tkip.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. /*
  2. * Copyright 2002-2004, Instant802 Networks, Inc.
  3. * Copyright 2005, Devicescape Software, Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/bitops.h>
  11. #include <linux/types.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/export.h>
  14. #include <asm/unaligned.h>
  15. #include <net/mac80211.h>
  16. #include "driver-ops.h"
  17. #include "key.h"
  18. #include "tkip.h"
  19. #include "wep.h"
  20. #define PHASE1_LOOP_COUNT 8
  21. /*
  22. * 2-byte by 2-byte subset of the full AES S-box table; second part of this
  23. * table is identical to first part but byte-swapped
  24. */
  25. static const u16 tkip_sbox[256] =
  26. {
  27. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  28. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  29. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  30. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  31. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  32. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  33. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  34. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  35. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  36. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  37. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  38. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  39. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  40. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  41. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  42. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  43. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  44. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  45. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  46. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  47. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  48. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  49. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  50. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  51. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  52. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  53. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  54. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  55. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  56. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  57. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  58. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  59. };
  60. static u16 tkipS(u16 val)
  61. {
  62. return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]);
  63. }
  64. static u8 *write_tkip_iv(u8 *pos, u16 iv16)
  65. {
  66. *pos++ = iv16 >> 8;
  67. *pos++ = ((iv16 >> 8) | 0x20) & 0x7f;
  68. *pos++ = iv16 & 0xFF;
  69. return pos;
  70. }
  71. /*
  72. * P1K := Phase1(TA, TK, TSC)
  73. * TA = transmitter address (48 bits)
  74. * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
  75. * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
  76. * P1K: 80 bits
  77. */
  78. static void tkip_mixing_phase1(const u8 *tk, struct tkip_ctx *ctx,
  79. const u8 *ta, u32 tsc_IV32)
  80. {
  81. int i, j;
  82. u16 *p1k = ctx->p1k;
  83. p1k[0] = tsc_IV32 & 0xFFFF;
  84. p1k[1] = tsc_IV32 >> 16;
  85. p1k[2] = get_unaligned_le16(ta + 0);
  86. p1k[3] = get_unaligned_le16(ta + 2);
  87. p1k[4] = get_unaligned_le16(ta + 4);
  88. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  89. j = 2 * (i & 1);
  90. p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j));
  91. p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j));
  92. p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j));
  93. p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j));
  94. p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i;
  95. }
  96. ctx->state = TKIP_STATE_PHASE1_DONE;
  97. ctx->p1k_iv32 = tsc_IV32;
  98. }
  99. static void tkip_mixing_phase2(const u8 *tk, struct tkip_ctx *ctx,
  100. u16 tsc_IV16, u8 *rc4key)
  101. {
  102. u16 ppk[6];
  103. const u16 *p1k = ctx->p1k;
  104. int i;
  105. ppk[0] = p1k[0];
  106. ppk[1] = p1k[1];
  107. ppk[2] = p1k[2];
  108. ppk[3] = p1k[3];
  109. ppk[4] = p1k[4];
  110. ppk[5] = p1k[4] + tsc_IV16;
  111. ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0));
  112. ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2));
  113. ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4));
  114. ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6));
  115. ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8));
  116. ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10));
  117. ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1);
  118. ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1);
  119. ppk[2] += ror16(ppk[1], 1);
  120. ppk[3] += ror16(ppk[2], 1);
  121. ppk[4] += ror16(ppk[3], 1);
  122. ppk[5] += ror16(ppk[4], 1);
  123. rc4key = write_tkip_iv(rc4key, tsc_IV16);
  124. *rc4key++ = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF;
  125. for (i = 0; i < 6; i++)
  126. put_unaligned_le16(ppk[i], rc4key + 2 * i);
  127. }
  128. /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
  129. * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
  130. * the packet payload). */
  131. u8 *ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key *key)
  132. {
  133. lockdep_assert_held(&key->u.tkip.txlock);
  134. pos = write_tkip_iv(pos, key->u.tkip.tx.iv16);
  135. *pos++ = (key->conf.keyidx << 6) | (1 << 5) /* Ext IV */;
  136. put_unaligned_le32(key->u.tkip.tx.iv32, pos);
  137. return pos + 4;
  138. }
  139. static void ieee80211_compute_tkip_p1k(struct ieee80211_key *key, u32 iv32)
  140. {
  141. struct ieee80211_sub_if_data *sdata = key->sdata;
  142. struct tkip_ctx *ctx = &key->u.tkip.tx;
  143. const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
  144. lockdep_assert_held(&key->u.tkip.txlock);
  145. /*
  146. * Update the P1K when the IV32 is different from the value it
  147. * had when we last computed it (or when not initialised yet).
  148. * This might flip-flop back and forth if packets are processed
  149. * out-of-order due to the different ACs, but then we have to
  150. * just compute the P1K more often.
  151. */
  152. if (ctx->p1k_iv32 != iv32 || ctx->state == TKIP_STATE_NOT_INIT)
  153. tkip_mixing_phase1(tk, ctx, sdata->vif.addr, iv32);
  154. }
  155. void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf,
  156. u32 iv32, u16 *p1k)
  157. {
  158. struct ieee80211_key *key = (struct ieee80211_key *)
  159. container_of(keyconf, struct ieee80211_key, conf);
  160. struct tkip_ctx *ctx = &key->u.tkip.tx;
  161. spin_lock_bh(&key->u.tkip.txlock);
  162. ieee80211_compute_tkip_p1k(key, iv32);
  163. memcpy(p1k, ctx->p1k, sizeof(ctx->p1k));
  164. spin_unlock_bh(&key->u.tkip.txlock);
  165. }
  166. EXPORT_SYMBOL(ieee80211_get_tkip_p1k_iv);
  167. void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf,
  168. const u8 *ta, u32 iv32, u16 *p1k)
  169. {
  170. const u8 *tk = &keyconf->key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
  171. struct tkip_ctx ctx;
  172. tkip_mixing_phase1(tk, &ctx, ta, iv32);
  173. memcpy(p1k, ctx.p1k, sizeof(ctx.p1k));
  174. }
  175. EXPORT_SYMBOL(ieee80211_get_tkip_rx_p1k);
  176. void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf,
  177. struct sk_buff *skb, u8 *p2k)
  178. {
  179. struct ieee80211_key *key = (struct ieee80211_key *)
  180. container_of(keyconf, struct ieee80211_key, conf);
  181. const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
  182. struct tkip_ctx *ctx = &key->u.tkip.tx;
  183. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  184. const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
  185. u32 iv32 = get_unaligned_le32(&data[4]);
  186. u16 iv16 = data[2] | (data[0] << 8);
  187. spin_lock(&key->u.tkip.txlock);
  188. ieee80211_compute_tkip_p1k(key, iv32);
  189. tkip_mixing_phase2(tk, ctx, iv16, p2k);
  190. spin_unlock(&key->u.tkip.txlock);
  191. }
  192. EXPORT_SYMBOL(ieee80211_get_tkip_p2k);
  193. /*
  194. * Encrypt packet payload with TKIP using @key. @pos is a pointer to the
  195. * beginning of the buffer containing payload. This payload must include
  196. * the IV/Ext.IV and space for (taildroom) four octets for ICV.
  197. * @payload_len is the length of payload (_not_ including IV/ICV length).
  198. * @ta is the transmitter addresses.
  199. */
  200. int ieee80211_tkip_encrypt_data(struct crypto_cipher *tfm,
  201. struct ieee80211_key *key,
  202. struct sk_buff *skb,
  203. u8 *payload, size_t payload_len)
  204. {
  205. u8 rc4key[16];
  206. ieee80211_get_tkip_p2k(&key->conf, skb, rc4key);
  207. return ieee80211_wep_encrypt_data(tfm, rc4key, 16,
  208. payload, payload_len);
  209. }
  210. /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
  211. * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
  212. * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
  213. * length of payload, including IV, Ext. IV, MIC, ICV. */
  214. int ieee80211_tkip_decrypt_data(struct crypto_cipher *tfm,
  215. struct ieee80211_key *key,
  216. u8 *payload, size_t payload_len, u8 *ta,
  217. u8 *ra, int only_iv, int queue,
  218. u32 *out_iv32, u16 *out_iv16)
  219. {
  220. u32 iv32;
  221. u32 iv16;
  222. u8 rc4key[16], keyid, *pos = payload;
  223. int res;
  224. const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
  225. if (payload_len < 12)
  226. return -1;
  227. iv16 = (pos[0] << 8) | pos[2];
  228. keyid = pos[3];
  229. iv32 = get_unaligned_le32(pos + 4);
  230. pos += 8;
  231. if (!(keyid & (1 << 5)))
  232. return TKIP_DECRYPT_NO_EXT_IV;
  233. if ((keyid >> 6) != key->conf.keyidx)
  234. return TKIP_DECRYPT_INVALID_KEYIDX;
  235. if (key->u.tkip.rx[queue].state != TKIP_STATE_NOT_INIT &&
  236. (iv32 < key->u.tkip.rx[queue].iv32 ||
  237. (iv32 == key->u.tkip.rx[queue].iv32 &&
  238. iv16 <= key->u.tkip.rx[queue].iv16)))
  239. return TKIP_DECRYPT_REPLAY;
  240. if (only_iv) {
  241. res = TKIP_DECRYPT_OK;
  242. key->u.tkip.rx[queue].state = TKIP_STATE_PHASE1_HW_UPLOADED;
  243. goto done;
  244. }
  245. if (key->u.tkip.rx[queue].state == TKIP_STATE_NOT_INIT ||
  246. key->u.tkip.rx[queue].iv32 != iv32) {
  247. /* IV16 wrapped around - perform TKIP phase 1 */
  248. tkip_mixing_phase1(tk, &key->u.tkip.rx[queue], ta, iv32);
  249. }
  250. if (key->local->ops->update_tkip_key &&
  251. key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
  252. key->u.tkip.rx[queue].state != TKIP_STATE_PHASE1_HW_UPLOADED) {
  253. struct ieee80211_sub_if_data *sdata = key->sdata;
  254. if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
  255. sdata = container_of(key->sdata->bss,
  256. struct ieee80211_sub_if_data, u.ap);
  257. drv_update_tkip_key(key->local, sdata, &key->conf, key->sta,
  258. iv32, key->u.tkip.rx[queue].p1k);
  259. key->u.tkip.rx[queue].state = TKIP_STATE_PHASE1_HW_UPLOADED;
  260. }
  261. tkip_mixing_phase2(tk, &key->u.tkip.rx[queue], iv16, rc4key);
  262. res = ieee80211_wep_decrypt_data(tfm, rc4key, 16, pos, payload_len - 12);
  263. done:
  264. if (res == TKIP_DECRYPT_OK) {
  265. /*
  266. * Record previously received IV, will be copied into the
  267. * key information after MIC verification. It is possible
  268. * that we don't catch replays of fragments but that's ok
  269. * because the Michael MIC verication will then fail.
  270. */
  271. *out_iv32 = iv32;
  272. *out_iv16 = iv16;
  273. }
  274. return res;
  275. }