eventfd.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960
  1. /*
  2. * kvm eventfd support - use eventfd objects to signal various KVM events
  3. *
  4. * Copyright 2009 Novell. All Rights Reserved.
  5. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  6. *
  7. * Author:
  8. * Gregory Haskins <ghaskins@novell.com>
  9. *
  10. * This file is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License
  12. * as published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software Foundation,
  21. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
  22. */
  23. #include <linux/kvm_host.h>
  24. #include <linux/kvm.h>
  25. #include <linux/kvm_irqfd.h>
  26. #include <linux/workqueue.h>
  27. #include <linux/syscalls.h>
  28. #include <linux/wait.h>
  29. #include <linux/poll.h>
  30. #include <linux/file.h>
  31. #include <linux/list.h>
  32. #include <linux/eventfd.h>
  33. #include <linux/kernel.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/seqlock.h>
  37. #include <linux/irqbypass.h>
  38. #include <trace/events/kvm.h>
  39. #include <kvm/iodev.h>
  40. #ifdef CONFIG_HAVE_KVM_IRQFD
  41. static struct workqueue_struct *irqfd_cleanup_wq;
  42. static void
  43. irqfd_inject(struct work_struct *work)
  44. {
  45. struct kvm_kernel_irqfd *irqfd =
  46. container_of(work, struct kvm_kernel_irqfd, inject);
  47. struct kvm *kvm = irqfd->kvm;
  48. if (!irqfd->resampler) {
  49. kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1,
  50. false);
  51. kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0,
  52. false);
  53. } else
  54. kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
  55. irqfd->gsi, 1, false);
  56. }
  57. /*
  58. * Since resampler irqfds share an IRQ source ID, we de-assert once
  59. * then notify all of the resampler irqfds using this GSI. We can't
  60. * do multiple de-asserts or we risk racing with incoming re-asserts.
  61. */
  62. static void
  63. irqfd_resampler_ack(struct kvm_irq_ack_notifier *kian)
  64. {
  65. struct kvm_kernel_irqfd_resampler *resampler;
  66. struct kvm *kvm;
  67. struct kvm_kernel_irqfd *irqfd;
  68. int idx;
  69. resampler = container_of(kian,
  70. struct kvm_kernel_irqfd_resampler, notifier);
  71. kvm = resampler->kvm;
  72. kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
  73. resampler->notifier.gsi, 0, false);
  74. idx = srcu_read_lock(&kvm->irq_srcu);
  75. list_for_each_entry_rcu(irqfd, &resampler->list, resampler_link)
  76. eventfd_signal(irqfd->resamplefd, 1);
  77. srcu_read_unlock(&kvm->irq_srcu, idx);
  78. }
  79. static void
  80. irqfd_resampler_shutdown(struct kvm_kernel_irqfd *irqfd)
  81. {
  82. struct kvm_kernel_irqfd_resampler *resampler = irqfd->resampler;
  83. struct kvm *kvm = resampler->kvm;
  84. mutex_lock(&kvm->irqfds.resampler_lock);
  85. list_del_rcu(&irqfd->resampler_link);
  86. synchronize_srcu(&kvm->irq_srcu);
  87. if (list_empty(&resampler->list)) {
  88. list_del(&resampler->link);
  89. kvm_unregister_irq_ack_notifier(kvm, &resampler->notifier);
  90. kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
  91. resampler->notifier.gsi, 0, false);
  92. kfree(resampler);
  93. }
  94. mutex_unlock(&kvm->irqfds.resampler_lock);
  95. }
  96. /*
  97. * Race-free decouple logic (ordering is critical)
  98. */
  99. static void
  100. irqfd_shutdown(struct work_struct *work)
  101. {
  102. struct kvm_kernel_irqfd *irqfd =
  103. container_of(work, struct kvm_kernel_irqfd, shutdown);
  104. struct kvm *kvm = irqfd->kvm;
  105. u64 cnt;
  106. /* Make sure irqfd has been initalized in assign path. */
  107. synchronize_srcu(&kvm->irq_srcu);
  108. /*
  109. * Synchronize with the wait-queue and unhook ourselves to prevent
  110. * further events.
  111. */
  112. eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt);
  113. /*
  114. * We know no new events will be scheduled at this point, so block
  115. * until all previously outstanding events have completed
  116. */
  117. flush_work(&irqfd->inject);
  118. if (irqfd->resampler) {
  119. irqfd_resampler_shutdown(irqfd);
  120. eventfd_ctx_put(irqfd->resamplefd);
  121. }
  122. /*
  123. * It is now safe to release the object's resources
  124. */
  125. #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
  126. irq_bypass_unregister_consumer(&irqfd->consumer);
  127. #endif
  128. eventfd_ctx_put(irqfd->eventfd);
  129. kfree(irqfd);
  130. }
  131. /* assumes kvm->irqfds.lock is held */
  132. static bool
  133. irqfd_is_active(struct kvm_kernel_irqfd *irqfd)
  134. {
  135. return list_empty(&irqfd->list) ? false : true;
  136. }
  137. /*
  138. * Mark the irqfd as inactive and schedule it for removal
  139. *
  140. * assumes kvm->irqfds.lock is held
  141. */
  142. static void
  143. irqfd_deactivate(struct kvm_kernel_irqfd *irqfd)
  144. {
  145. BUG_ON(!irqfd_is_active(irqfd));
  146. list_del_init(&irqfd->list);
  147. queue_work(irqfd_cleanup_wq, &irqfd->shutdown);
  148. }
  149. int __attribute__((weak)) kvm_arch_set_irq_inatomic(
  150. struct kvm_kernel_irq_routing_entry *irq,
  151. struct kvm *kvm, int irq_source_id,
  152. int level,
  153. bool line_status)
  154. {
  155. return -EWOULDBLOCK;
  156. }
  157. /*
  158. * Called with wqh->lock held and interrupts disabled
  159. */
  160. static int
  161. irqfd_wakeup(wait_queue_t *wait, unsigned mode, int sync, void *key)
  162. {
  163. struct kvm_kernel_irqfd *irqfd =
  164. container_of(wait, struct kvm_kernel_irqfd, wait);
  165. unsigned long flags = (unsigned long)key;
  166. struct kvm_kernel_irq_routing_entry irq;
  167. struct kvm *kvm = irqfd->kvm;
  168. unsigned seq;
  169. int idx;
  170. if (flags & POLLIN) {
  171. idx = srcu_read_lock(&kvm->irq_srcu);
  172. do {
  173. seq = read_seqcount_begin(&irqfd->irq_entry_sc);
  174. irq = irqfd->irq_entry;
  175. } while (read_seqcount_retry(&irqfd->irq_entry_sc, seq));
  176. /* An event has been signaled, inject an interrupt */
  177. if (kvm_arch_set_irq_inatomic(&irq, kvm,
  178. KVM_USERSPACE_IRQ_SOURCE_ID, 1,
  179. false) == -EWOULDBLOCK)
  180. schedule_work(&irqfd->inject);
  181. srcu_read_unlock(&kvm->irq_srcu, idx);
  182. }
  183. if (flags & POLLHUP) {
  184. /* The eventfd is closing, detach from KVM */
  185. unsigned long flags;
  186. spin_lock_irqsave(&kvm->irqfds.lock, flags);
  187. /*
  188. * We must check if someone deactivated the irqfd before
  189. * we could acquire the irqfds.lock since the item is
  190. * deactivated from the KVM side before it is unhooked from
  191. * the wait-queue. If it is already deactivated, we can
  192. * simply return knowing the other side will cleanup for us.
  193. * We cannot race against the irqfd going away since the
  194. * other side is required to acquire wqh->lock, which we hold
  195. */
  196. if (irqfd_is_active(irqfd))
  197. irqfd_deactivate(irqfd);
  198. spin_unlock_irqrestore(&kvm->irqfds.lock, flags);
  199. }
  200. return 0;
  201. }
  202. static void
  203. irqfd_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh,
  204. poll_table *pt)
  205. {
  206. struct kvm_kernel_irqfd *irqfd =
  207. container_of(pt, struct kvm_kernel_irqfd, pt);
  208. add_wait_queue(wqh, &irqfd->wait);
  209. }
  210. /* Must be called under irqfds.lock */
  211. static void irqfd_update(struct kvm *kvm, struct kvm_kernel_irqfd *irqfd)
  212. {
  213. struct kvm_kernel_irq_routing_entry *e;
  214. struct kvm_kernel_irq_routing_entry entries[KVM_NR_IRQCHIPS];
  215. int n_entries;
  216. n_entries = kvm_irq_map_gsi(kvm, entries, irqfd->gsi);
  217. write_seqcount_begin(&irqfd->irq_entry_sc);
  218. e = entries;
  219. if (n_entries == 1)
  220. irqfd->irq_entry = *e;
  221. else
  222. irqfd->irq_entry.type = 0;
  223. write_seqcount_end(&irqfd->irq_entry_sc);
  224. }
  225. #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
  226. void __attribute__((weak)) kvm_arch_irq_bypass_stop(
  227. struct irq_bypass_consumer *cons)
  228. {
  229. }
  230. void __attribute__((weak)) kvm_arch_irq_bypass_start(
  231. struct irq_bypass_consumer *cons)
  232. {
  233. }
  234. int __attribute__((weak)) kvm_arch_update_irqfd_routing(
  235. struct kvm *kvm, unsigned int host_irq,
  236. uint32_t guest_irq, bool set)
  237. {
  238. return 0;
  239. }
  240. #endif
  241. static int
  242. kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args)
  243. {
  244. struct kvm_kernel_irqfd *irqfd, *tmp;
  245. struct fd f;
  246. struct eventfd_ctx *eventfd = NULL, *resamplefd = NULL;
  247. int ret;
  248. unsigned int events;
  249. int idx;
  250. if (!kvm_arch_intc_initialized(kvm))
  251. return -EAGAIN;
  252. irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL);
  253. if (!irqfd)
  254. return -ENOMEM;
  255. irqfd->kvm = kvm;
  256. irqfd->gsi = args->gsi;
  257. INIT_LIST_HEAD(&irqfd->list);
  258. INIT_WORK(&irqfd->inject, irqfd_inject);
  259. INIT_WORK(&irqfd->shutdown, irqfd_shutdown);
  260. seqcount_init(&irqfd->irq_entry_sc);
  261. f = fdget(args->fd);
  262. if (!f.file) {
  263. ret = -EBADF;
  264. goto out;
  265. }
  266. eventfd = eventfd_ctx_fileget(f.file);
  267. if (IS_ERR(eventfd)) {
  268. ret = PTR_ERR(eventfd);
  269. goto fail;
  270. }
  271. irqfd->eventfd = eventfd;
  272. if (args->flags & KVM_IRQFD_FLAG_RESAMPLE) {
  273. struct kvm_kernel_irqfd_resampler *resampler;
  274. resamplefd = eventfd_ctx_fdget(args->resamplefd);
  275. if (IS_ERR(resamplefd)) {
  276. ret = PTR_ERR(resamplefd);
  277. goto fail;
  278. }
  279. irqfd->resamplefd = resamplefd;
  280. INIT_LIST_HEAD(&irqfd->resampler_link);
  281. mutex_lock(&kvm->irqfds.resampler_lock);
  282. list_for_each_entry(resampler,
  283. &kvm->irqfds.resampler_list, link) {
  284. if (resampler->notifier.gsi == irqfd->gsi) {
  285. irqfd->resampler = resampler;
  286. break;
  287. }
  288. }
  289. if (!irqfd->resampler) {
  290. resampler = kzalloc(sizeof(*resampler), GFP_KERNEL);
  291. if (!resampler) {
  292. ret = -ENOMEM;
  293. mutex_unlock(&kvm->irqfds.resampler_lock);
  294. goto fail;
  295. }
  296. resampler->kvm = kvm;
  297. INIT_LIST_HEAD(&resampler->list);
  298. resampler->notifier.gsi = irqfd->gsi;
  299. resampler->notifier.irq_acked = irqfd_resampler_ack;
  300. INIT_LIST_HEAD(&resampler->link);
  301. list_add(&resampler->link, &kvm->irqfds.resampler_list);
  302. kvm_register_irq_ack_notifier(kvm,
  303. &resampler->notifier);
  304. irqfd->resampler = resampler;
  305. }
  306. list_add_rcu(&irqfd->resampler_link, &irqfd->resampler->list);
  307. synchronize_srcu(&kvm->irq_srcu);
  308. mutex_unlock(&kvm->irqfds.resampler_lock);
  309. }
  310. /*
  311. * Install our own custom wake-up handling so we are notified via
  312. * a callback whenever someone signals the underlying eventfd
  313. */
  314. init_waitqueue_func_entry(&irqfd->wait, irqfd_wakeup);
  315. init_poll_funcptr(&irqfd->pt, irqfd_ptable_queue_proc);
  316. spin_lock_irq(&kvm->irqfds.lock);
  317. ret = 0;
  318. list_for_each_entry(tmp, &kvm->irqfds.items, list) {
  319. if (irqfd->eventfd != tmp->eventfd)
  320. continue;
  321. /* This fd is used for another irq already. */
  322. ret = -EBUSY;
  323. spin_unlock_irq(&kvm->irqfds.lock);
  324. goto fail;
  325. }
  326. idx = srcu_read_lock(&kvm->irq_srcu);
  327. irqfd_update(kvm, irqfd);
  328. list_add_tail(&irqfd->list, &kvm->irqfds.items);
  329. spin_unlock_irq(&kvm->irqfds.lock);
  330. /*
  331. * Check if there was an event already pending on the eventfd
  332. * before we registered, and trigger it as if we didn't miss it.
  333. */
  334. events = f.file->f_op->poll(f.file, &irqfd->pt);
  335. if (events & POLLIN)
  336. schedule_work(&irqfd->inject);
  337. #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
  338. irqfd->consumer.token = (void *)irqfd->eventfd;
  339. irqfd->consumer.add_producer = kvm_arch_irq_bypass_add_producer;
  340. irqfd->consumer.del_producer = kvm_arch_irq_bypass_del_producer;
  341. irqfd->consumer.stop = kvm_arch_irq_bypass_stop;
  342. irqfd->consumer.start = kvm_arch_irq_bypass_start;
  343. ret = irq_bypass_register_consumer(&irqfd->consumer);
  344. if (ret)
  345. pr_info("irq bypass consumer (token %p) registration fails: %d\n",
  346. irqfd->consumer.token, ret);
  347. #endif
  348. srcu_read_unlock(&kvm->irq_srcu, idx);
  349. /*
  350. * do not drop the file until the irqfd is fully initialized, otherwise
  351. * we might race against the POLLHUP
  352. */
  353. fdput(f);
  354. return 0;
  355. fail:
  356. if (irqfd->resampler)
  357. irqfd_resampler_shutdown(irqfd);
  358. if (resamplefd && !IS_ERR(resamplefd))
  359. eventfd_ctx_put(resamplefd);
  360. if (eventfd && !IS_ERR(eventfd))
  361. eventfd_ctx_put(eventfd);
  362. fdput(f);
  363. out:
  364. kfree(irqfd);
  365. return ret;
  366. }
  367. bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin)
  368. {
  369. struct kvm_irq_ack_notifier *kian;
  370. int gsi, idx;
  371. idx = srcu_read_lock(&kvm->irq_srcu);
  372. gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin);
  373. if (gsi != -1)
  374. hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list,
  375. link)
  376. if (kian->gsi == gsi) {
  377. srcu_read_unlock(&kvm->irq_srcu, idx);
  378. return true;
  379. }
  380. srcu_read_unlock(&kvm->irq_srcu, idx);
  381. return false;
  382. }
  383. EXPORT_SYMBOL_GPL(kvm_irq_has_notifier);
  384. void kvm_notify_acked_gsi(struct kvm *kvm, int gsi)
  385. {
  386. struct kvm_irq_ack_notifier *kian;
  387. hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list,
  388. link)
  389. if (kian->gsi == gsi)
  390. kian->irq_acked(kian);
  391. }
  392. void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin)
  393. {
  394. int gsi, idx;
  395. trace_kvm_ack_irq(irqchip, pin);
  396. idx = srcu_read_lock(&kvm->irq_srcu);
  397. gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin);
  398. if (gsi != -1)
  399. kvm_notify_acked_gsi(kvm, gsi);
  400. srcu_read_unlock(&kvm->irq_srcu, idx);
  401. }
  402. void kvm_register_irq_ack_notifier(struct kvm *kvm,
  403. struct kvm_irq_ack_notifier *kian)
  404. {
  405. mutex_lock(&kvm->irq_lock);
  406. hlist_add_head_rcu(&kian->link, &kvm->irq_ack_notifier_list);
  407. mutex_unlock(&kvm->irq_lock);
  408. kvm_vcpu_request_scan_ioapic(kvm);
  409. }
  410. void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
  411. struct kvm_irq_ack_notifier *kian)
  412. {
  413. mutex_lock(&kvm->irq_lock);
  414. hlist_del_init_rcu(&kian->link);
  415. mutex_unlock(&kvm->irq_lock);
  416. synchronize_srcu(&kvm->irq_srcu);
  417. kvm_vcpu_request_scan_ioapic(kvm);
  418. }
  419. #endif
  420. void
  421. kvm_eventfd_init(struct kvm *kvm)
  422. {
  423. #ifdef CONFIG_HAVE_KVM_IRQFD
  424. spin_lock_init(&kvm->irqfds.lock);
  425. INIT_LIST_HEAD(&kvm->irqfds.items);
  426. INIT_LIST_HEAD(&kvm->irqfds.resampler_list);
  427. mutex_init(&kvm->irqfds.resampler_lock);
  428. #endif
  429. INIT_LIST_HEAD(&kvm->ioeventfds);
  430. }
  431. #ifdef CONFIG_HAVE_KVM_IRQFD
  432. /*
  433. * shutdown any irqfd's that match fd+gsi
  434. */
  435. static int
  436. kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args)
  437. {
  438. struct kvm_kernel_irqfd *irqfd, *tmp;
  439. struct eventfd_ctx *eventfd;
  440. eventfd = eventfd_ctx_fdget(args->fd);
  441. if (IS_ERR(eventfd))
  442. return PTR_ERR(eventfd);
  443. spin_lock_irq(&kvm->irqfds.lock);
  444. list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) {
  445. if (irqfd->eventfd == eventfd && irqfd->gsi == args->gsi) {
  446. /*
  447. * This clearing of irq_entry.type is needed for when
  448. * another thread calls kvm_irq_routing_update before
  449. * we flush workqueue below (we synchronize with
  450. * kvm_irq_routing_update using irqfds.lock).
  451. */
  452. write_seqcount_begin(&irqfd->irq_entry_sc);
  453. irqfd->irq_entry.type = 0;
  454. write_seqcount_end(&irqfd->irq_entry_sc);
  455. irqfd_deactivate(irqfd);
  456. }
  457. }
  458. spin_unlock_irq(&kvm->irqfds.lock);
  459. eventfd_ctx_put(eventfd);
  460. /*
  461. * Block until we know all outstanding shutdown jobs have completed
  462. * so that we guarantee there will not be any more interrupts on this
  463. * gsi once this deassign function returns.
  464. */
  465. flush_workqueue(irqfd_cleanup_wq);
  466. return 0;
  467. }
  468. int
  469. kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
  470. {
  471. if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE))
  472. return -EINVAL;
  473. if (args->flags & KVM_IRQFD_FLAG_DEASSIGN)
  474. return kvm_irqfd_deassign(kvm, args);
  475. return kvm_irqfd_assign(kvm, args);
  476. }
  477. /*
  478. * This function is called as the kvm VM fd is being released. Shutdown all
  479. * irqfds that still remain open
  480. */
  481. void
  482. kvm_irqfd_release(struct kvm *kvm)
  483. {
  484. struct kvm_kernel_irqfd *irqfd, *tmp;
  485. spin_lock_irq(&kvm->irqfds.lock);
  486. list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list)
  487. irqfd_deactivate(irqfd);
  488. spin_unlock_irq(&kvm->irqfds.lock);
  489. /*
  490. * Block until we know all outstanding shutdown jobs have completed
  491. * since we do not take a kvm* reference.
  492. */
  493. flush_workqueue(irqfd_cleanup_wq);
  494. }
  495. /*
  496. * Take note of a change in irq routing.
  497. * Caller must invoke synchronize_srcu(&kvm->irq_srcu) afterwards.
  498. */
  499. void kvm_irq_routing_update(struct kvm *kvm)
  500. {
  501. struct kvm_kernel_irqfd *irqfd;
  502. spin_lock_irq(&kvm->irqfds.lock);
  503. list_for_each_entry(irqfd, &kvm->irqfds.items, list) {
  504. irqfd_update(kvm, irqfd);
  505. #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
  506. if (irqfd->producer) {
  507. int ret = kvm_arch_update_irqfd_routing(
  508. irqfd->kvm, irqfd->producer->irq,
  509. irqfd->gsi, 1);
  510. WARN_ON(ret);
  511. }
  512. #endif
  513. }
  514. spin_unlock_irq(&kvm->irqfds.lock);
  515. }
  516. /*
  517. * create a host-wide workqueue for issuing deferred shutdown requests
  518. * aggregated from all vm* instances. We need our own isolated single-thread
  519. * queue to prevent deadlock against flushing the normal work-queue.
  520. */
  521. int kvm_irqfd_init(void)
  522. {
  523. irqfd_cleanup_wq = create_singlethread_workqueue("kvm-irqfd-cleanup");
  524. if (!irqfd_cleanup_wq)
  525. return -ENOMEM;
  526. return 0;
  527. }
  528. void kvm_irqfd_exit(void)
  529. {
  530. destroy_workqueue(irqfd_cleanup_wq);
  531. }
  532. #endif
  533. /*
  534. * --------------------------------------------------------------------
  535. * ioeventfd: translate a PIO/MMIO memory write to an eventfd signal.
  536. *
  537. * userspace can register a PIO/MMIO address with an eventfd for receiving
  538. * notification when the memory has been touched.
  539. * --------------------------------------------------------------------
  540. */
  541. struct _ioeventfd {
  542. struct list_head list;
  543. u64 addr;
  544. int length;
  545. struct eventfd_ctx *eventfd;
  546. u64 datamatch;
  547. struct kvm_io_device dev;
  548. u8 bus_idx;
  549. bool wildcard;
  550. };
  551. static inline struct _ioeventfd *
  552. to_ioeventfd(struct kvm_io_device *dev)
  553. {
  554. return container_of(dev, struct _ioeventfd, dev);
  555. }
  556. static void
  557. ioeventfd_release(struct _ioeventfd *p)
  558. {
  559. eventfd_ctx_put(p->eventfd);
  560. list_del(&p->list);
  561. kfree(p);
  562. }
  563. static bool
  564. ioeventfd_in_range(struct _ioeventfd *p, gpa_t addr, int len, const void *val)
  565. {
  566. u64 _val;
  567. if (addr != p->addr)
  568. /* address must be precise for a hit */
  569. return false;
  570. if (!p->length)
  571. /* length = 0 means only look at the address, so always a hit */
  572. return true;
  573. if (len != p->length)
  574. /* address-range must be precise for a hit */
  575. return false;
  576. if (p->wildcard)
  577. /* all else equal, wildcard is always a hit */
  578. return true;
  579. /* otherwise, we have to actually compare the data */
  580. BUG_ON(!IS_ALIGNED((unsigned long)val, len));
  581. switch (len) {
  582. case 1:
  583. _val = *(u8 *)val;
  584. break;
  585. case 2:
  586. _val = *(u16 *)val;
  587. break;
  588. case 4:
  589. _val = *(u32 *)val;
  590. break;
  591. case 8:
  592. _val = *(u64 *)val;
  593. break;
  594. default:
  595. return false;
  596. }
  597. return _val == p->datamatch ? true : false;
  598. }
  599. /* MMIO/PIO writes trigger an event if the addr/val match */
  600. static int
  601. ioeventfd_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr,
  602. int len, const void *val)
  603. {
  604. struct _ioeventfd *p = to_ioeventfd(this);
  605. if (!ioeventfd_in_range(p, addr, len, val))
  606. return -EOPNOTSUPP;
  607. eventfd_signal(p->eventfd, 1);
  608. return 0;
  609. }
  610. /*
  611. * This function is called as KVM is completely shutting down. We do not
  612. * need to worry about locking just nuke anything we have as quickly as possible
  613. */
  614. static void
  615. ioeventfd_destructor(struct kvm_io_device *this)
  616. {
  617. struct _ioeventfd *p = to_ioeventfd(this);
  618. ioeventfd_release(p);
  619. }
  620. static const struct kvm_io_device_ops ioeventfd_ops = {
  621. .write = ioeventfd_write,
  622. .destructor = ioeventfd_destructor,
  623. };
  624. /* assumes kvm->slots_lock held */
  625. static bool
  626. ioeventfd_check_collision(struct kvm *kvm, struct _ioeventfd *p)
  627. {
  628. struct _ioeventfd *_p;
  629. list_for_each_entry(_p, &kvm->ioeventfds, list)
  630. if (_p->bus_idx == p->bus_idx &&
  631. _p->addr == p->addr &&
  632. (!_p->length || !p->length ||
  633. (_p->length == p->length &&
  634. (_p->wildcard || p->wildcard ||
  635. _p->datamatch == p->datamatch))))
  636. return true;
  637. return false;
  638. }
  639. static enum kvm_bus ioeventfd_bus_from_flags(__u32 flags)
  640. {
  641. if (flags & KVM_IOEVENTFD_FLAG_PIO)
  642. return KVM_PIO_BUS;
  643. if (flags & KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY)
  644. return KVM_VIRTIO_CCW_NOTIFY_BUS;
  645. return KVM_MMIO_BUS;
  646. }
  647. static int kvm_assign_ioeventfd_idx(struct kvm *kvm,
  648. enum kvm_bus bus_idx,
  649. struct kvm_ioeventfd *args)
  650. {
  651. struct eventfd_ctx *eventfd;
  652. struct _ioeventfd *p;
  653. int ret;
  654. eventfd = eventfd_ctx_fdget(args->fd);
  655. if (IS_ERR(eventfd))
  656. return PTR_ERR(eventfd);
  657. p = kzalloc(sizeof(*p), GFP_KERNEL);
  658. if (!p) {
  659. ret = -ENOMEM;
  660. goto fail;
  661. }
  662. INIT_LIST_HEAD(&p->list);
  663. p->addr = args->addr;
  664. p->bus_idx = bus_idx;
  665. p->length = args->len;
  666. p->eventfd = eventfd;
  667. /* The datamatch feature is optional, otherwise this is a wildcard */
  668. if (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH)
  669. p->datamatch = args->datamatch;
  670. else
  671. p->wildcard = true;
  672. mutex_lock(&kvm->slots_lock);
  673. /* Verify that there isn't a match already */
  674. if (ioeventfd_check_collision(kvm, p)) {
  675. ret = -EEXIST;
  676. goto unlock_fail;
  677. }
  678. kvm_iodevice_init(&p->dev, &ioeventfd_ops);
  679. ret = kvm_io_bus_register_dev(kvm, bus_idx, p->addr, p->length,
  680. &p->dev);
  681. if (ret < 0)
  682. goto unlock_fail;
  683. kvm->buses[bus_idx]->ioeventfd_count++;
  684. list_add_tail(&p->list, &kvm->ioeventfds);
  685. mutex_unlock(&kvm->slots_lock);
  686. return 0;
  687. unlock_fail:
  688. mutex_unlock(&kvm->slots_lock);
  689. fail:
  690. kfree(p);
  691. eventfd_ctx_put(eventfd);
  692. return ret;
  693. }
  694. static int
  695. kvm_deassign_ioeventfd_idx(struct kvm *kvm, enum kvm_bus bus_idx,
  696. struct kvm_ioeventfd *args)
  697. {
  698. struct _ioeventfd *p, *tmp;
  699. struct eventfd_ctx *eventfd;
  700. int ret = -ENOENT;
  701. eventfd = eventfd_ctx_fdget(args->fd);
  702. if (IS_ERR(eventfd))
  703. return PTR_ERR(eventfd);
  704. mutex_lock(&kvm->slots_lock);
  705. list_for_each_entry_safe(p, tmp, &kvm->ioeventfds, list) {
  706. bool wildcard = !(args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH);
  707. if (p->bus_idx != bus_idx ||
  708. p->eventfd != eventfd ||
  709. p->addr != args->addr ||
  710. p->length != args->len ||
  711. p->wildcard != wildcard)
  712. continue;
  713. if (!p->wildcard && p->datamatch != args->datamatch)
  714. continue;
  715. kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev);
  716. if (kvm->buses[bus_idx])
  717. kvm->buses[bus_idx]->ioeventfd_count--;
  718. ioeventfd_release(p);
  719. ret = 0;
  720. break;
  721. }
  722. mutex_unlock(&kvm->slots_lock);
  723. eventfd_ctx_put(eventfd);
  724. return ret;
  725. }
  726. static int kvm_deassign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
  727. {
  728. enum kvm_bus bus_idx = ioeventfd_bus_from_flags(args->flags);
  729. int ret = kvm_deassign_ioeventfd_idx(kvm, bus_idx, args);
  730. if (!args->len && bus_idx == KVM_MMIO_BUS)
  731. kvm_deassign_ioeventfd_idx(kvm, KVM_FAST_MMIO_BUS, args);
  732. return ret;
  733. }
  734. static int
  735. kvm_assign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
  736. {
  737. enum kvm_bus bus_idx;
  738. int ret;
  739. bus_idx = ioeventfd_bus_from_flags(args->flags);
  740. /* must be natural-word sized, or 0 to ignore length */
  741. switch (args->len) {
  742. case 0:
  743. case 1:
  744. case 2:
  745. case 4:
  746. case 8:
  747. break;
  748. default:
  749. return -EINVAL;
  750. }
  751. /* check for range overflow */
  752. if (args->addr + args->len < args->addr)
  753. return -EINVAL;
  754. /* check for extra flags that we don't understand */
  755. if (args->flags & ~KVM_IOEVENTFD_VALID_FLAG_MASK)
  756. return -EINVAL;
  757. /* ioeventfd with no length can't be combined with DATAMATCH */
  758. if (!args->len && (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH))
  759. return -EINVAL;
  760. ret = kvm_assign_ioeventfd_idx(kvm, bus_idx, args);
  761. if (ret)
  762. goto fail;
  763. /* When length is ignored, MMIO is also put on a separate bus, for
  764. * faster lookups.
  765. */
  766. if (!args->len && bus_idx == KVM_MMIO_BUS) {
  767. ret = kvm_assign_ioeventfd_idx(kvm, KVM_FAST_MMIO_BUS, args);
  768. if (ret < 0)
  769. goto fast_fail;
  770. }
  771. return 0;
  772. fast_fail:
  773. kvm_deassign_ioeventfd_idx(kvm, bus_idx, args);
  774. fail:
  775. return ret;
  776. }
  777. int
  778. kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
  779. {
  780. if (args->flags & KVM_IOEVENTFD_FLAG_DEASSIGN)
  781. return kvm_deassign_ioeventfd(kvm, args);
  782. return kvm_assign_ioeventfd(kvm, args);
  783. }