nfnetlink_queue.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456
  1. /*
  2. * This is a module which is used for queueing packets and communicating with
  3. * userspace via nfnetlink.
  4. *
  5. * (C) 2005 by Harald Welte <laforge@netfilter.org>
  6. * (C) 2007 by Patrick McHardy <kaber@trash.net>
  7. *
  8. * Based on the old ipv4-only ip_queue.c:
  9. * (C) 2000-2002 James Morris <jmorris@intercode.com.au>
  10. * (C) 2003-2005 Netfilter Core Team <coreteam@netfilter.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. *
  16. */
  17. #include <linux/module.h>
  18. #include <linux/skbuff.h>
  19. #include <linux/init.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/slab.h>
  22. #include <linux/notifier.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/netfilter.h>
  25. #include <linux/proc_fs.h>
  26. #include <linux/netfilter_ipv4.h>
  27. #include <linux/netfilter_ipv6.h>
  28. #include <linux/netfilter_bridge.h>
  29. #include <linux/netfilter/nfnetlink.h>
  30. #include <linux/netfilter/nfnetlink_queue.h>
  31. #include <linux/netfilter/nf_conntrack_common.h>
  32. #include <linux/list.h>
  33. #include <net/sock.h>
  34. #include <net/tcp_states.h>
  35. #include <net/netfilter/nf_queue.h>
  36. #include <net/netns/generic.h>
  37. #include <linux/atomic.h>
  38. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  39. #include "../bridge/br_private.h"
  40. #endif
  41. #define NFQNL_QMAX_DEFAULT 1024
  42. /* We're using struct nlattr which has 16bit nla_len. Note that nla_len
  43. * includes the header length. Thus, the maximum packet length that we
  44. * support is 65531 bytes. We send truncated packets if the specified length
  45. * is larger than that. Userspace can check for presence of NFQA_CAP_LEN
  46. * attribute to detect truncation.
  47. */
  48. #define NFQNL_MAX_COPY_RANGE (0xffff - NLA_HDRLEN)
  49. struct nfqnl_instance {
  50. struct hlist_node hlist; /* global list of queues */
  51. struct rcu_head rcu;
  52. u32 peer_portid;
  53. unsigned int queue_maxlen;
  54. unsigned int copy_range;
  55. unsigned int queue_dropped;
  56. unsigned int queue_user_dropped;
  57. u_int16_t queue_num; /* number of this queue */
  58. u_int8_t copy_mode;
  59. u_int32_t flags; /* Set using NFQA_CFG_FLAGS */
  60. /*
  61. * Following fields are dirtied for each queued packet,
  62. * keep them in same cache line if possible.
  63. */
  64. spinlock_t lock;
  65. unsigned int queue_total;
  66. unsigned int id_sequence; /* 'sequence' of pkt ids */
  67. struct list_head queue_list; /* packets in queue */
  68. };
  69. typedef int (*nfqnl_cmpfn)(struct nf_queue_entry *, unsigned long);
  70. static int nfnl_queue_net_id __read_mostly;
  71. #define INSTANCE_BUCKETS 16
  72. struct nfnl_queue_net {
  73. spinlock_t instances_lock;
  74. struct hlist_head instance_table[INSTANCE_BUCKETS];
  75. };
  76. static struct nfnl_queue_net *nfnl_queue_pernet(struct net *net)
  77. {
  78. return net_generic(net, nfnl_queue_net_id);
  79. }
  80. static inline u_int8_t instance_hashfn(u_int16_t queue_num)
  81. {
  82. return ((queue_num >> 8) ^ queue_num) % INSTANCE_BUCKETS;
  83. }
  84. static struct nfqnl_instance *
  85. instance_lookup(struct nfnl_queue_net *q, u_int16_t queue_num)
  86. {
  87. struct hlist_head *head;
  88. struct nfqnl_instance *inst;
  89. head = &q->instance_table[instance_hashfn(queue_num)];
  90. hlist_for_each_entry_rcu(inst, head, hlist) {
  91. if (inst->queue_num == queue_num)
  92. return inst;
  93. }
  94. return NULL;
  95. }
  96. static struct nfqnl_instance *
  97. instance_create(struct nfnl_queue_net *q, u_int16_t queue_num, u32 portid)
  98. {
  99. struct nfqnl_instance *inst;
  100. unsigned int h;
  101. int err;
  102. spin_lock(&q->instances_lock);
  103. if (instance_lookup(q, queue_num)) {
  104. err = -EEXIST;
  105. goto out_unlock;
  106. }
  107. inst = kzalloc(sizeof(*inst), GFP_ATOMIC);
  108. if (!inst) {
  109. err = -ENOMEM;
  110. goto out_unlock;
  111. }
  112. inst->queue_num = queue_num;
  113. inst->peer_portid = portid;
  114. inst->queue_maxlen = NFQNL_QMAX_DEFAULT;
  115. inst->copy_range = NFQNL_MAX_COPY_RANGE;
  116. inst->copy_mode = NFQNL_COPY_NONE;
  117. spin_lock_init(&inst->lock);
  118. INIT_LIST_HEAD(&inst->queue_list);
  119. if (!try_module_get(THIS_MODULE)) {
  120. err = -EAGAIN;
  121. goto out_free;
  122. }
  123. h = instance_hashfn(queue_num);
  124. hlist_add_head_rcu(&inst->hlist, &q->instance_table[h]);
  125. spin_unlock(&q->instances_lock);
  126. return inst;
  127. out_free:
  128. kfree(inst);
  129. out_unlock:
  130. spin_unlock(&q->instances_lock);
  131. return ERR_PTR(err);
  132. }
  133. static void nfqnl_flush(struct nfqnl_instance *queue, nfqnl_cmpfn cmpfn,
  134. unsigned long data);
  135. static void
  136. instance_destroy_rcu(struct rcu_head *head)
  137. {
  138. struct nfqnl_instance *inst = container_of(head, struct nfqnl_instance,
  139. rcu);
  140. nfqnl_flush(inst, NULL, 0);
  141. kfree(inst);
  142. module_put(THIS_MODULE);
  143. }
  144. static void
  145. __instance_destroy(struct nfqnl_instance *inst)
  146. {
  147. hlist_del_rcu(&inst->hlist);
  148. call_rcu(&inst->rcu, instance_destroy_rcu);
  149. }
  150. static void
  151. instance_destroy(struct nfnl_queue_net *q, struct nfqnl_instance *inst)
  152. {
  153. spin_lock(&q->instances_lock);
  154. __instance_destroy(inst);
  155. spin_unlock(&q->instances_lock);
  156. }
  157. static inline void
  158. __enqueue_entry(struct nfqnl_instance *queue, struct nf_queue_entry *entry)
  159. {
  160. list_add_tail(&entry->list, &queue->queue_list);
  161. queue->queue_total++;
  162. }
  163. static void
  164. __dequeue_entry(struct nfqnl_instance *queue, struct nf_queue_entry *entry)
  165. {
  166. list_del(&entry->list);
  167. queue->queue_total--;
  168. }
  169. static struct nf_queue_entry *
  170. find_dequeue_entry(struct nfqnl_instance *queue, unsigned int id)
  171. {
  172. struct nf_queue_entry *entry = NULL, *i;
  173. spin_lock_bh(&queue->lock);
  174. list_for_each_entry(i, &queue->queue_list, list) {
  175. if (i->id == id) {
  176. entry = i;
  177. break;
  178. }
  179. }
  180. if (entry)
  181. __dequeue_entry(queue, entry);
  182. spin_unlock_bh(&queue->lock);
  183. return entry;
  184. }
  185. static void
  186. nfqnl_flush(struct nfqnl_instance *queue, nfqnl_cmpfn cmpfn, unsigned long data)
  187. {
  188. struct nf_queue_entry *entry, *next;
  189. spin_lock_bh(&queue->lock);
  190. list_for_each_entry_safe(entry, next, &queue->queue_list, list) {
  191. if (!cmpfn || cmpfn(entry, data)) {
  192. list_del(&entry->list);
  193. queue->queue_total--;
  194. nf_reinject(entry, NF_DROP);
  195. }
  196. }
  197. spin_unlock_bh(&queue->lock);
  198. }
  199. static int
  200. nfqnl_put_packet_info(struct sk_buff *nlskb, struct sk_buff *packet,
  201. bool csum_verify)
  202. {
  203. __u32 flags = 0;
  204. if (packet->ip_summed == CHECKSUM_PARTIAL)
  205. flags = NFQA_SKB_CSUMNOTREADY;
  206. else if (csum_verify)
  207. flags = NFQA_SKB_CSUM_NOTVERIFIED;
  208. if (skb_is_gso(packet))
  209. flags |= NFQA_SKB_GSO;
  210. return flags ? nla_put_be32(nlskb, NFQA_SKB_INFO, htonl(flags)) : 0;
  211. }
  212. static int nfqnl_put_sk_uidgid(struct sk_buff *skb, struct sock *sk)
  213. {
  214. const struct cred *cred;
  215. if (!sk_fullsock(sk))
  216. return 0;
  217. read_lock_bh(&sk->sk_callback_lock);
  218. if (sk->sk_socket && sk->sk_socket->file) {
  219. cred = sk->sk_socket->file->f_cred;
  220. if (nla_put_be32(skb, NFQA_UID,
  221. htonl(from_kuid_munged(&init_user_ns, cred->fsuid))))
  222. goto nla_put_failure;
  223. if (nla_put_be32(skb, NFQA_GID,
  224. htonl(from_kgid_munged(&init_user_ns, cred->fsgid))))
  225. goto nla_put_failure;
  226. }
  227. read_unlock_bh(&sk->sk_callback_lock);
  228. return 0;
  229. nla_put_failure:
  230. read_unlock_bh(&sk->sk_callback_lock);
  231. return -1;
  232. }
  233. static u32 nfqnl_get_sk_secctx(struct sk_buff *skb, char **secdata)
  234. {
  235. u32 seclen = 0;
  236. #if IS_ENABLED(CONFIG_NETWORK_SECMARK)
  237. if (!skb || !sk_fullsock(skb->sk))
  238. return 0;
  239. read_lock_bh(&skb->sk->sk_callback_lock);
  240. if (skb->secmark)
  241. security_secid_to_secctx(skb->secmark, secdata, &seclen);
  242. read_unlock_bh(&skb->sk->sk_callback_lock);
  243. #endif
  244. return seclen;
  245. }
  246. static struct sk_buff *
  247. nfqnl_build_packet_message(struct net *net, struct nfqnl_instance *queue,
  248. struct nf_queue_entry *entry,
  249. __be32 **packet_id_ptr)
  250. {
  251. size_t size;
  252. size_t data_len = 0, cap_len = 0, rem_len = 0;
  253. unsigned int hlen = 0;
  254. struct sk_buff *skb;
  255. struct nlattr *nla;
  256. struct nfqnl_msg_packet_hdr *pmsg;
  257. struct nlmsghdr *nlh;
  258. struct nfgenmsg *nfmsg;
  259. struct sk_buff *entskb = entry->skb;
  260. struct net_device *indev;
  261. struct net_device *outdev;
  262. struct nf_conn *ct = NULL;
  263. enum ip_conntrack_info uninitialized_var(ctinfo);
  264. struct nfnl_ct_hook *nfnl_ct;
  265. bool csum_verify;
  266. char *secdata = NULL;
  267. u32 seclen = 0;
  268. size = nlmsg_total_size(sizeof(struct nfgenmsg))
  269. + nla_total_size(sizeof(struct nfqnl_msg_packet_hdr))
  270. + nla_total_size(sizeof(u_int32_t)) /* ifindex */
  271. + nla_total_size(sizeof(u_int32_t)) /* ifindex */
  272. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  273. + nla_total_size(sizeof(u_int32_t)) /* ifindex */
  274. + nla_total_size(sizeof(u_int32_t)) /* ifindex */
  275. #endif
  276. + nla_total_size(sizeof(u_int32_t)) /* mark */
  277. + nla_total_size(sizeof(struct nfqnl_msg_packet_hw))
  278. + nla_total_size(sizeof(u_int32_t)) /* skbinfo */
  279. + nla_total_size(sizeof(u_int32_t)); /* cap_len */
  280. if (entskb->tstamp.tv64)
  281. size += nla_total_size(sizeof(struct nfqnl_msg_packet_timestamp));
  282. if (entry->state.hook <= NF_INET_FORWARD ||
  283. (entry->state.hook == NF_INET_POST_ROUTING && entskb->sk == NULL))
  284. csum_verify = !skb_csum_unnecessary(entskb);
  285. else
  286. csum_verify = false;
  287. outdev = entry->state.out;
  288. switch ((enum nfqnl_config_mode)ACCESS_ONCE(queue->copy_mode)) {
  289. case NFQNL_COPY_META:
  290. case NFQNL_COPY_NONE:
  291. break;
  292. case NFQNL_COPY_PACKET:
  293. if (!(queue->flags & NFQA_CFG_F_GSO) &&
  294. entskb->ip_summed == CHECKSUM_PARTIAL &&
  295. skb_checksum_help(entskb))
  296. return NULL;
  297. data_len = ACCESS_ONCE(queue->copy_range);
  298. if (data_len > entskb->len)
  299. data_len = entskb->len;
  300. hlen = skb_zerocopy_headlen(entskb);
  301. hlen = min_t(unsigned int, hlen, data_len);
  302. size += sizeof(struct nlattr) + hlen;
  303. cap_len = entskb->len;
  304. rem_len = data_len - hlen;
  305. break;
  306. }
  307. nfnl_ct = rcu_dereference(nfnl_ct_hook);
  308. if (queue->flags & NFQA_CFG_F_CONNTRACK) {
  309. if (nfnl_ct != NULL) {
  310. ct = nfnl_ct->get_ct(entskb, &ctinfo);
  311. if (ct != NULL)
  312. size += nfnl_ct->build_size(ct);
  313. }
  314. }
  315. if (queue->flags & NFQA_CFG_F_UID_GID) {
  316. size += (nla_total_size(sizeof(u_int32_t)) /* uid */
  317. + nla_total_size(sizeof(u_int32_t))); /* gid */
  318. }
  319. if ((queue->flags & NFQA_CFG_F_SECCTX) && entskb->sk) {
  320. seclen = nfqnl_get_sk_secctx(entskb, &secdata);
  321. if (seclen)
  322. size += nla_total_size(seclen);
  323. }
  324. skb = __netlink_alloc_skb(net->nfnl, size, rem_len, queue->peer_portid,
  325. GFP_ATOMIC);
  326. if (!skb) {
  327. skb_tx_error(entskb);
  328. goto nlmsg_failure;
  329. }
  330. nlh = nlmsg_put(skb, 0, 0,
  331. NFNL_SUBSYS_QUEUE << 8 | NFQNL_MSG_PACKET,
  332. sizeof(struct nfgenmsg), 0);
  333. if (!nlh) {
  334. skb_tx_error(entskb);
  335. kfree_skb(skb);
  336. goto nlmsg_failure;
  337. }
  338. nfmsg = nlmsg_data(nlh);
  339. nfmsg->nfgen_family = entry->state.pf;
  340. nfmsg->version = NFNETLINK_V0;
  341. nfmsg->res_id = htons(queue->queue_num);
  342. nla = __nla_reserve(skb, NFQA_PACKET_HDR, sizeof(*pmsg));
  343. pmsg = nla_data(nla);
  344. pmsg->hw_protocol = entskb->protocol;
  345. pmsg->hook = entry->state.hook;
  346. *packet_id_ptr = &pmsg->packet_id;
  347. indev = entry->state.in;
  348. if (indev) {
  349. #if !IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  350. if (nla_put_be32(skb, NFQA_IFINDEX_INDEV, htonl(indev->ifindex)))
  351. goto nla_put_failure;
  352. #else
  353. if (entry->state.pf == PF_BRIDGE) {
  354. /* Case 1: indev is physical input device, we need to
  355. * look for bridge group (when called from
  356. * netfilter_bridge) */
  357. if (nla_put_be32(skb, NFQA_IFINDEX_PHYSINDEV,
  358. htonl(indev->ifindex)) ||
  359. /* this is the bridge group "brX" */
  360. /* rcu_read_lock()ed by __nf_queue */
  361. nla_put_be32(skb, NFQA_IFINDEX_INDEV,
  362. htonl(br_port_get_rcu(indev)->br->dev->ifindex)))
  363. goto nla_put_failure;
  364. } else {
  365. int physinif;
  366. /* Case 2: indev is bridge group, we need to look for
  367. * physical device (when called from ipv4) */
  368. if (nla_put_be32(skb, NFQA_IFINDEX_INDEV,
  369. htonl(indev->ifindex)))
  370. goto nla_put_failure;
  371. physinif = nf_bridge_get_physinif(entskb);
  372. if (physinif &&
  373. nla_put_be32(skb, NFQA_IFINDEX_PHYSINDEV,
  374. htonl(physinif)))
  375. goto nla_put_failure;
  376. }
  377. #endif
  378. }
  379. if (outdev) {
  380. #if !IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  381. if (nla_put_be32(skb, NFQA_IFINDEX_OUTDEV, htonl(outdev->ifindex)))
  382. goto nla_put_failure;
  383. #else
  384. if (entry->state.pf == PF_BRIDGE) {
  385. /* Case 1: outdev is physical output device, we need to
  386. * look for bridge group (when called from
  387. * netfilter_bridge) */
  388. if (nla_put_be32(skb, NFQA_IFINDEX_PHYSOUTDEV,
  389. htonl(outdev->ifindex)) ||
  390. /* this is the bridge group "brX" */
  391. /* rcu_read_lock()ed by __nf_queue */
  392. nla_put_be32(skb, NFQA_IFINDEX_OUTDEV,
  393. htonl(br_port_get_rcu(outdev)->br->dev->ifindex)))
  394. goto nla_put_failure;
  395. } else {
  396. int physoutif;
  397. /* Case 2: outdev is bridge group, we need to look for
  398. * physical output device (when called from ipv4) */
  399. if (nla_put_be32(skb, NFQA_IFINDEX_OUTDEV,
  400. htonl(outdev->ifindex)))
  401. goto nla_put_failure;
  402. physoutif = nf_bridge_get_physoutif(entskb);
  403. if (physoutif &&
  404. nla_put_be32(skb, NFQA_IFINDEX_PHYSOUTDEV,
  405. htonl(physoutif)))
  406. goto nla_put_failure;
  407. }
  408. #endif
  409. }
  410. if (entskb->mark &&
  411. nla_put_be32(skb, NFQA_MARK, htonl(entskb->mark)))
  412. goto nla_put_failure;
  413. if (indev && entskb->dev &&
  414. entskb->mac_header != entskb->network_header) {
  415. struct nfqnl_msg_packet_hw phw;
  416. int len;
  417. memset(&phw, 0, sizeof(phw));
  418. len = dev_parse_header(entskb, phw.hw_addr);
  419. if (len) {
  420. phw.hw_addrlen = htons(len);
  421. if (nla_put(skb, NFQA_HWADDR, sizeof(phw), &phw))
  422. goto nla_put_failure;
  423. }
  424. }
  425. if (entskb->tstamp.tv64) {
  426. struct nfqnl_msg_packet_timestamp ts;
  427. struct timespec64 kts = ktime_to_timespec64(entskb->tstamp);
  428. ts.sec = cpu_to_be64(kts.tv_sec);
  429. ts.usec = cpu_to_be64(kts.tv_nsec / NSEC_PER_USEC);
  430. if (nla_put(skb, NFQA_TIMESTAMP, sizeof(ts), &ts))
  431. goto nla_put_failure;
  432. }
  433. if ((queue->flags & NFQA_CFG_F_UID_GID) && entskb->sk &&
  434. nfqnl_put_sk_uidgid(skb, entskb->sk) < 0)
  435. goto nla_put_failure;
  436. if (seclen && nla_put(skb, NFQA_SECCTX, seclen, secdata))
  437. goto nla_put_failure;
  438. if (ct && nfnl_ct->build(skb, ct, ctinfo, NFQA_CT, NFQA_CT_INFO) < 0)
  439. goto nla_put_failure;
  440. if (cap_len > data_len &&
  441. nla_put_be32(skb, NFQA_CAP_LEN, htonl(cap_len)))
  442. goto nla_put_failure;
  443. if (nfqnl_put_packet_info(skb, entskb, csum_verify))
  444. goto nla_put_failure;
  445. if (data_len) {
  446. struct nlattr *nla;
  447. if (skb_tailroom(skb) < sizeof(*nla) + hlen)
  448. goto nla_put_failure;
  449. nla = (struct nlattr *)skb_put(skb, sizeof(*nla));
  450. nla->nla_type = NFQA_PAYLOAD;
  451. nla->nla_len = nla_attr_size(data_len);
  452. if (skb_zerocopy(skb, entskb, data_len, hlen))
  453. goto nla_put_failure;
  454. }
  455. nlh->nlmsg_len = skb->len;
  456. if (seclen)
  457. security_release_secctx(secdata, seclen);
  458. return skb;
  459. nla_put_failure:
  460. skb_tx_error(entskb);
  461. kfree_skb(skb);
  462. net_err_ratelimited("nf_queue: error creating packet message\n");
  463. nlmsg_failure:
  464. if (seclen)
  465. security_release_secctx(secdata, seclen);
  466. return NULL;
  467. }
  468. static int
  469. __nfqnl_enqueue_packet(struct net *net, struct nfqnl_instance *queue,
  470. struct nf_queue_entry *entry)
  471. {
  472. struct sk_buff *nskb;
  473. int err = -ENOBUFS;
  474. __be32 *packet_id_ptr;
  475. int failopen = 0;
  476. nskb = nfqnl_build_packet_message(net, queue, entry, &packet_id_ptr);
  477. if (nskb == NULL) {
  478. err = -ENOMEM;
  479. goto err_out;
  480. }
  481. spin_lock_bh(&queue->lock);
  482. if (queue->queue_total >= queue->queue_maxlen) {
  483. if (queue->flags & NFQA_CFG_F_FAIL_OPEN) {
  484. failopen = 1;
  485. err = 0;
  486. } else {
  487. queue->queue_dropped++;
  488. net_warn_ratelimited("nf_queue: full at %d entries, dropping packets(s)\n",
  489. queue->queue_total);
  490. }
  491. goto err_out_free_nskb;
  492. }
  493. entry->id = ++queue->id_sequence;
  494. *packet_id_ptr = htonl(entry->id);
  495. /* nfnetlink_unicast will either free the nskb or add it to a socket */
  496. err = nfnetlink_unicast(nskb, net, queue->peer_portid, MSG_DONTWAIT);
  497. if (err < 0) {
  498. queue->queue_user_dropped++;
  499. goto err_out_unlock;
  500. }
  501. __enqueue_entry(queue, entry);
  502. spin_unlock_bh(&queue->lock);
  503. return 0;
  504. err_out_free_nskb:
  505. kfree_skb(nskb);
  506. err_out_unlock:
  507. spin_unlock_bh(&queue->lock);
  508. if (failopen)
  509. nf_reinject(entry, NF_ACCEPT);
  510. err_out:
  511. return err;
  512. }
  513. static struct nf_queue_entry *
  514. nf_queue_entry_dup(struct nf_queue_entry *e)
  515. {
  516. struct nf_queue_entry *entry = kmemdup(e, e->size, GFP_ATOMIC);
  517. if (entry)
  518. nf_queue_entry_get_refs(entry);
  519. return entry;
  520. }
  521. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  522. /* When called from bridge netfilter, skb->data must point to MAC header
  523. * before calling skb_gso_segment(). Else, original MAC header is lost
  524. * and segmented skbs will be sent to wrong destination.
  525. */
  526. static void nf_bridge_adjust_skb_data(struct sk_buff *skb)
  527. {
  528. if (skb->nf_bridge)
  529. __skb_push(skb, skb->network_header - skb->mac_header);
  530. }
  531. static void nf_bridge_adjust_segmented_data(struct sk_buff *skb)
  532. {
  533. if (skb->nf_bridge)
  534. __skb_pull(skb, skb->network_header - skb->mac_header);
  535. }
  536. #else
  537. #define nf_bridge_adjust_skb_data(s) do {} while (0)
  538. #define nf_bridge_adjust_segmented_data(s) do {} while (0)
  539. #endif
  540. static void free_entry(struct nf_queue_entry *entry)
  541. {
  542. nf_queue_entry_release_refs(entry);
  543. kfree(entry);
  544. }
  545. static int
  546. __nfqnl_enqueue_packet_gso(struct net *net, struct nfqnl_instance *queue,
  547. struct sk_buff *skb, struct nf_queue_entry *entry)
  548. {
  549. int ret = -ENOMEM;
  550. struct nf_queue_entry *entry_seg;
  551. nf_bridge_adjust_segmented_data(skb);
  552. if (skb->next == NULL) { /* last packet, no need to copy entry */
  553. struct sk_buff *gso_skb = entry->skb;
  554. entry->skb = skb;
  555. ret = __nfqnl_enqueue_packet(net, queue, entry);
  556. if (ret)
  557. entry->skb = gso_skb;
  558. return ret;
  559. }
  560. skb->next = NULL;
  561. entry_seg = nf_queue_entry_dup(entry);
  562. if (entry_seg) {
  563. entry_seg->skb = skb;
  564. ret = __nfqnl_enqueue_packet(net, queue, entry_seg);
  565. if (ret)
  566. free_entry(entry_seg);
  567. }
  568. return ret;
  569. }
  570. static int
  571. nfqnl_enqueue_packet(struct nf_queue_entry *entry, unsigned int queuenum)
  572. {
  573. unsigned int queued;
  574. struct nfqnl_instance *queue;
  575. struct sk_buff *skb, *segs;
  576. int err = -ENOBUFS;
  577. struct net *net = entry->state.net;
  578. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  579. /* rcu_read_lock()ed by nf_hook_slow() */
  580. queue = instance_lookup(q, queuenum);
  581. if (!queue)
  582. return -ESRCH;
  583. if (queue->copy_mode == NFQNL_COPY_NONE)
  584. return -EINVAL;
  585. skb = entry->skb;
  586. switch (entry->state.pf) {
  587. case NFPROTO_IPV4:
  588. skb->protocol = htons(ETH_P_IP);
  589. break;
  590. case NFPROTO_IPV6:
  591. skb->protocol = htons(ETH_P_IPV6);
  592. break;
  593. }
  594. if ((queue->flags & NFQA_CFG_F_GSO) || !skb_is_gso(skb))
  595. return __nfqnl_enqueue_packet(net, queue, entry);
  596. nf_bridge_adjust_skb_data(skb);
  597. segs = skb_gso_segment(skb, 0);
  598. /* Does not use PTR_ERR to limit the number of error codes that can be
  599. * returned by nf_queue. For instance, callers rely on -ESRCH to
  600. * mean 'ignore this hook'.
  601. */
  602. if (IS_ERR_OR_NULL(segs))
  603. goto out_err;
  604. queued = 0;
  605. err = 0;
  606. do {
  607. struct sk_buff *nskb = segs->next;
  608. if (err == 0)
  609. err = __nfqnl_enqueue_packet_gso(net, queue,
  610. segs, entry);
  611. if (err == 0)
  612. queued++;
  613. else
  614. kfree_skb(segs);
  615. segs = nskb;
  616. } while (segs);
  617. if (queued) {
  618. if (err) /* some segments are already queued */
  619. free_entry(entry);
  620. kfree_skb(skb);
  621. return 0;
  622. }
  623. out_err:
  624. nf_bridge_adjust_segmented_data(skb);
  625. return err;
  626. }
  627. static int
  628. nfqnl_mangle(void *data, int data_len, struct nf_queue_entry *e, int diff)
  629. {
  630. struct sk_buff *nskb;
  631. if (diff < 0) {
  632. if (pskb_trim(e->skb, data_len))
  633. return -ENOMEM;
  634. } else if (diff > 0) {
  635. if (data_len > 0xFFFF)
  636. return -EINVAL;
  637. if (diff > skb_tailroom(e->skb)) {
  638. nskb = skb_copy_expand(e->skb, skb_headroom(e->skb),
  639. diff, GFP_ATOMIC);
  640. if (!nskb) {
  641. printk(KERN_WARNING "nf_queue: OOM "
  642. "in mangle, dropping packet\n");
  643. return -ENOMEM;
  644. }
  645. kfree_skb(e->skb);
  646. e->skb = nskb;
  647. }
  648. skb_put(e->skb, diff);
  649. }
  650. if (!skb_make_writable(e->skb, data_len))
  651. return -ENOMEM;
  652. skb_copy_to_linear_data(e->skb, data, data_len);
  653. e->skb->ip_summed = CHECKSUM_NONE;
  654. return 0;
  655. }
  656. static int
  657. nfqnl_set_mode(struct nfqnl_instance *queue,
  658. unsigned char mode, unsigned int range)
  659. {
  660. int status = 0;
  661. spin_lock_bh(&queue->lock);
  662. switch (mode) {
  663. case NFQNL_COPY_NONE:
  664. case NFQNL_COPY_META:
  665. queue->copy_mode = mode;
  666. queue->copy_range = 0;
  667. break;
  668. case NFQNL_COPY_PACKET:
  669. queue->copy_mode = mode;
  670. if (range == 0 || range > NFQNL_MAX_COPY_RANGE)
  671. queue->copy_range = NFQNL_MAX_COPY_RANGE;
  672. else
  673. queue->copy_range = range;
  674. break;
  675. default:
  676. status = -EINVAL;
  677. }
  678. spin_unlock_bh(&queue->lock);
  679. return status;
  680. }
  681. static int
  682. dev_cmp(struct nf_queue_entry *entry, unsigned long ifindex)
  683. {
  684. if (entry->state.in)
  685. if (entry->state.in->ifindex == ifindex)
  686. return 1;
  687. if (entry->state.out)
  688. if (entry->state.out->ifindex == ifindex)
  689. return 1;
  690. #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
  691. if (entry->skb->nf_bridge) {
  692. int physinif, physoutif;
  693. physinif = nf_bridge_get_physinif(entry->skb);
  694. physoutif = nf_bridge_get_physoutif(entry->skb);
  695. if (physinif == ifindex || physoutif == ifindex)
  696. return 1;
  697. }
  698. #endif
  699. return 0;
  700. }
  701. /* drop all packets with either indev or outdev == ifindex from all queue
  702. * instances */
  703. static void
  704. nfqnl_dev_drop(struct net *net, int ifindex)
  705. {
  706. int i;
  707. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  708. rcu_read_lock();
  709. for (i = 0; i < INSTANCE_BUCKETS; i++) {
  710. struct nfqnl_instance *inst;
  711. struct hlist_head *head = &q->instance_table[i];
  712. hlist_for_each_entry_rcu(inst, head, hlist)
  713. nfqnl_flush(inst, dev_cmp, ifindex);
  714. }
  715. rcu_read_unlock();
  716. }
  717. static int
  718. nfqnl_rcv_dev_event(struct notifier_block *this,
  719. unsigned long event, void *ptr)
  720. {
  721. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  722. /* Drop any packets associated with the downed device */
  723. if (event == NETDEV_DOWN)
  724. nfqnl_dev_drop(dev_net(dev), dev->ifindex);
  725. return NOTIFY_DONE;
  726. }
  727. static struct notifier_block nfqnl_dev_notifier = {
  728. .notifier_call = nfqnl_rcv_dev_event,
  729. };
  730. static int nf_hook_cmp(struct nf_queue_entry *entry, unsigned long ops_ptr)
  731. {
  732. return entry->elem == (struct nf_hook_ops *)ops_ptr;
  733. }
  734. static void nfqnl_nf_hook_drop(struct net *net, struct nf_hook_ops *hook)
  735. {
  736. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  737. int i;
  738. rcu_read_lock();
  739. for (i = 0; i < INSTANCE_BUCKETS; i++) {
  740. struct nfqnl_instance *inst;
  741. struct hlist_head *head = &q->instance_table[i];
  742. hlist_for_each_entry_rcu(inst, head, hlist)
  743. nfqnl_flush(inst, nf_hook_cmp, (unsigned long)hook);
  744. }
  745. rcu_read_unlock();
  746. }
  747. static int
  748. nfqnl_rcv_nl_event(struct notifier_block *this,
  749. unsigned long event, void *ptr)
  750. {
  751. struct netlink_notify *n = ptr;
  752. struct nfnl_queue_net *q = nfnl_queue_pernet(n->net);
  753. if (event == NETLINK_URELEASE && n->protocol == NETLINK_NETFILTER) {
  754. int i;
  755. /* destroy all instances for this portid */
  756. spin_lock(&q->instances_lock);
  757. for (i = 0; i < INSTANCE_BUCKETS; i++) {
  758. struct hlist_node *t2;
  759. struct nfqnl_instance *inst;
  760. struct hlist_head *head = &q->instance_table[i];
  761. hlist_for_each_entry_safe(inst, t2, head, hlist) {
  762. if (n->portid == inst->peer_portid)
  763. __instance_destroy(inst);
  764. }
  765. }
  766. spin_unlock(&q->instances_lock);
  767. }
  768. return NOTIFY_DONE;
  769. }
  770. static struct notifier_block nfqnl_rtnl_notifier = {
  771. .notifier_call = nfqnl_rcv_nl_event,
  772. };
  773. static const struct nla_policy nfqa_verdict_policy[NFQA_MAX+1] = {
  774. [NFQA_VERDICT_HDR] = { .len = sizeof(struct nfqnl_msg_verdict_hdr) },
  775. [NFQA_MARK] = { .type = NLA_U32 },
  776. [NFQA_PAYLOAD] = { .type = NLA_UNSPEC },
  777. [NFQA_CT] = { .type = NLA_UNSPEC },
  778. [NFQA_EXP] = { .type = NLA_UNSPEC },
  779. };
  780. static const struct nla_policy nfqa_verdict_batch_policy[NFQA_MAX+1] = {
  781. [NFQA_VERDICT_HDR] = { .len = sizeof(struct nfqnl_msg_verdict_hdr) },
  782. [NFQA_MARK] = { .type = NLA_U32 },
  783. };
  784. static struct nfqnl_instance *
  785. verdict_instance_lookup(struct nfnl_queue_net *q, u16 queue_num, u32 nlportid)
  786. {
  787. struct nfqnl_instance *queue;
  788. queue = instance_lookup(q, queue_num);
  789. if (!queue)
  790. return ERR_PTR(-ENODEV);
  791. if (queue->peer_portid != nlportid)
  792. return ERR_PTR(-EPERM);
  793. return queue;
  794. }
  795. static struct nfqnl_msg_verdict_hdr*
  796. verdicthdr_get(const struct nlattr * const nfqa[])
  797. {
  798. struct nfqnl_msg_verdict_hdr *vhdr;
  799. unsigned int verdict;
  800. if (!nfqa[NFQA_VERDICT_HDR])
  801. return NULL;
  802. vhdr = nla_data(nfqa[NFQA_VERDICT_HDR]);
  803. verdict = ntohl(vhdr->verdict) & NF_VERDICT_MASK;
  804. if (verdict > NF_MAX_VERDICT || verdict == NF_STOLEN)
  805. return NULL;
  806. return vhdr;
  807. }
  808. static int nfq_id_after(unsigned int id, unsigned int max)
  809. {
  810. return (int)(id - max) > 0;
  811. }
  812. static int
  813. nfqnl_recv_verdict_batch(struct sock *ctnl, struct sk_buff *skb,
  814. const struct nlmsghdr *nlh,
  815. const struct nlattr * const nfqa[])
  816. {
  817. struct nfgenmsg *nfmsg = nlmsg_data(nlh);
  818. struct nf_queue_entry *entry, *tmp;
  819. unsigned int verdict, maxid;
  820. struct nfqnl_msg_verdict_hdr *vhdr;
  821. struct nfqnl_instance *queue;
  822. LIST_HEAD(batch_list);
  823. u16 queue_num = ntohs(nfmsg->res_id);
  824. struct net *net = sock_net(ctnl);
  825. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  826. queue = verdict_instance_lookup(q, queue_num,
  827. NETLINK_CB(skb).portid);
  828. if (IS_ERR(queue))
  829. return PTR_ERR(queue);
  830. vhdr = verdicthdr_get(nfqa);
  831. if (!vhdr)
  832. return -EINVAL;
  833. verdict = ntohl(vhdr->verdict);
  834. maxid = ntohl(vhdr->id);
  835. spin_lock_bh(&queue->lock);
  836. list_for_each_entry_safe(entry, tmp, &queue->queue_list, list) {
  837. if (nfq_id_after(entry->id, maxid))
  838. break;
  839. __dequeue_entry(queue, entry);
  840. list_add_tail(&entry->list, &batch_list);
  841. }
  842. spin_unlock_bh(&queue->lock);
  843. if (list_empty(&batch_list))
  844. return -ENOENT;
  845. list_for_each_entry_safe(entry, tmp, &batch_list, list) {
  846. if (nfqa[NFQA_MARK])
  847. entry->skb->mark = ntohl(nla_get_be32(nfqa[NFQA_MARK]));
  848. nf_reinject(entry, verdict);
  849. }
  850. return 0;
  851. }
  852. static struct nf_conn *nfqnl_ct_parse(struct nfnl_ct_hook *nfnl_ct,
  853. const struct nlmsghdr *nlh,
  854. const struct nlattr * const nfqa[],
  855. struct nf_queue_entry *entry,
  856. enum ip_conntrack_info *ctinfo)
  857. {
  858. struct nf_conn *ct;
  859. ct = nfnl_ct->get_ct(entry->skb, ctinfo);
  860. if (ct == NULL)
  861. return NULL;
  862. if (nfnl_ct->parse(nfqa[NFQA_CT], ct) < 0)
  863. return NULL;
  864. if (nfqa[NFQA_EXP])
  865. nfnl_ct->attach_expect(nfqa[NFQA_EXP], ct,
  866. NETLINK_CB(entry->skb).portid,
  867. nlmsg_report(nlh));
  868. return ct;
  869. }
  870. static int
  871. nfqnl_recv_verdict(struct sock *ctnl, struct sk_buff *skb,
  872. const struct nlmsghdr *nlh,
  873. const struct nlattr * const nfqa[])
  874. {
  875. struct nfgenmsg *nfmsg = nlmsg_data(nlh);
  876. u_int16_t queue_num = ntohs(nfmsg->res_id);
  877. struct nfqnl_msg_verdict_hdr *vhdr;
  878. struct nfqnl_instance *queue;
  879. unsigned int verdict;
  880. struct nf_queue_entry *entry;
  881. enum ip_conntrack_info uninitialized_var(ctinfo);
  882. struct nfnl_ct_hook *nfnl_ct;
  883. struct nf_conn *ct = NULL;
  884. struct net *net = sock_net(ctnl);
  885. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  886. queue = verdict_instance_lookup(q, queue_num,
  887. NETLINK_CB(skb).portid);
  888. if (IS_ERR(queue))
  889. return PTR_ERR(queue);
  890. vhdr = verdicthdr_get(nfqa);
  891. if (!vhdr)
  892. return -EINVAL;
  893. verdict = ntohl(vhdr->verdict);
  894. entry = find_dequeue_entry(queue, ntohl(vhdr->id));
  895. if (entry == NULL)
  896. return -ENOENT;
  897. /* rcu lock already held from nfnl->call_rcu. */
  898. nfnl_ct = rcu_dereference(nfnl_ct_hook);
  899. if (nfqa[NFQA_CT]) {
  900. if (nfnl_ct != NULL)
  901. ct = nfqnl_ct_parse(nfnl_ct, nlh, nfqa, entry, &ctinfo);
  902. }
  903. if (nfqa[NFQA_PAYLOAD]) {
  904. u16 payload_len = nla_len(nfqa[NFQA_PAYLOAD]);
  905. int diff = payload_len - entry->skb->len;
  906. if (nfqnl_mangle(nla_data(nfqa[NFQA_PAYLOAD]),
  907. payload_len, entry, diff) < 0)
  908. verdict = NF_DROP;
  909. if (ct && diff)
  910. nfnl_ct->seq_adjust(entry->skb, ct, ctinfo, diff);
  911. }
  912. if (nfqa[NFQA_MARK])
  913. entry->skb->mark = ntohl(nla_get_be32(nfqa[NFQA_MARK]));
  914. nf_reinject(entry, verdict);
  915. return 0;
  916. }
  917. static int
  918. nfqnl_recv_unsupp(struct sock *ctnl, struct sk_buff *skb,
  919. const struct nlmsghdr *nlh,
  920. const struct nlattr * const nfqa[])
  921. {
  922. return -ENOTSUPP;
  923. }
  924. static const struct nla_policy nfqa_cfg_policy[NFQA_CFG_MAX+1] = {
  925. [NFQA_CFG_CMD] = { .len = sizeof(struct nfqnl_msg_config_cmd) },
  926. [NFQA_CFG_PARAMS] = { .len = sizeof(struct nfqnl_msg_config_params) },
  927. [NFQA_CFG_QUEUE_MAXLEN] = { .type = NLA_U32 },
  928. [NFQA_CFG_MASK] = { .type = NLA_U32 },
  929. [NFQA_CFG_FLAGS] = { .type = NLA_U32 },
  930. };
  931. static const struct nf_queue_handler nfqh = {
  932. .outfn = &nfqnl_enqueue_packet,
  933. .nf_hook_drop = &nfqnl_nf_hook_drop,
  934. };
  935. static int
  936. nfqnl_recv_config(struct sock *ctnl, struct sk_buff *skb,
  937. const struct nlmsghdr *nlh,
  938. const struct nlattr * const nfqa[])
  939. {
  940. struct nfgenmsg *nfmsg = nlmsg_data(nlh);
  941. u_int16_t queue_num = ntohs(nfmsg->res_id);
  942. struct nfqnl_instance *queue;
  943. struct nfqnl_msg_config_cmd *cmd = NULL;
  944. struct net *net = sock_net(ctnl);
  945. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  946. int ret = 0;
  947. if (nfqa[NFQA_CFG_CMD]) {
  948. cmd = nla_data(nfqa[NFQA_CFG_CMD]);
  949. /* Obsolete commands without queue context */
  950. switch (cmd->command) {
  951. case NFQNL_CFG_CMD_PF_BIND: return 0;
  952. case NFQNL_CFG_CMD_PF_UNBIND: return 0;
  953. }
  954. }
  955. rcu_read_lock();
  956. queue = instance_lookup(q, queue_num);
  957. if (queue && queue->peer_portid != NETLINK_CB(skb).portid) {
  958. ret = -EPERM;
  959. goto err_out_unlock;
  960. }
  961. if (cmd != NULL) {
  962. switch (cmd->command) {
  963. case NFQNL_CFG_CMD_BIND:
  964. if (queue) {
  965. ret = -EBUSY;
  966. goto err_out_unlock;
  967. }
  968. queue = instance_create(q, queue_num,
  969. NETLINK_CB(skb).portid);
  970. if (IS_ERR(queue)) {
  971. ret = PTR_ERR(queue);
  972. goto err_out_unlock;
  973. }
  974. break;
  975. case NFQNL_CFG_CMD_UNBIND:
  976. if (!queue) {
  977. ret = -ENODEV;
  978. goto err_out_unlock;
  979. }
  980. instance_destroy(q, queue);
  981. break;
  982. case NFQNL_CFG_CMD_PF_BIND:
  983. case NFQNL_CFG_CMD_PF_UNBIND:
  984. break;
  985. default:
  986. ret = -ENOTSUPP;
  987. break;
  988. }
  989. }
  990. if (nfqa[NFQA_CFG_PARAMS]) {
  991. struct nfqnl_msg_config_params *params;
  992. if (!queue) {
  993. ret = -ENODEV;
  994. goto err_out_unlock;
  995. }
  996. params = nla_data(nfqa[NFQA_CFG_PARAMS]);
  997. nfqnl_set_mode(queue, params->copy_mode,
  998. ntohl(params->copy_range));
  999. }
  1000. if (nfqa[NFQA_CFG_QUEUE_MAXLEN]) {
  1001. __be32 *queue_maxlen;
  1002. if (!queue) {
  1003. ret = -ENODEV;
  1004. goto err_out_unlock;
  1005. }
  1006. queue_maxlen = nla_data(nfqa[NFQA_CFG_QUEUE_MAXLEN]);
  1007. spin_lock_bh(&queue->lock);
  1008. queue->queue_maxlen = ntohl(*queue_maxlen);
  1009. spin_unlock_bh(&queue->lock);
  1010. }
  1011. if (nfqa[NFQA_CFG_FLAGS]) {
  1012. __u32 flags, mask;
  1013. if (!queue) {
  1014. ret = -ENODEV;
  1015. goto err_out_unlock;
  1016. }
  1017. if (!nfqa[NFQA_CFG_MASK]) {
  1018. /* A mask is needed to specify which flags are being
  1019. * changed.
  1020. */
  1021. ret = -EINVAL;
  1022. goto err_out_unlock;
  1023. }
  1024. flags = ntohl(nla_get_be32(nfqa[NFQA_CFG_FLAGS]));
  1025. mask = ntohl(nla_get_be32(nfqa[NFQA_CFG_MASK]));
  1026. if (flags >= NFQA_CFG_F_MAX) {
  1027. ret = -EOPNOTSUPP;
  1028. goto err_out_unlock;
  1029. }
  1030. #if !IS_ENABLED(CONFIG_NETWORK_SECMARK)
  1031. if (flags & mask & NFQA_CFG_F_SECCTX) {
  1032. ret = -EOPNOTSUPP;
  1033. goto err_out_unlock;
  1034. }
  1035. #endif
  1036. spin_lock_bh(&queue->lock);
  1037. queue->flags &= ~mask;
  1038. queue->flags |= flags & mask;
  1039. spin_unlock_bh(&queue->lock);
  1040. }
  1041. err_out_unlock:
  1042. rcu_read_unlock();
  1043. return ret;
  1044. }
  1045. static const struct nfnl_callback nfqnl_cb[NFQNL_MSG_MAX] = {
  1046. [NFQNL_MSG_PACKET] = { .call_rcu = nfqnl_recv_unsupp,
  1047. .attr_count = NFQA_MAX, },
  1048. [NFQNL_MSG_VERDICT] = { .call_rcu = nfqnl_recv_verdict,
  1049. .attr_count = NFQA_MAX,
  1050. .policy = nfqa_verdict_policy },
  1051. [NFQNL_MSG_CONFIG] = { .call = nfqnl_recv_config,
  1052. .attr_count = NFQA_CFG_MAX,
  1053. .policy = nfqa_cfg_policy },
  1054. [NFQNL_MSG_VERDICT_BATCH]={ .call_rcu = nfqnl_recv_verdict_batch,
  1055. .attr_count = NFQA_MAX,
  1056. .policy = nfqa_verdict_batch_policy },
  1057. };
  1058. static const struct nfnetlink_subsystem nfqnl_subsys = {
  1059. .name = "nf_queue",
  1060. .subsys_id = NFNL_SUBSYS_QUEUE,
  1061. .cb_count = NFQNL_MSG_MAX,
  1062. .cb = nfqnl_cb,
  1063. };
  1064. #ifdef CONFIG_PROC_FS
  1065. struct iter_state {
  1066. struct seq_net_private p;
  1067. unsigned int bucket;
  1068. };
  1069. static struct hlist_node *get_first(struct seq_file *seq)
  1070. {
  1071. struct iter_state *st = seq->private;
  1072. struct net *net;
  1073. struct nfnl_queue_net *q;
  1074. if (!st)
  1075. return NULL;
  1076. net = seq_file_net(seq);
  1077. q = nfnl_queue_pernet(net);
  1078. for (st->bucket = 0; st->bucket < INSTANCE_BUCKETS; st->bucket++) {
  1079. if (!hlist_empty(&q->instance_table[st->bucket]))
  1080. return q->instance_table[st->bucket].first;
  1081. }
  1082. return NULL;
  1083. }
  1084. static struct hlist_node *get_next(struct seq_file *seq, struct hlist_node *h)
  1085. {
  1086. struct iter_state *st = seq->private;
  1087. struct net *net = seq_file_net(seq);
  1088. h = h->next;
  1089. while (!h) {
  1090. struct nfnl_queue_net *q;
  1091. if (++st->bucket >= INSTANCE_BUCKETS)
  1092. return NULL;
  1093. q = nfnl_queue_pernet(net);
  1094. h = q->instance_table[st->bucket].first;
  1095. }
  1096. return h;
  1097. }
  1098. static struct hlist_node *get_idx(struct seq_file *seq, loff_t pos)
  1099. {
  1100. struct hlist_node *head;
  1101. head = get_first(seq);
  1102. if (head)
  1103. while (pos && (head = get_next(seq, head)))
  1104. pos--;
  1105. return pos ? NULL : head;
  1106. }
  1107. static void *seq_start(struct seq_file *s, loff_t *pos)
  1108. __acquires(nfnl_queue_pernet(seq_file_net(s))->instances_lock)
  1109. {
  1110. spin_lock(&nfnl_queue_pernet(seq_file_net(s))->instances_lock);
  1111. return get_idx(s, *pos);
  1112. }
  1113. static void *seq_next(struct seq_file *s, void *v, loff_t *pos)
  1114. {
  1115. (*pos)++;
  1116. return get_next(s, v);
  1117. }
  1118. static void seq_stop(struct seq_file *s, void *v)
  1119. __releases(nfnl_queue_pernet(seq_file_net(s))->instances_lock)
  1120. {
  1121. spin_unlock(&nfnl_queue_pernet(seq_file_net(s))->instances_lock);
  1122. }
  1123. static int seq_show(struct seq_file *s, void *v)
  1124. {
  1125. const struct nfqnl_instance *inst = v;
  1126. seq_printf(s, "%5u %6u %5u %1u %5u %5u %5u %8u %2d\n",
  1127. inst->queue_num,
  1128. inst->peer_portid, inst->queue_total,
  1129. inst->copy_mode, inst->copy_range,
  1130. inst->queue_dropped, inst->queue_user_dropped,
  1131. inst->id_sequence, 1);
  1132. return 0;
  1133. }
  1134. static const struct seq_operations nfqnl_seq_ops = {
  1135. .start = seq_start,
  1136. .next = seq_next,
  1137. .stop = seq_stop,
  1138. .show = seq_show,
  1139. };
  1140. static int nfqnl_open(struct inode *inode, struct file *file)
  1141. {
  1142. return seq_open_net(inode, file, &nfqnl_seq_ops,
  1143. sizeof(struct iter_state));
  1144. }
  1145. static const struct file_operations nfqnl_file_ops = {
  1146. .owner = THIS_MODULE,
  1147. .open = nfqnl_open,
  1148. .read = seq_read,
  1149. .llseek = seq_lseek,
  1150. .release = seq_release_net,
  1151. };
  1152. #endif /* PROC_FS */
  1153. static int __net_init nfnl_queue_net_init(struct net *net)
  1154. {
  1155. unsigned int i;
  1156. struct nfnl_queue_net *q = nfnl_queue_pernet(net);
  1157. for (i = 0; i < INSTANCE_BUCKETS; i++)
  1158. INIT_HLIST_HEAD(&q->instance_table[i]);
  1159. spin_lock_init(&q->instances_lock);
  1160. #ifdef CONFIG_PROC_FS
  1161. if (!proc_create("nfnetlink_queue", 0440,
  1162. net->nf.proc_netfilter, &nfqnl_file_ops))
  1163. return -ENOMEM;
  1164. #endif
  1165. nf_register_queue_handler(net, &nfqh);
  1166. return 0;
  1167. }
  1168. static void __net_exit nfnl_queue_net_exit(struct net *net)
  1169. {
  1170. nf_unregister_queue_handler(net);
  1171. #ifdef CONFIG_PROC_FS
  1172. remove_proc_entry("nfnetlink_queue", net->nf.proc_netfilter);
  1173. #endif
  1174. }
  1175. static void nfnl_queue_net_exit_batch(struct list_head *net_exit_list)
  1176. {
  1177. synchronize_rcu();
  1178. }
  1179. static struct pernet_operations nfnl_queue_net_ops = {
  1180. .init = nfnl_queue_net_init,
  1181. .exit = nfnl_queue_net_exit,
  1182. .exit_batch = nfnl_queue_net_exit_batch,
  1183. .id = &nfnl_queue_net_id,
  1184. .size = sizeof(struct nfnl_queue_net),
  1185. };
  1186. static int __init nfnetlink_queue_init(void)
  1187. {
  1188. int status;
  1189. status = register_pernet_subsys(&nfnl_queue_net_ops);
  1190. if (status < 0) {
  1191. pr_err("nf_queue: failed to register pernet ops\n");
  1192. goto out;
  1193. }
  1194. netlink_register_notifier(&nfqnl_rtnl_notifier);
  1195. status = nfnetlink_subsys_register(&nfqnl_subsys);
  1196. if (status < 0) {
  1197. pr_err("nf_queue: failed to create netlink socket\n");
  1198. goto cleanup_netlink_notifier;
  1199. }
  1200. register_netdevice_notifier(&nfqnl_dev_notifier);
  1201. return status;
  1202. cleanup_netlink_notifier:
  1203. netlink_unregister_notifier(&nfqnl_rtnl_notifier);
  1204. unregister_pernet_subsys(&nfnl_queue_net_ops);
  1205. out:
  1206. return status;
  1207. }
  1208. static void __exit nfnetlink_queue_fini(void)
  1209. {
  1210. unregister_netdevice_notifier(&nfqnl_dev_notifier);
  1211. nfnetlink_subsys_unregister(&nfqnl_subsys);
  1212. netlink_unregister_notifier(&nfqnl_rtnl_notifier);
  1213. unregister_pernet_subsys(&nfnl_queue_net_ops);
  1214. rcu_barrier(); /* Wait for completion of call_rcu()'s */
  1215. }
  1216. MODULE_DESCRIPTION("netfilter packet queue handler");
  1217. MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
  1218. MODULE_LICENSE("GPL");
  1219. MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_QUEUE);
  1220. module_init(nfnetlink_queue_init);
  1221. module_exit(nfnetlink_queue_fini);