fragstolen = false;
  3709. /* Its possible this segment overlaps with prior segment in queue */
  3710. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3711. return false;
  3712. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3713. return false;
  3714. atomic_add(delta, &sk->sk_rmem_alloc);
  3715. sk_mem_charge(sk, delta);
  3716. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3717. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3718. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3719. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3720. return true;
  3721. }
  3722. static bool tcp_ooo_try_coalesce(struct sock *sk,
  3723. struct sk_buff *to,
  3724. struct sk_buff *from,
  3725. bool *fragstolen)
  3726. {
  3727. bool res = tcp_try_coalesce(sk, to, from, fragstolen);
  3728. /* In case tcp_drop() is called later, update to->gso_segs */
  3729. if (res) {
  3730. u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
  3731. max_t(u16, 1, skb_shinfo(from)->gso_segs);
  3732. skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
  3733. }
  3734. return res;
  3735. }
  3736. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3737. {
  3738. sk_drops_add(sk, skb);
  3739. __kfree_skb(skb);
  3740. }
  3741. /* This one checks to see if we can put data from the
  3742. * out_of_order queue into the receive_queue.
  3743. */
  3744. static void tcp_ofo_queue(struct sock *sk)
  3745. {
  3746. struct tcp_sock *tp = tcp_sk(sk);
  3747. __u32 dsack_high = tp->rcv_nxt;
  3748. bool fin, fragstolen, eaten;
  3749. struct sk_buff *skb, *tail;
  3750. struct rb_node *p;
  3751. p = rb_first(&tp->out_of_order_queue);
  3752. while (p) {
  3753. skb = rb_entry(p, struct sk_buff, rbnode);
  3754. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3755. break;
  3756. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3757. __u32 dsack = dsack_high;
  3758. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3759. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3760. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3761. }
  3762. p = rb_next(p);
  3763. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3764. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3765. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3766. tcp_drop(sk, skb);
  3767. continue;
  3768. }
  3769. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3770. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3771. TCP_SKB_CB(skb)->end_seq);
  3772. tail = skb_peek_tail(&sk->sk_receive_queue);
  3773. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3774. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3775. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3776. if (!eaten)
  3777. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3778. else
  3779. kfree_skb_partial(skb, fragstolen);
  3780. if (unlikely(fin)) {
  3781. tcp_fin(sk);
  3782. /* tcp_fin() purges tp->out_of_order_queue,
  3783. * so we must end this loop right now.
  3784. */
  3785. break;
  3786. }
  3787. }
  3788. }
  3789. static bool tcp_prune_ofo_queue(struct sock *sk);
  3790. static int tcp_prune_queue(struct sock *sk);
  3791. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3792. unsigned int size)
  3793. {
  3794. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3795. !sk_rmem_schedule(sk, skb, size)) {
  3796. if (tcp_prune_queue(sk) < 0)
  3797. return -1;
  3798. if (!sk_rmem_schedule(sk, skb, size)) {
  3799. if (!tcp_prune_ofo_queue(sk))
  3800. return -1;
  3801. if (!sk_rmem_schedule(sk, skb, size))
  3802. return -1;
  3803. }
  3804. }
  3805. return 0;
  3806. }
  3807. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3808. {
  3809. struct tcp_sock *tp = tcp_sk(sk);
  3810. struct rb_node **p, *q, *parent;
  3811. struct sk_buff *skb1;
  3812. u32 seq, end_seq;
  3813. bool fragstolen;
  3814. tcp_ecn_check_ce(sk, skb);
  3815. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3816. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3817. tcp_drop(sk, skb);
  3818. return;
  3819. }
  3820. /* Disable header prediction. */
  3821. tp->pred_flags = 0;
  3822. inet_csk_schedule_ack(sk);
  3823. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3824. seq = TCP_SKB_CB(skb)->seq;
  3825. end_seq = TCP_SKB_CB(skb)->end_seq;
  3826. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3827. tp->rcv_nxt, seq, end_seq);
  3828. p = &tp->out_of_order_queue.rb_node;
  3829. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3830. /* Initial out of order segment, build 1 SACK. */
  3831. if (tcp_is_sack(tp)) {
  3832. tp->rx_opt.num_sacks = 1;
  3833. tp->selective_acks[0].start_seq = seq;
  3834. tp->selective_acks[0].end_seq = end_seq;
  3835. }
  3836. rb_link_node(&skb->rbnode, NULL, p);
  3837. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3838. tp->ooo_last_skb = skb;
  3839. goto end;
  3840. }
  3841. /* In the typical case, we are adding an skb to the end of the list.
  3842. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3843. */
  3844. if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
  3845. skb, &fragstolen)) {
  3846. coalesce_done:
  3847. tcp_grow_window(sk, skb);
  3848. kfree_skb_partial(skb, fragstolen);
  3849. skb = NULL;
  3850. goto add_sack;
  3851. }
  3852. /* Find place to insert this segment. Handle overlaps on the way. */
  3853. parent = NULL;
  3854. while (*p) {
  3855. parent = *p;
  3856. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  3857. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3858. p = &parent->rb_left;
  3859. continue;
  3860. }
  3861. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3862. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3863. /* All the bits are present. Drop. */
  3864. NET_INC_STATS(sock_net(sk),
  3865. LINUX_MIB_TCPOFOMERGE);
  3866. tcp_drop(sk, skb);
  3867. skb = NULL;
  3868. tcp_dsack_set(sk, seq, end_seq);
  3869. goto add_sack;
  3870. }
  3871. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3872. /* Partial overlap. */
  3873. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3874. } else {
  3875. /* skb's seq == skb1's seq and skb covers skb1.
  3876. * Replace skb1 with skb.
  3877. */
  3878. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3879. &tp->out_of_order_queue);
  3880. tcp_dsack_extend(sk,
  3881. TCP_SKB_CB(skb1)->seq,
  3882. TCP_SKB_CB(skb1)->end_seq);
  3883. NET_INC_STATS(sock_net(sk),
  3884. LINUX_MIB_TCPOFOMERGE);
  3885. tcp_drop(sk, skb1);
  3886. goto merge_right;
  3887. }
  3888. } else if (tcp_ooo_try_coalesce(sk, skb1,
  3889. skb, &fragstolen)) {
  3890. goto coalesce_done;
  3891. }
  3892. p = &parent->rb_right;
  3893. }
  3894. /* Insert segment into RB tree. */
  3895. rb_link_node(&skb->rbnode, parent, p);
  3896. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3897. merge_right:
  3898. /* Remove other segments covered by skb. */
  3899. while ((q = rb_next(&skb->rbnode)) != NULL) {
  3900. skb1 = rb_entry(q, struct sk_buff, rbnode);
  3901. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3902. break;
  3903. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3904. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3905. end_seq);
  3906. break;
  3907. }
  3908. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3909. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3910. TCP_SKB_CB(skb1)->end_seq);
  3911. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3912. tcp_drop(sk, skb1);
  3913. }
  3914. /* If there is no skb after us, we are the last_skb ! */
  3915. if (!q)
  3916. tp->ooo_last_skb = skb;
  3917. add_sack:
  3918. if (tcp_is_sack(tp))
  3919. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3920. end:
  3921. if (skb) {
  3922. tcp_grow_window(sk, skb);
  3923. skb_set_owner_r(skb, sk);
  3924. }
  3925. }
  3926. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3927. bool *fragstolen)
  3928. {
  3929. int eaten;
  3930. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3931. __skb_pull(skb, hdrlen);
  3932. eaten = (tail &&
  3933. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3934. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3935. if (!eaten) {
  3936. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3937. skb_set_owner_r(skb, sk);
  3938. }
  3939. return eaten;
  3940. }
  3941. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3942. {
  3943. struct sk_buff *skb;
  3944. int err = -ENOMEM;
  3945. int data_len = 0;
  3946. bool fragstolen;
  3947. if (size == 0)
  3948. return 0;
  3949. if (size > PAGE_SIZE) {
  3950. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3951. data_len = npages << PAGE_SHIFT;
  3952. size = data_len + (size & ~PAGE_MASK);
  3953. }
  3954. skb = alloc_skb_with_frags(size - data_len, data_len,
  3955. PAGE_ALLOC_COSTLY_ORDER,
  3956. &err, sk->sk_allocation);
  3957. if (!skb)
  3958. goto err;
  3959. skb_put(skb, size - data_len);
  3960. skb->data_len = data_len;
  3961. skb->len = size;
  3962. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3963. goto err_free;
  3964. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3965. if (err)
  3966. goto err_free;
  3967. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3968. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3969. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3970. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3971. WARN_ON_ONCE(fragstolen); /* should not happen */
  3972. __kfree_skb(skb);
  3973. }
  3974. return size;
  3975. err_free:
  3976. kfree_skb(skb);
  3977. err:
  3978. return err;
  3979. }
  3980. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3981. {
  3982. struct tcp_sock *tp = tcp_sk(sk);
  3983. bool fragstolen = false;
  3984. int eaten = -1;
  3985. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3986. __kfree_skb(skb);
  3987. return;
  3988. }
  3989. skb_dst_drop(skb);
  3990. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3991. tcp_ecn_accept_cwr(tp, skb);
  3992. tp->rx_opt.dsack = 0;
  3993. /* Queue data for delivery to the user.
  3994. * Packets in sequence go to the receive queue.
  3995. * Out of sequence packets to the out_of_order_queue.
  3996. */
  3997. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3998. if (tcp_receive_window(tp) == 0)
  3999. goto out_of_window;
  4000. /* Ok. In sequence. In window. */
  4001. if (tp->ucopy.task == current &&
  4002. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  4003. sock_owned_by_user(sk) && !tp->urg_data) {
  4004. int chunk = min_t(unsigned int, skb->len,
  4005. tp->ucopy.len);
  4006. __set_current_state(TASK_RUNNING);
  4007. local_bh_enable();
  4008. if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
  4009. tp->ucopy.len -= chunk;
  4010. tp->copied_seq += chunk;
  4011. eaten = (chunk == skb->len);
  4012. tcp_rcv_space_adjust(sk);
  4013. }
  4014. local_bh_disable();
  4015. }
  4016. if (eaten <= 0) {
  4017. queue_and_out:
  4018. if (eaten < 0) {
  4019. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4020. sk_forced_mem_schedule(sk, skb->truesize);
  4021. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4022. goto drop;
  4023. }
  4024. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4025. }
  4026. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4027. if (skb->len)
  4028. tcp_event_data_recv(sk, skb);
  4029. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4030. tcp_fin(sk);
  4031. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  4032. tcp_ofo_queue(sk);
  4033. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4034. * gap in queue is filled.
  4035. */
  4036. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4037. inet_csk(sk)->icsk_ack.pingpong = 0;
  4038. }
  4039. if (tp->rx_opt.num_sacks)
  4040. tcp_sack_remove(tp);
  4041. tcp_fast_path_check(sk);
  4042. if (eaten > 0)
  4043. kfree_skb_partial(skb, fragstolen);
  4044. if (!sock_flag(sk, SOCK_DEAD))
  4045. sk->sk_data_ready(sk);
  4046. return;
  4047. }
  4048. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4049. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4050. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4051. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4052. out_of_window:
  4053. tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
  4054. inet_csk_schedule_ack(sk);
  4055. drop:
  4056. tcp_drop(sk, skb);
  4057. return;
  4058. }
  4059. /* Out of window. F.e. zero window probe. */
  4060. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4061. goto out_of_window;
  4062. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4063. /* Partial packet, seq < rcv_next < end_seq */
  4064. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4065. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4066. TCP_SKB_CB(skb)->end_seq);
  4067. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4068. /* If window is closed, drop tail of packet. But after
  4069. * remembering D-SACK for its head made in previous line.
  4070. */
  4071. if (!tcp_receive_window(tp))
  4072. goto out_of_window;
  4073. goto queue_and_out;
  4074. }
  4075. tcp_data_queue_ofo(sk, skb);
  4076. }
  4077. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4078. {
  4079. if (list)
  4080. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4081. return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
  4082. }
  4083. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4084. struct sk_buff_head *list,
  4085. struct rb_root *root)
  4086. {
  4087. struct sk_buff *next = tcp_skb_next(skb, list);
  4088. if (list)
  4089. __skb_unlink(skb, list);
  4090. else
  4091. rb_erase(&skb->rbnode, root);
  4092. __kfree_skb(skb);
  4093. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4094. return next;
  4095. }
  4096. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4097. static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4098. {
  4099. struct rb_node **p = &root->rb_node;
  4100. struct rb_node *parent = NULL;
  4101. struct sk_buff *skb1;
  4102. while (*p) {
  4103. parent = *p;
  4104. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  4105. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4106. p = &parent->rb_left;
  4107. else
  4108. p = &parent->rb_right;
  4109. }
  4110. rb_link_node(&skb->rbnode, parent, p);
  4111. rb_insert_color(&skb->rbnode, root);
  4112. }
  4113. /* Collapse contiguous sequence of skbs head..tail with
  4114. * sequence numbers start..end.
  4115. *
  4116. * If tail is NULL, this means until the end of the queue.
  4117. *
  4118. * Segments with FIN/SYN are not collapsed (only because this
  4119. * simplifies code)
  4120. */
  4121. static void
  4122. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4123. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4124. {
  4125. struct sk_buff *skb = head, *n;
  4126. struct sk_buff_head tmp;
  4127. bool end_of_skbs;
  4128. /* First, check that queue is collapsible and find
  4129. * the point where collapsing can be useful.
  4130. */
  4131. restart:
  4132. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4133. n = tcp_skb_next(skb, list);
  4134. /* No new bits? It is possible on ofo queue. */
  4135. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4136. skb = tcp_collapse_one(sk, skb, list, root);
  4137. if (!skb)
  4138. break;
  4139. goto restart;
  4140. }
  4141. /* The first skb to collapse is:
  4142. * - not SYN/FIN and
  4143. * - bloated or contains data before "start" or
  4144. * overlaps to the next one.
  4145. */
  4146. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4147. (tcp_win_from_space(skb->truesize) > skb->len ||
  4148. before(TCP_SKB_CB(skb)->seq, start))) {
  4149. end_of_skbs = false;
  4150. break;
  4151. }
  4152. if (n && n != tail &&
  4153. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4154. end_of_skbs = false;
  4155. break;
  4156. }
  4157. /* Decided to skip this, advance start seq. */
  4158. start = TCP_SKB_CB(skb)->end_seq;
  4159. }
  4160. if (end_of_skbs ||
  4161. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4162. return;
  4163. __skb_queue_head_init(&tmp);
  4164. while (before(start, end)) {
  4165. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4166. struct sk_buff *nskb;
  4167. nskb = alloc_skb(copy, GFP_ATOMIC);
  4168. if (!nskb)
  4169. break;
  4170. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4171. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4172. if (list)
  4173. __skb_queue_before(list, skb, nskb);
  4174. else
  4175. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4176. skb_set_owner_r(nskb, sk);
  4177. /* Copy data, releasing collapsed skbs. */
  4178. while (copy > 0) {
  4179. int offset = start - TCP_SKB_CB(skb)->seq;
  4180. int size = TCP_SKB_CB(skb)->end_seq - start;
  4181. BUG_ON(offset < 0);
  4182. if (size > 0) {
  4183. size = min(copy, size);
  4184. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4185. BUG();
  4186. TCP_SKB_CB(nskb)->end_seq += size;
  4187. copy -= size;
  4188. start += size;
  4189. }
  4190. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4191. skb = tcp_collapse_one(sk, skb, list, root);
  4192. if (!skb ||
  4193. skb == tail ||
  4194. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4195. goto end;
  4196. }
  4197. }
  4198. }
  4199. end:
  4200. skb_queue_walk_safe(&tmp, skb, n)
  4201. tcp_rbtree_insert(root, skb);
  4202. }
  4203. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4204. * and tcp_collapse() them until all the queue is collapsed.
  4205. */
  4206. static void tcp_collapse_ofo_queue(struct sock *sk)
  4207. {
  4208. struct tcp_sock *tp = tcp_sk(sk);
  4209. u32 range_truesize, sum_tiny = 0;
  4210. struct sk_buff *skb, *head;
  4211. struct rb_node *p;
  4212. u32 start, end;
  4213. p = rb_first(&tp->out_of_order_queue);
  4214. skb = rb_entry_safe(p, struct sk_buff, rbnode);
  4215. new_range:
  4216. if (!skb) {
  4217. p = rb_last(&tp->out_of_order_queue);
  4218. /* Note: This is possible p is NULL here. We do not
  4219. * use rb_entry_safe(), as ooo_last_skb is valid only
  4220. * if rbtree is not empty.
  4221. */
  4222. tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
  4223. return;
  4224. }
  4225. start = TCP_SKB_CB(skb)->seq;
  4226. end = TCP_SKB_CB(skb)->end_seq;
  4227. range_truesize = skb->truesize;
  4228. for (head = skb;;) {
  4229. skb = tcp_skb_next(skb, NULL);
  4230. /* Range is terminated when we see a gap or when
  4231. * we are at the queue end.
  4232. */
  4233. if (!skb ||
  4234. after(TCP_SKB_CB(skb)->seq, end) ||
  4235. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4236. /* Do not attempt collapsing tiny skbs */
  4237. if (range_truesize != head->truesize ||
  4238. end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
  4239. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4240. head, skb, start, end);
  4241. } else {
  4242. sum_tiny += range_truesize;
  4243. if (sum_tiny > sk->sk_rcvbuf >> 3)
  4244. return;
  4245. }
  4246. goto new_range;
  4247. }
  4248. range_truesize += skb->truesize;
  4249. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4250. start = TCP_SKB_CB(skb)->seq;
  4251. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4252. end = TCP_SKB_CB(skb)->end_seq;
  4253. }
  4254. }
  4255. /*
  4256. * Purge the out-of-order queue.
  4257. * Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
  4258. * Return true if queue was pruned.
  4259. */
  4260. static bool tcp_prune_ofo_queue(struct sock *sk)
  4261. {
  4262. struct tcp_sock *tp = tcp_sk(sk);
  4263. struct rb_node *node, *prev;
  4264. int goal;
  4265. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4266. return false;
  4267. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4268. goal = sk->sk_rcvbuf >> 3;
  4269. node = &tp->ooo_last_skb->rbnode;
  4270. do {
  4271. prev = rb_prev(node);
  4272. rb_erase(node, &tp->out_of_order_queue);
  4273. goal -= rb_to_skb(node)->truesize;
  4274. __kfree_skb(rb_to_skb(node));
  4275. if (!prev || goal <= 0) {
  4276. sk_mem_reclaim(sk);
  4277. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4278. !tcp_under_memory_pressure(sk))
  4279. break;
  4280. goal = sk->sk_rcvbuf >> 3;
  4281. }
  4282. node = prev;
  4283. } while (node);
  4284. tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
  4285. /* Reset SACK state. A conforming SACK implementation will
  4286. * do the same at a timeout based retransmit. When a connection
  4287. * is in a sad state like this, we care only about integrity
  4288. * of the connection not performance.
  4289. */
  4290. if (tp->rx_opt.sack_ok)
  4291. tcp_sack_reset(&tp->rx_opt);
  4292. return true;
  4293. }
  4294. /* Reduce allocated memory if we can, trying to get
  4295. * the socket within its memory limits again.
  4296. *
  4297. * Return less than zero if we should start dropping frames
  4298. * until the socket owning process reads some of the data
  4299. * to stabilize the situation.
  4300. */
  4301. static int tcp_prune_queue(struct sock *sk)
  4302. {
  4303. struct tcp_sock *tp = tcp_sk(sk);
  4304. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4305. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4306. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4307. tcp_clamp_window(sk);
  4308. else if (tcp_under_memory_pressure(sk))
  4309. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4310. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4311. return 0;
  4312. tcp_collapse_ofo_queue(sk);
  4313. if (!skb_queue_empty(&sk->sk_receive_queue))
  4314. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4315. skb_peek(&sk->sk_receive_queue),
  4316. NULL,
  4317. tp->copied_seq, tp->rcv_nxt);
  4318. sk_mem_reclaim(sk);
  4319. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4320. return 0;
  4321. /* Collapsing did not help, destructive actions follow.
  4322. * This must not ever occur. */
  4323. tcp_prune_ofo_queue(sk);
  4324. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4325. return 0;
  4326. /* If we are really being abused, tell the caller to silently
  4327. * drop receive data on the floor. It will get retransmitted
  4328. * and hopefully then we'll have sufficient space.
  4329. */
  4330. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4331. /* Massive buffer overcommit. */
  4332. tp->pred_flags = 0;
  4333. return -1;
  4334. }
  4335. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4336. {
  4337. const struct tcp_sock *tp = tcp_sk(sk);
  4338. /* If the user specified a specific send buffer setting, do
  4339. * not modify it.
  4340. */
  4341. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4342. return false;
  4343. /* If we are under global TCP memory pressure, do not expand. */
  4344. if (tcp_under_memory_pressure(sk))
  4345. return false;
  4346. /* If we are under soft global TCP memory pressure, do not expand. */
  4347. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4348. return false;
  4349. /* If we filled the congestion window, do not expand. */
  4350. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4351. return false;
  4352. return true;
  4353. }
  4354. /* When incoming ACK allowed to free some skb from write_queue,
  4355. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4356. * on the exit from tcp input handler.
  4357. *
  4358. * PROBLEM: sndbuf expansion does not work well with largesend.
  4359. */
  4360. static void tcp_new_space(struct sock *sk)
  4361. {
  4362. struct tcp_sock *tp = tcp_sk(sk);
  4363. if (tcp_should_expand_sndbuf(sk)) {
  4364. tcp_sndbuf_expand(sk);
  4365. tp->snd_cwnd_stamp = tcp_time_stamp;
  4366. }
  4367. sk->sk_write_space(sk);
  4368. }
  4369. static void tcp_check_space(struct sock *sk)
  4370. {
  4371. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4372. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4373. /* pairs with tcp_poll() */
  4374. smp_mb();
  4375. if (sk->sk_socket &&
  4376. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4377. tcp_new_space(sk);
  4378. }
  4379. }
  4380. static inline void tcp_data_snd_check(struct sock *sk)
  4381. {
  4382. tcp_push_pending_frames(sk);
  4383. tcp_check_space(sk);
  4384. }
  4385. /*
  4386. * Check if sending an ack is needed.
  4387. */
  4388. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4389. {
  4390. struct tcp_sock *tp = tcp_sk(sk);
  4391. /* More than one full frame received... */
  4392. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4393. /* ... and right edge of window advances far enough.
  4394. * (tcp_recvmsg() will send ACK otherwise). Or...
  4395. */
  4396. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4397. /* We ACK each frame or... */
  4398. tcp_in_quickack_mode(sk) ||
  4399. /* We have out of order data. */
  4400. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4401. /* Then ack it now */
  4402. tcp_send_ack(sk);
  4403. } else {
  4404. /* Else, send delayed ack. */
  4405. tcp_send_delayed_ack(sk);
  4406. }
  4407. }
  4408. static inline void tcp_ack_snd_check(struct sock *sk)
  4409. {
  4410. if (!inet_csk_ack_scheduled(sk)) {
  4411. /* We sent a data segment already. */
  4412. return;
  4413. }
  4414. __tcp_ack_snd_check(sk, 1);
  4415. }
  4416. /*
  4417. * This routine is only called when we have urgent data
  4418. * signaled. Its the 'slow' part of tcp_urg. It could be
  4419. * moved inline now as tcp_urg is only called from one
  4420. * place. We handle URGent data wrong. We have to - as
  4421. * BSD still doesn't use the correction from RFC961.
  4422. * For 1003.1g we should support a new option TCP_STDURG to permit
  4423. * either form (or just set the sysctl tcp_stdurg).
  4424. */
  4425. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4426. {
  4427. struct tcp_sock *tp = tcp_sk(sk);
  4428. u32 ptr = ntohs(th->urg_ptr);
  4429. if (ptr && !sysctl_tcp_stdurg)
  4430. ptr--;
  4431. ptr += ntohl(th->seq);
  4432. /* Ignore urgent data that we've already seen and read. */
  4433. if (after(tp->copied_seq, ptr))
  4434. return;
  4435. /* Do not replay urg ptr.
  4436. *
  4437. * NOTE: interesting situation not covered by specs.
  4438. * Misbehaving sender may send urg ptr, pointing to segment,
  4439. * which we already have in ofo queue. We are not able to fetch
  4440. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4441. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4442. * situations. But it is worth to think about possibility of some
  4443. * DoSes using some hypothetical application level deadlock.
  4444. */
  4445. if (before(ptr, tp->rcv_nxt))
  4446. return;
  4447. /* Do we already have a newer (or duplicate) urgent pointer? */
  4448. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4449. return;
  4450. /* Tell the world about our new urgent pointer. */
  4451. sk_send_sigurg(sk);
  4452. /* We may be adding urgent data when the last byte read was
  4453. * urgent. To do this requires some care. We cannot just ignore
  4454. * tp->copied_seq since we would read the last urgent byte again
  4455. * as data, nor can we alter copied_seq until this data arrives
  4456. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4457. *
  4458. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4459. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4460. * and expect that both A and B disappear from stream. This is _wrong_.
  4461. * Though this happens in BSD with high probability, this is occasional.
  4462. * Any application relying on this is buggy. Note also, that fix "works"
  4463. * only in this artificial test. Insert some normal data between A and B and we will
  4464. * decline of BSD again. Verdict: it is better to remove to trap
  4465. * buggy users.
  4466. */
  4467. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4468. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4469. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4470. tp->copied_seq++;
  4471. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4472. __skb_unlink(skb, &sk->sk_receive_queue);
  4473. __kfree_skb(skb);
  4474. }
  4475. }
  4476. tp->urg_data = TCP_URG_NOTYET;
  4477. tp->urg_seq = ptr;
  4478. /* Disable header prediction. */
  4479. tp->pred_flags = 0;
  4480. }
  4481. /* This is the 'fast' part of urgent handling. */
  4482. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4483. {
  4484. struct tcp_sock *tp = tcp_sk(sk);
  4485. /* Check if we get a new urgent pointer - normally not. */
  4486. if (th->urg)
  4487. tcp_check_urg(sk, th);
  4488. /* Do we wait for any urgent data? - normally not... */
  4489. if (tp->urg_data == TCP_URG_NOTYET) {
  4490. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4491. th->syn;
  4492. /* Is the urgent pointer pointing into this packet? */
  4493. if (ptr < skb->len) {
  4494. u8 tmp;
  4495. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4496. BUG();
  4497. tp->urg_data = TCP_URG_VALID | tmp;
  4498. if (!sock_flag(sk, SOCK_DEAD))
  4499. sk->sk_data_ready(sk);
  4500. }
  4501. }
  4502. }
  4503. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4504. {
  4505. struct tcp_sock *tp = tcp_sk(sk);
  4506. int chunk = skb->len - hlen;
  4507. int err;
  4508. local_bh_enable();
  4509. if (skb_csum_unnecessary(skb))
  4510. err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
  4511. else
  4512. err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
  4513. if (!err) {
  4514. tp->ucopy.len -= chunk;
  4515. tp->copied_seq += chunk;
  4516. tcp_rcv_space_adjust(sk);
  4517. }
  4518. local_bh_disable();
  4519. return err;
  4520. }
  4521. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4522. struct sk_buff *skb)
  4523. {
  4524. __sum16 result;
  4525. if (sock_owned_by_user(sk)) {
  4526. local_bh_enable();
  4527. result = __tcp_checksum_complete(skb);
  4528. local_bh_disable();
  4529. } else {
  4530. result = __tcp_checksum_complete(skb);
  4531. }
  4532. return result;
  4533. }
  4534. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4535. struct sk_buff *skb)
  4536. {
  4537. return !skb_csum_unnecessary(skb) &&
  4538. __tcp_checksum_complete_user(sk, skb);
  4539. }
  4540. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4541. * play significant role here.
  4542. */
  4543. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4544. const struct tcphdr *th, int syn_inerr)
  4545. {
  4546. struct tcp_sock *tp = tcp_sk(sk);
  4547. /* RFC1323: H1. Apply PAWS check first. */
  4548. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4549. tcp_paws_discard(sk, skb)) {
  4550. if (!th->rst) {
  4551. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4552. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4553. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4554. &tp->last_oow_ack_time))
  4555. tcp_send_dupack(sk, skb);
  4556. goto discard;
  4557. }
  4558. /* Reset is accepted even if it did not pass PAWS. */
  4559. }
  4560. /* Step 1: check sequence number */
  4561. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4562. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4563. * (RST) segments are validated by checking their SEQ-fields."
  4564. * And page 69: "If an incoming segment is not acceptable,
  4565. * an acknowledgment should be sent in reply (unless the RST
  4566. * bit is set, if so drop the segment and return)".
  4567. */
  4568. if (!th->rst) {
  4569. if (th->syn)
  4570. goto syn_challenge;
  4571. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4572. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4573. &tp->last_oow_ack_time))
  4574. tcp_send_dupack(sk, skb);
  4575. }
  4576. goto discard;
  4577. }
  4578. /* Step 2: check RST bit */
  4579. if (th->rst) {
  4580. /* RFC 5961 3.2 :
  4581. * If sequence number exactly matches RCV.NXT, then
  4582. * RESET the connection
  4583. * else
  4584. * Send a challenge ACK
  4585. */
  4586. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4587. tcp_reset(sk);
  4588. else
  4589. tcp_send_challenge_ack(sk, skb);
  4590. goto discard;
  4591. }
  4592. /* step 3: check security and precedence [ignored] */
  4593. /* step 4: Check for a SYN
  4594. * RFC 5961 4.2 : Send a challenge ack
  4595. */
  4596. if (th->syn) {
  4597. syn_challenge:
  4598. if (syn_inerr)
  4599. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4600. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4601. tcp_send_challenge_ack(sk, skb);
  4602. goto discard;
  4603. }
  4604. return true;
  4605. discard:
  4606. tcp_drop(sk, skb);
  4607. return false;
  4608. }
  4609. /*
  4610. * TCP receive function for the ESTABLISHED state.
  4611. *
  4612. * It is split into a fast path and a slow path. The fast path is
  4613. * disabled when:
  4614. * - A zero window was announced from us - zero window probing
  4615. * is only handled properly in the slow path.
  4616. * - Out of order segments arrived.
  4617. * - Urgent data is expected.
  4618. * - There is no buffer space left
  4619. * - Unexpected TCP flags/window values/header lengths are received
  4620. * (detected by checking the TCP header against pred_flags)
  4621. * - Data is sent in both directions. Fast path only supports pure senders
  4622. * or pure receivers (this means either the sequence number or the ack
  4623. * value must stay constant)
  4624. * - Unexpected TCP option.
  4625. *
  4626. * When these conditions are not satisfied it drops into a standard
  4627. * receive procedure patterned after RFC793 to handle all cases.
  4628. * The first three cases are guaranteed by proper pred_flags setting,
  4629. * the rest is checked inline. Fast processing is turned on in
  4630. * tcp_data_queue when everything is OK.
  4631. */
  4632. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4633. const struct tcphdr *th, unsigned int len)
  4634. {
  4635. struct tcp_sock *tp = tcp_sk(sk);
  4636. if (unlikely(!sk->sk_rx_dst))
  4637. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4638. /*
  4639. * Header prediction.
  4640. * The code loosely follows the one in the famous
  4641. * "30 instruction TCP receive" Van Jacobson mail.
  4642. *
  4643. * Van's trick is to deposit buffers into socket queue
  4644. * on a device interrupt, to call tcp_recv function
  4645. * on the receive process context and checksum and copy
  4646. * the buffer to user space. smart...
  4647. *
  4648. * Our current scheme is not silly either but we take the
  4649. * extra cost of the net_bh soft interrupt processing...
  4650. * We do checksum and copy also but from device to kernel.
  4651. */
  4652. tp->rx_opt.saw_tstamp = 0;
  4653. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4654. * if header_prediction is to be made
  4655. * 'S' will always be tp->tcp_header_len >> 2
  4656. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4657. * turn it off (when there are holes in the receive
  4658. * space for instance)
  4659. * PSH flag is ignored.
  4660. */
  4661. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4662. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4663. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4664. int tcp_header_len = tp->tcp_header_len;
  4665. /* Timestamp header prediction: tcp_header_len
  4666. * is automatically equal to th->doff*4 due to pred_flags
  4667. * match.
  4668. */
  4669. /* Check timestamp */
  4670. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4671. /* No? Slow path! */
  4672. if (!tcp_parse_aligned_timestamp(tp, th))
  4673. goto slow_path;
  4674. /* If PAWS failed, check it more carefully in slow path */
  4675. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4676. goto slow_path;
  4677. /* DO NOT update ts_recent here, if checksum fails
  4678. * and timestamp was corrupted part, it will result
  4679. * in a hung connection since we will drop all
  4680. * future packets due to the PAWS test.
  4681. */
  4682. }
  4683. if (len <= tcp_header_len) {
  4684. /* Bulk data transfer: sender */
  4685. if (len == tcp_header_len) {
  4686. /* Predicted packet is in window by definition.
  4687. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4688. * Hence, check seq<=rcv_wup reduces to:
  4689. */
  4690. if (tcp_header_len ==
  4691. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4692. tp->rcv_nxt == tp->rcv_wup)
  4693. tcp_store_ts_recent(tp);
  4694. /* We know that such packets are checksummed
  4695. * on entry.
  4696. */
  4697. tcp_ack(sk, skb, 0);
  4698. __kfree_skb(skb);
  4699. tcp_data_snd_check(sk);
  4700. return;
  4701. } else { /* Header too small */
  4702. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4703. goto discard;
  4704. }
  4705. } else {
  4706. int eaten = 0;
  4707. bool fragstolen = false;
  4708. if (tp->ucopy.task == current &&
  4709. tp->copied_seq == tp->rcv_nxt &&
  4710. len - tcp_header_len <= tp->ucopy.len &&
  4711. sock_owned_by_user(sk)) {
  4712. __set_current_state(TASK_RUNNING);
  4713. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  4714. /* Predicted packet is in window by definition.
  4715. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4716. * Hence, check seq<=rcv_wup reduces to:
  4717. */
  4718. if (tcp_header_len ==
  4719. (sizeof(struct tcphdr) +
  4720. TCPOLEN_TSTAMP_ALIGNED) &&
  4721. tp->rcv_nxt == tp->rcv_wup)
  4722. tcp_store_ts_recent(tp);
  4723. tcp_rcv_rtt_measure_ts(sk, skb);
  4724. __skb_pull(skb, tcp_header_len);
  4725. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4726. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4727. eaten = 1;
  4728. }
  4729. }
  4730. if (!eaten) {
  4731. if (tcp_checksum_complete_user(sk, skb))
  4732. goto csum_error;
  4733. if ((int)skb->truesize > sk->sk_forward_alloc)
  4734. goto step5;
  4735. /* Predicted packet is in window by definition.
  4736. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4737. * Hence, check seq<=rcv_wup reduces to:
  4738. */
  4739. if (tcp_header_len ==
  4740. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4741. tp->rcv_nxt == tp->rcv_wup)
  4742. tcp_store_ts_recent(tp);
  4743. tcp_rcv_rtt_measure_ts(sk, skb);
  4744. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4745. /* Bulk data transfer: receiver */
  4746. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4747. &fragstolen);
  4748. }
  4749. tcp_event_data_recv(sk, skb);
  4750. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4751. /* Well, only one small jumplet in fast path... */
  4752. tcp_ack(sk, skb, FLAG_DATA);
  4753. tcp_data_snd_check(sk);
  4754. if (!inet_csk_ack_scheduled(sk))
  4755. goto no_ack;
  4756. }
  4757. __tcp_ack_snd_check(sk, 0);
  4758. no_ack:
  4759. if (eaten)
  4760. kfree_skb_partial(skb, fragstolen);
  4761. sk->sk_data_ready(sk);
  4762. return;
  4763. }
  4764. }
  4765. slow_path:
  4766. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4767. goto csum_error;
  4768. if (!th->ack && !th->rst && !th->syn)
  4769. goto discard;
  4770. /*
  4771. * Standard slow path.
  4772. */
  4773. if (!tcp_validate_incoming(sk, skb, th, 1))
  4774. return;
  4775. step5:
  4776. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4777. goto discard;
  4778. tcp_rcv_rtt_measure_ts(sk, skb);
  4779. /* Process urgent data. */
  4780. tcp_urg(sk, skb, th);
  4781. /* step 7: process the segment text */
  4782. tcp_data_queue(sk, skb);
  4783. tcp_data_snd_check(sk);
  4784. tcp_ack_snd_check(sk);
  4785. return;
  4786. csum_error:
  4787. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
  4788. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4789. discard:
  4790. tcp_drop(sk, skb);
  4791. }
  4792. EXPORT_SYMBOL(tcp_rcv_established);
  4793. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4794. {
  4795. struct tcp_sock *tp = tcp_sk(sk);
  4796. struct inet_connection_sock *icsk = inet_csk(sk);
  4797. tcp_set_state(sk, TCP_ESTABLISHED);
  4798. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4799. if (skb) {
  4800. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4801. security_inet_conn_established(sk, skb);
  4802. }
  4803. /* Make sure socket is routed, for correct metrics. */
  4804. icsk->icsk_af_ops->rebuild_header(sk);
  4805. tcp_init_metrics(sk);
  4806. tcp_init_congestion_control(sk);
  4807. /* Prevent spurious tcp_cwnd_restart() on first data
  4808. * packet.
  4809. */
  4810. tp->lsndtime = tcp_time_stamp;
  4811. tcp_init_buffer_space(sk);
  4812. if (sock_flag(sk, SOCK_KEEPOPEN))
  4813. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4814. if (!tp->rx_opt.snd_wscale)
  4815. __tcp_fast_path_on(tp, tp->snd_wnd);
  4816. else
  4817. tp->pred_flags = 0;
  4818. }
  4819. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4820. struct tcp_fastopen_cookie *cookie)
  4821. {
  4822. struct tcp_sock *tp = tcp_sk(sk);
  4823. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4824. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4825. bool syn_drop = false;
  4826. if (mss == tp->rx_opt.user_mss) {
  4827. struct tcp_options_received opt;
  4828. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4829. tcp_clear_options(&opt);
  4830. opt.user_mss = opt.mss_clamp = 0;
  4831. tcp_parse_options(synack, &opt, 0, NULL);
  4832. mss = opt.mss_clamp;
  4833. }
  4834. if (!tp->syn_fastopen) {
  4835. /* Ignore an unsolicited cookie */
  4836. cookie->len = -1;
  4837. } else if (tp->total_retrans) {
  4838. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4839. * acknowledges data. Presumably the remote received only
  4840. * the retransmitted (regular) SYNs: either the original
  4841. * SYN-data or the corresponding SYN-ACK was dropped.
  4842. */
  4843. syn_drop = (cookie->len < 0 && data);
  4844. } else if (cookie->len < 0 && !tp->syn_data) {
  4845. /* We requested a cookie but didn't get it. If we did not use
  4846. * the (old) exp opt format then try so next time (try_exp=1).
  4847. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4848. */
  4849. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4850. }
  4851. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4852. if (data) { /* Retransmit unacked data in SYN */
  4853. tcp_for_write_queue_from(data, sk) {
  4854. if (data == tcp_send_head(sk) ||
  4855. __tcp_retransmit_skb(sk, data))
  4856. break;
  4857. }
  4858. tcp_rearm_rto(sk);
  4859. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4860. return true;
  4861. }
  4862. tp->syn_data_acked = tp->syn_data;
  4863. if (tp->syn_data_acked)
  4864. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
  4865. return false;
  4866. }
  4867. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4868. const struct tcphdr *th)
  4869. {
  4870. struct inet_connection_sock *icsk = inet_csk(sk);
  4871. struct tcp_sock *tp = tcp_sk(sk);
  4872. struct tcp_fastopen_cookie foc = { .len = -1 };
  4873. int saved_clamp = tp->rx_opt.mss_clamp;
  4874. bool fastopen_fail;
  4875. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4876. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4877. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4878. if (th->ack) {
  4879. /* rfc793:
  4880. * "If the state is SYN-SENT then
  4881. * first check the ACK bit
  4882. * If the ACK bit is set
  4883. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4884. * a reset (unless the RST bit is set, if so drop
  4885. * the segment and return)"
  4886. */
  4887. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4888. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4889. goto reset_and_undo;
  4890. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4891. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4892. tcp_time_stamp)) {
  4893. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4894. goto reset_and_undo;
  4895. }
  4896. /* Now ACK is acceptable.
  4897. *
  4898. * "If the RST bit is set
  4899. * If the ACK was acceptable then signal the user "error:
  4900. * connection reset", drop the segment, enter CLOSED state,
  4901. * delete TCB, and return."
  4902. */
  4903. if (th->rst) {
  4904. tcp_reset(sk);
  4905. goto discard;
  4906. }
  4907. /* rfc793:
  4908. * "fifth, if neither of the SYN or RST bits is set then
  4909. * drop the segment and return."
  4910. *
  4911. * See note below!
  4912. * --ANK(990513)
  4913. */
  4914. if (!th->syn)
  4915. goto discard_and_undo;
  4916. /* rfc793:
  4917. * "If the SYN bit is on ...
  4918. * are acceptable then ...
  4919. * (our SYN has been ACKed), change the connection
  4920. * state to ESTABLISHED..."
  4921. */
  4922. tcp_ecn_rcv_synack(tp, th);
  4923. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4924. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4925. /* Ok.. it's good. Set up sequence numbers and
  4926. * move to established.
  4927. */
  4928. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4929. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4930. /* RFC1323: The window in SYN & SYN/ACK segments is
  4931. * never scaled.
  4932. */
  4933. tp->snd_wnd = ntohs(th->window);
  4934. if (!tp->rx_opt.wscale_ok) {
  4935. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4936. tp->window_clamp = min(tp->window_clamp, 65535U);
  4937. }
  4938. if (tp->rx_opt.saw_tstamp) {
  4939. tp->rx_opt.tstamp_ok = 1;
  4940. tp->tcp_header_len =
  4941. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4942. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4943. tcp_store_ts_recent(tp);
  4944. } else {
  4945. tp->tcp_header_len = sizeof(struct tcphdr);
  4946. }
  4947. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4948. tcp_enable_fack(tp);
  4949. tcp_mtup_init(sk);
  4950. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4951. tcp_initialize_rcv_mss(sk);
  4952. /* Remember, tcp_poll() does not lock socket!
  4953. * Change state from SYN-SENT only after copied_seq
  4954. * is initialized. */
  4955. tp->copied_seq = tp->rcv_nxt;
  4956. smp_mb();
  4957. tcp_finish_connect(sk, skb);
  4958. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4959. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4960. if (!sock_flag(sk, SOCK_DEAD)) {
  4961. sk->sk_state_change(sk);
  4962. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4963. }
  4964. if (fastopen_fail)
  4965. return -1;
  4966. if (sk->sk_write_pending ||
  4967. icsk->icsk_accept_queue.rskq_defer_accept ||
  4968. icsk->icsk_ack.pingpong) {
  4969. /* Save one ACK. Data will be ready after
  4970. * several ticks, if write_pending is set.
  4971. *
  4972. * It may be deleted, but with this feature tcpdumps
  4973. * look so _wonderfully_ clever, that I was not able
  4974. * to stand against the temptation 8) --ANK
  4975. */
  4976. inet_csk_schedule_ack(sk);
  4977. tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
  4978. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4979. TCP_DELACK_MAX, TCP_RTO_MAX);
  4980. discard:
  4981. tcp_drop(sk, skb);
  4982. return 0;
  4983. } else {
  4984. tcp_send_ack(sk);
  4985. }
  4986. return -1;
  4987. }
  4988. /* No ACK in the segment */
  4989. if (th->rst) {
  4990. /* rfc793:
  4991. * "If the RST bit is set
  4992. *
  4993. * Otherwise (no ACK) drop the segment and return."
  4994. */
  4995. goto discard_and_undo;
  4996. }
  4997. /* PAWS check. */
  4998. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4999. tcp_paws_reject(&tp->rx_opt, 0))
  5000. goto discard_and_undo;
  5001. if (th->syn) {
  5002. /* We see SYN without ACK. It is attempt of
  5003. * simultaneous connect with crossed SYNs.
  5004. * Particularly, it can be connect to self.
  5005. */
  5006. tcp_set_state(sk, TCP_SYN_RECV);
  5007. if (tp->rx_opt.saw_tstamp) {
  5008. tp->rx_opt.tstamp_ok = 1;
  5009. tcp_store_ts_recent(tp);
  5010. tp->tcp_header_len =
  5011. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5012. } else {
  5013. tp->tcp_header_len = sizeof(struct tcphdr);
  5014. }
  5015. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5016. tp->copied_seq = tp->rcv_nxt;
  5017. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5018. /* RFC1323: The window in SYN & SYN/ACK segments is
  5019. * never scaled.
  5020. */
  5021. tp->snd_wnd = ntohs(th->window);
  5022. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5023. tp->max_window = tp->snd_wnd;
  5024. tcp_ecn_rcv_syn(tp, th);
  5025. tcp_mtup_init(sk);
  5026. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5027. tcp_initialize_rcv_mss(sk);
  5028. tcp_send_synack(sk);
  5029. #if 0
  5030. /* Note, we could accept data and URG from this segment.
  5031. * There are no obstacles to make this (except that we must
  5032. * either change tcp_recvmsg() to prevent it from returning data
  5033. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  5034. *
  5035. * However, if we ignore data in ACKless segments sometimes,
  5036. * we have no reasons to accept it sometimes.
  5037. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5038. * is not flawless. So, discard packet for sanity.
  5039. * Uncomment this return to process the data.
  5040. */
  5041. return -1;
  5042. #else
  5043. goto discard;
  5044. #endif
  5045. }
  5046. /* "fifth, if neither of the SYN or RST bits is set then
  5047. * drop the segment and return."
  5048. */
  5049. discard_and_undo:
  5050. tcp_clear_options(&tp->rx_opt);
  5051. tp->rx_opt.mss_clamp = saved_clamp;
  5052. goto discard;
  5053. reset_and_undo:
  5054. tcp_clear_options(&tp->rx_opt);
  5055. tp->rx_opt.mss_clamp = saved_clamp;
  5056. return 1;
  5057. }
  5058. /*
  5059. * This function implements the receiving procedure of RFC 793 for
  5060. * all states except ESTABLISHED and TIME_WAIT.
  5061. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5062. * address independent.
  5063. */
  5064. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5065. {
  5066. struct tcp_sock *tp = tcp_sk(sk);
  5067. struct inet_connection_sock *icsk = inet_csk(sk);
  5068. const struct tcphdr *th = tcp_hdr(skb);
  5069. struct request_sock *req;
  5070. int queued = 0;
  5071. bool acceptable;
  5072. tp->rx_opt.saw_tstamp = 0;
  5073. switch (sk->sk_state) {
  5074. case TCP_CLOSE:
  5075. goto discard;
  5076. case TCP_LISTEN:
  5077. if (th->ack)
  5078. return 1;
  5079. if (th->rst)
  5080. goto discard;
  5081. if (th->syn) {
  5082. if (th->fin)
  5083. goto discard;
  5084. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5085. return 1;
  5086. /* Now we have several options: In theory there is
  5087. * nothing else in the frame. KA9Q has an option to
  5088. * send data with the syn, BSD accepts data with the
  5089. * syn up to the [to be] advertised window and
  5090. * Solaris 2.1 gives you a protocol error. For now
  5091. * we just ignore it, that fits the spec precisely
  5092. * and avoids incompatibilities. It would be nice in
  5093. * future to drop through and process the data.
  5094. *
  5095. * Now that TTCP is starting to be used we ought to
  5096. * queue this data.
  5097. * But, this leaves one open to an easy denial of
  5098. * service attack, and SYN cookies can't defend
  5099. * against this problem. So, we drop the data
  5100. * in the interest of security over speed unless
  5101. * it's still in use.
  5102. */
  5103. kfree_skb(skb);
  5104. return 0;
  5105. }
  5106. goto discard;
  5107. case TCP_SYN_SENT:
  5108. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5109. if (queued >= 0)
  5110. return queued;
  5111. /* Do step6 onward by hand. */
  5112. tcp_urg(sk, skb, th);
  5113. __kfree_skb(skb);
  5114. tcp_data_snd_check(sk);
  5115. return 0;
  5116. }
  5117. req = tp->fastopen_rsk;
  5118. if (req) {
  5119. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5120. sk->sk_state != TCP_FIN_WAIT1);
  5121. if (!tcp_check_req(sk, skb, req, true))
  5122. goto discard;
  5123. }
  5124. if (!th->ack && !th->rst && !th->syn)
  5125. goto discard;
  5126. if (!tcp_validate_incoming(sk, skb, th, 0))
  5127. return 0;
  5128. /* step 5: check the ACK field */
  5129. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5130. FLAG_UPDATE_TS_RECENT |
  5131. FLAG_NO_CHALLENGE_ACK) > 0;
  5132. if (!acceptable) {
  5133. if (sk->sk_state == TCP_SYN_RECV)
  5134. return 1; /* send one RST */
  5135. tcp_send_challenge_ack(sk, skb);
  5136. goto discard;
  5137. }
  5138. switch (sk->sk_state) {
  5139. case TCP_SYN_RECV:
  5140. if (!tp->srtt_us)
  5141. tcp_synack_rtt_meas(sk, req);
  5142. /* Once we leave TCP_SYN_RECV, we no longer need req
  5143. * so release it.
  5144. */
  5145. if (req) {
  5146. tp->total_retrans = req->num_retrans;
  5147. reqsk_fastopen_remove(sk, req, false);
  5148. } else {
  5149. /* Make sure socket is routed, for correct metrics. */
  5150. icsk->icsk_af_ops->rebuild_header(sk);
  5151. tcp_init_congestion_control(sk);
  5152. tcp_mtup_init(sk);
  5153. tp->copied_seq = tp->rcv_nxt;
  5154. tcp_init_buffer_space(sk);
  5155. }
  5156. smp_mb();
  5157. tcp_set_state(sk, TCP_ESTABLISHED);
  5158. sk->sk_state_change(sk);
  5159. /* Note, that this wakeup is only for marginal crossed SYN case.
  5160. * Passively open sockets are not waked up, because
  5161. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5162. */
  5163. if (sk->sk_socket)
  5164. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5165. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5166. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5167. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5168. if (tp->rx_opt.tstamp_ok)
  5169. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5170. if (req) {
  5171. /* Re-arm the timer because data may have been sent out.
  5172. * This is similar to the regular data transmission case
  5173. * when new data has just been ack'ed.
  5174. *
  5175. * (TFO) - we could try to be more aggressive and
  5176. * retransmitting any data sooner based on when they
  5177. * are sent out.
  5178. */
  5179. tcp_rearm_rto(sk);
  5180. } else
  5181. tcp_init_metrics(sk);
  5182. tcp_update_pacing_rate(sk);
  5183. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5184. tp->lsndtime = tcp_time_stamp;
  5185. tcp_initialize_rcv_mss(sk);
  5186. tcp_fast_path_on(tp);
  5187. break;
  5188. case TCP_FIN_WAIT1: {
  5189. struct dst_entry *dst;
  5190. int tmo;
  5191. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5192. * Fast Open socket and this is the first acceptable
  5193. * ACK we have received, this would have acknowledged
  5194. * our SYNACK so stop the SYNACK timer.
  5195. */
  5196. if (req) {
  5197. /* We no longer need the request sock. */
  5198. reqsk_fastopen_remove(sk, req, false);
  5199. tcp_rearm_rto(sk);
  5200. }
  5201. if (tp->snd_una != tp->write_seq)
  5202. break;
  5203. tcp_set_state(sk, TCP_FIN_WAIT2);
  5204. sk->sk_shutdown |= SEND_SHUTDOWN;
  5205. dst = __sk_dst_get(sk);
  5206. if (dst)
  5207. dst_confirm(dst);
  5208. if (!sock_flag(sk, SOCK_DEAD)) {
  5209. /* Wake up lingering close() */
  5210. sk->sk_state_change(sk);
  5211. break;
  5212. }
  5213. if (tp->linger2 < 0 ||
  5214. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5215. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5216. tcp_done(sk);
  5217. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5218. return 1;
  5219. }
  5220. tmo = tcp_fin_time(sk);
  5221. if (tmo > TCP_TIMEWAIT_LEN) {
  5222. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5223. } else if (th->fin || sock_owned_by_user(sk)) {
  5224. /* Bad case. We could lose such FIN otherwise.
  5225. * It is not a big problem, but it looks confusing
  5226. * and not so rare event. We still can lose it now,
  5227. * if it spins in bh_lock_sock(), but it is really
  5228. * marginal case.
  5229. */
  5230. inet_csk_reset_keepalive_timer(sk, tmo);
  5231. } else {
  5232. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5233. goto discard;
  5234. }
  5235. break;
  5236. }
  5237. case TCP_CLOSING:
  5238. if (tp->snd_una == tp->write_seq) {
  5239. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5240. goto discard;
  5241. }
  5242. break;
  5243. case TCP_LAST_ACK:
  5244. if (tp->snd_una == tp->write_seq) {
  5245. tcp_update_metrics(sk);
  5246. tcp_done(sk);
  5247. goto discard;
  5248. }
  5249. break;
  5250. }
  5251. /* step 6: check the URG bit */
  5252. tcp_urg(sk, skb, th);
  5253. /* step 7: process the segment text */
  5254. switch (sk->sk_state) {
  5255. case TCP_CLOSE_WAIT:
  5256. case TCP_CLOSING:
  5257. case TCP_LAST_ACK:
  5258. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5259. break;
  5260. case TCP_FIN_WAIT1:
  5261. case TCP_FIN_WAIT2:
  5262. /* RFC 793 says to queue data in these states,
  5263. * RFC 1122 says we MUST send a reset.
  5264. * BSD 4.4 also does reset.
  5265. */
  5266. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5267. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5268. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5269. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5270. tcp_reset(sk);
  5271. return 1;
  5272. }
  5273. }
  5274. /* Fall through */
  5275. case TCP_ESTABLISHED:
  5276. tcp_data_queue(sk, skb);
  5277. queued = 1;
  5278. break;
  5279. }
  5280. /* tcp_data could move socket to TIME-WAIT */
  5281. if (sk->sk_state != TCP_CLOSE) {
  5282. tcp_data_snd_check(sk);
  5283. tcp_ack_snd_check(sk);
  5284. }
  5285. if (!queued) {
  5286. discard:
  5287. tcp_drop(sk, skb);
  5288. }
  5289. return 0;
  5290. }
  5291. EXPORT_SYMBOL(tcp_rcv_state_process);
  5292. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5293. {
  5294. struct inet_request_sock *ireq = inet_rsk(req);
  5295. if (family == AF_INET)
  5296. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5297. &ireq->ir_rmt_addr, port);
  5298. #if IS_ENABLED(CONFIG_IPV6)
  5299. else if (family == AF_INET6)
  5300. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5301. &ireq->ir_v6_rmt_addr, port);
  5302. #endif
  5303. }
  5304. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5305. *
  5306. * If we receive a SYN packet with these bits set, it means a
  5307. * network is playing bad games with TOS bits. In order to
  5308. * avoid possible false congestion notifications, we disable
  5309. * TCP ECN negotiation.
  5310. *
  5311. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5312. * congestion control: Linux DCTCP asserts ECT on all packets,
  5313. * including SYN, which is most optimal solution; however,
  5314. * others, such as FreeBSD do not.
  5315. */
  5316. static void tcp_ecn_create_request(struct request_sock *req,
  5317. const struct sk_buff *skb,
  5318. const struct sock *listen_sk,
  5319. const struct dst_entry *dst)
  5320. {
  5321. const struct tcphdr *th = tcp_hdr(skb);
  5322. const struct net *net = sock_net(listen_sk);
  5323. bool th_ecn = th->ece && th->cwr;
  5324. bool ect, ecn_ok;
  5325. u32 ecn_ok_dst;
  5326. if (!th_ecn)
  5327. return;
  5328. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5329. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5330. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5331. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5332. (ecn_ok_dst & DST_FEATURE_ECN_CA))
  5333. inet_rsk(req)->ecn_ok = 1;
  5334. }
  5335. static void tcp_openreq_init(struct request_sock *req,
  5336. const struct tcp_options_received *rx_opt,
  5337. struct sk_buff *skb, const struct sock *sk)
  5338. {
  5339. struct inet_request_sock *ireq = inet_rsk(req);
  5340. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5341. req->cookie_ts = 0;
  5342. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5343. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5344. skb_mstamp_get(&tcp_rsk(req)->snt_synack);
  5345. tcp_rsk(req)->last_oow_ack_time = 0;
  5346. req->mss = rx_opt->mss_clamp;
  5347. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5348. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5349. ireq->sack_ok = rx_opt->sack_ok;
  5350. ireq->snd_wscale = rx_opt->snd_wscale;
  5351. ireq->wscale_ok = rx_opt->wscale_ok;
  5352. ireq->acked = 0;
  5353. ireq->ecn_ok = 0;
  5354. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5355. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5356. ireq->ir_mark = inet_request_mark(sk, skb);
  5357. }
  5358. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5359. struct sock *sk_listener,
  5360. bool attach_listener)
  5361. {
  5362. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5363. attach_listener);
  5364. if (req) {
  5365. struct inet_request_sock *ireq = inet_rsk(req);
  5366. kmemcheck_annotate_bitfield(ireq, flags);
  5367. ireq->ireq_opt = NULL;
  5368. atomic64_set(&ireq->ir_cookie, 0);
  5369. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5370. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5371. ireq->ireq_family = sk_listener->sk_family;
  5372. }
  5373. return req;
  5374. }
  5375. EXPORT_SYMBOL(inet_reqsk_alloc);
  5376. /*
  5377. * Return true if a syncookie should be sent
  5378. */
  5379. static bool tcp_syn_flood_action(const struct sock *sk,
  5380. const struct sk_buff *skb,
  5381. const char *proto)
  5382. {
  5383. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5384. const char *msg = "Dropping request";
  5385. bool want_cookie = false;
  5386. #ifdef CONFIG_SYN_COOKIES
  5387. if (sysctl_tcp_syncookies) {
  5388. msg = "Sending cookies";
  5389. want_cookie = true;
  5390. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5391. } else
  5392. #endif
  5393. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5394. if (!queue->synflood_warned &&
  5395. sysctl_tcp_syncookies != 2 &&
  5396. xchg(&queue->synflood_warned, 1) == 0)
  5397. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5398. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5399. return want_cookie;
  5400. }
  5401. static void tcp_reqsk_record_syn(const struct sock *sk,
  5402. struct request_sock *req,
  5403. const struct sk_buff *skb)
  5404. {
  5405. if (tcp_sk(sk)->save_syn) {
  5406. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5407. u32 *copy;
  5408. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5409. if (copy) {
  5410. copy[0] = len;
  5411. memcpy(&copy[1], skb_network_header(skb), len);
  5412. req->saved_syn = copy;
  5413. }
  5414. }
  5415. }
  5416. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5417. const struct tcp_request_sock_ops *af_ops,
  5418. struct sock *sk, struct sk_buff *skb)
  5419. {
  5420. struct tcp_fastopen_cookie foc = { .len = -1 };
  5421. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5422. struct tcp_options_received tmp_opt;
  5423. struct tcp_sock *tp = tcp_sk(sk);
  5424. struct sock *fastopen_sk = NULL;
  5425. struct dst_entry *dst = NULL;
  5426. struct request_sock *req;
  5427. bool want_cookie = false;
  5428. struct flowi fl;
  5429. /* TW buckets are converted to open requests without
  5430. * limitations, they conserve resources and peer is
  5431. * evidently real one.
  5432. */
  5433. if ((sysctl_tcp_syncookies == 2 ||
  5434. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5435. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5436. if (!want_cookie)
  5437. goto drop;
  5438. }
  5439. if (sk_acceptq_is_full(sk)) {
  5440. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5441. goto drop;
  5442. }
  5443. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5444. if (!req)
  5445. goto drop;
  5446. tcp_rsk(req)->af_specific = af_ops;
  5447. tcp_clear_options(&tmp_opt);
  5448. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5449. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5450. tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
  5451. if (want_cookie && !tmp_opt.saw_tstamp)
  5452. tcp_clear_options(&tmp_opt);
  5453. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5454. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5455. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5456. inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
  5457. af_ops->init_req(req, sk, skb);
  5458. if (security_inet_conn_request(sk, skb, req))
  5459. goto drop_and_free;
  5460. if (!want_cookie && !isn) {
  5461. /* VJ's idea. We save last timestamp seen
  5462. * from the destination in peer table, when entering
  5463. * state TIME-WAIT, and check against it before
  5464. * accepting new connection request.
  5465. *
  5466. * If "isn" is not zero, this request hit alive
  5467. * timewait bucket, so that all the necessary checks
  5468. * are made in the function processing timewait state.
  5469. */
  5470. if (tcp_death_row.sysctl_tw_recycle) {
  5471. bool strict;
  5472. dst = af_ops->route_req(sk, &fl, req, &strict);
  5473. if (dst && strict &&
  5474. !tcp_peer_is_proven(req, dst, true,
  5475. tmp_opt.saw_tstamp)) {
  5476. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
  5477. goto drop_and_release;
  5478. }
  5479. }
  5480. /* Kill the following clause, if you dislike this way. */
  5481. else if (!sysctl_tcp_syncookies &&
  5482. (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5483. (sysctl_max_syn_backlog >> 2)) &&
  5484. !tcp_peer_is_proven(req, dst, false,
  5485. tmp_opt.saw_tstamp)) {
  5486. /* Without syncookies last quarter of
  5487. * backlog is filled with destinations,
  5488. * proven to be alive.
  5489. * It means that we continue to communicate
  5490. * to destinations, already remembered
  5491. * to the moment of synflood.
  5492. */
  5493. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5494. rsk_ops->family);
  5495. goto drop_and_release;
  5496. }
  5497. isn = af_ops->init_seq(skb);
  5498. }
  5499. if (!dst) {
  5500. dst = af_ops->route_req(sk, &fl, req, NULL);
  5501. if (!dst)
  5502. goto drop_and_free;
  5503. }
  5504. tcp_ecn_create_request(req, skb, sk, dst);
  5505. if (want_cookie) {
  5506. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5507. req->cookie_ts = tmp_opt.tstamp_ok;
  5508. if (!tmp_opt.tstamp_ok)
  5509. inet_rsk(req)->ecn_ok = 0;
  5510. }
  5511. tcp_rsk(req)->snt_isn = isn;
  5512. tcp_rsk(req)->txhash = net_tx_rndhash();
  5513. tcp_openreq_init_rwin(req, sk, dst);
  5514. if (!want_cookie) {
  5515. tcp_reqsk_record_syn(sk, req, skb);
  5516. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
  5517. }
  5518. if (fastopen_sk) {
  5519. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5520. &foc, false);
  5521. /* Add the child socket directly into the accept queue */
  5522. if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
  5523. reqsk_fastopen_remove(fastopen_sk, req, false);
  5524. bh_unlock_sock(fastopen_sk);
  5525. sock_put(fastopen_sk);
  5526. reqsk_put(req);
  5527. goto drop;
  5528. }
  5529. sk->sk_data_ready(sk);
  5530. bh_unlock_sock(fastopen_sk);
  5531. sock_put(fastopen_sk);
  5532. } else {
  5533. tcp_rsk(req)->tfo_listener = false;
  5534. if (!want_cookie)
  5535. inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
  5536. af_ops->send_synack(sk, dst, &fl, req,
  5537. &foc, !want_cookie);
  5538. if (want_cookie)
  5539. goto drop_and_free;
  5540. }
  5541. reqsk_put(req);
  5542. return 0;
  5543. drop_and_release:
  5544. dst_release(dst);
  5545. drop_and_free:
  5546. reqsk_free(req);
  5547. drop:
  5548. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
  5549. return 0;
  5550. }
  5551. EXPORT_SYMBOL(tcp_conn_request);